Constant	Value	
(Note: even though it's not "fundamental" as defined in the article, the Planck mass		
$m_P = 1.220 \ 89(6) \times 10^{19} \ GeV/c^2$ is important for the mass ratios below.		
m_u/m_P	$(1.7 - 3.3 \text{ MeV/c}^2) / m_P = 1.4 \times 10^{-22} - 2.7 \times 10^{-22}$	
m_d/m_P	$(4.1 - 5.8 \text{ MeV/c}^2) / m_P = 3.4 \times 10^{-22} - 4.8 \times 10^{-22}$	
m_c/m_P	$(1.27 \text{ GeV/c}^2) / m_P = 1.04 \times 10^{-19}$	
m_{s}/m_{P}	$(101 \text{ MeV/c}^2) / m_P = 8.27 \times 10^{-21}$	
m_t/m_P	$(172.0 \text{ GeV/c}^2) / m_P = 1.41 \times 10^{-17}$	
m_b/m_P [†]	$(4.19 \text{ GeV/c}^2) / m_{\text{P}} = 3.43 \times 10^{-19}$	
Parameters in the Cabibbo–Kobayashi–Maskawa matrix [‡]		
λ	0.2253	
Α	0.808	
Ā	0.132	
$\bar{\eta}$	0.341	
Parameters for another way [§] that one looks at the CKM matrix		
θ _{13,CKM}	$\sin^{-1}(e^{i(0.995)} A\lambda^{3}(\rho-i\eta)) = .00338$	
θ _{12,CKM}	$\sin^{-1}(0.2253) = 0.229$	
θ _{23,CKM}	$\sin^{-1}(0.808 \cdot 0.2253^2) = 0.041$	
$\delta_{\rm CKM}$	0.995	
m_e/m_P	$(.510999 \text{ MeV/c}^2) / m_P = 4.18546 \times 10^{-23}$	
m_{ve}/m_P	Unknown	
m_{μ}/m_{P}	$(105.658 \text{ MeV/c}^2) / m_P = 8.65418 \times 10^{-21}$	
$m_{\nu\mu}/m_P$	Unknown	
$m_{ au}/m_{ m P}$	$(1776.82 \text{ MeV/c}^2) / m_P = 1.45535 \times 10^{-19}$	
$m_{v\tau}/m_P$	Unknown	
Parameters in the Pontecorvo-Maki-Nakagawa-Sakata matrix ^{††}		
θ _{13,PMNS}	$<\sin^{-1}$ (0.056 = 0.239	
$\theta_{12,PMNS}$	$\sin^{-1} \sqrt{0.304} = 0.584$	
$\theta_{23,PMNS}$	$\frac{1}{2}\sin^{-1}\sqrt{1} = \pi/4$ (with some uncertainty)	

δ_{PMNS}	Unknown	
m _H	Unknown	
vev _H	Unknown	
Gauge coupling constants (g_{group}) are given at an energy of		
$m_{Z} \cdot c^{2} = 91.1876 \text{ GeV}, \text{ i.e. } g_{\text{group}} = g_{\text{group}}(m_{Z} \cdot c^{2})$		
$g_{U(1)} = g'$	0.357	
$g_{SU(2)} = g$	0.652	
A relation can be seen between the fine structure constant α and the two previous gauge coupling constants:		
$\alpha(m_Z) = \frac{1}{4\pi} \frac{\left(\mathcal{G} \cdot \mathcal{G}^{f} \right)^2}{\mathcal{G}^2 + \mathcal{G}^{f^2}} = .00780 = 1/128$, which is not our familiar 1/137, but actually does		
agree		
with experiment[1] because of the higher energy.		
$g_{SU(3)} = g_s$	1.221	
The strong force coupling can also be formulated with		
$\alpha_{\rm s}({\rm m}_Z) = \frac{g_{\rm s}}{4\pi} = 0.1184$		
$\Omega_{\Lambda} (= \frac{A c^2}{3H_0^2})^{\ddagger\ddagger}$	0.74	

† Mass value from the modified minimal subtraction scheme

* Wolfenstein parameterization, where the CKM matrix is given by: $\begin{bmatrix}
1 - \lambda^2 & \lambda & A\lambda^2 (\rho - t\eta) \\
-\lambda & 1 - \lambda^2 & A\lambda^2 \\
A\lambda^2 (1 - \rho - t\eta) & -A\lambda^2 & 1
\end{bmatrix}$

 $\text{SUsing the relations: } \lambda = s_{12;} \quad A\lambda^2 = s_{23;} \quad A\lambda^3(\rho - i\eta) = s_{13}e^{-i\delta}, \text{ where } c_{ij} = \cos \theta_{ij}, s_{ij} = \sin \theta_{ij} \text{ , we}$ can also write the CKM matrix as:

C1cS2cS1cC¹⁶ C10C28 - S10S28S18618 120228126¹⁶ -c₁₂s₂₂ - s₁₂c₂₂s₁₂s^{tô}

†† Pontecorvo-Maki-Nakagawa-Sakata matrix defined the same as the CKM matrix

 $\ddagger H_0$ is the Hubble constant.

The values of the constants are taken from PDG, except the g-values (coupling constants) which came from the Wikipedia page on the standard model. I also used Wikipedia for the CKM matrix and the PMNS matrix (Neutrino oscillations). Other sources I found useful (essential) are given below.

 $e^{2} = \frac{(g \cdot g')^{2}}{g^{2} + g'^{2}}$ in Lorentz-Heaviside "natural" units

from http://www.physicsforums.com/showthread.php?t=365156

 $e = 4\pi\alpha$ (Lorentz Heaviside) from the Wikipedia page on natural units

[1] F. Jegerlehner, hep-ph/0105283 (2001)

List of 26 constants taken from John Baez <u>http://math.ucr.edu/home/baez/constants.html</u> © 2011 David Black