
Applied Category Theory

John Baez

http://en.wikipedia.org/wiki/Signal-flow_graph

In many areas of science and engineering, people use diagrams of
networks, with boxes connected by wires:

We need a good mathematical theory of these.

http://math.ucr.edu/home/baez/networks/networks_1.html
http://johncarlosbaez.wordpress.com/2012/06/27/the-mathematics-of-biodiversity-part-3/

In many areas of science and engineering, people use diagrams of
networks, with boxes connected by wires:

We need a good mathematical theory of these.

http://math.ucr.edu/home/baez/networks/networks_1.html
http://johncarlosbaez.wordpress.com/2012/06/27/the-mathematics-of-biodiversity-part-3/

Categories must be part of the solution. This became clear in the
1980s, at the interface of knot theory and quantum physics:

http://www.worldscientific.com/worldscibooks/10.1142/8338

Categories are great for describing processes of all kinds. A process
with input x and output y is called a morphism F : x → y , and we
draw it like this:

x

F

y

The input and output are called objects.

We can do one process after another if the output of the first
equals the input of the second:

F

x

G

y

z

Here we are composing morphisms F : x → y and G : y → z to
get a morphism GF : x → z .

In a monoidal category, we can also do processes ‘in parallel’:

x

F

y

x ′

G

y ′

Here we are tensoring F : x → y and G : x ′ → y ′ to get a
morphism F ⊗ G : x ⊗ x ′ → y ⊗ y ′.

In a braided monoidal category, we have a process of switching:

x

y x

y

This is called the braiding Bx ,y : x ⊗ y → y ⊗ x . It has an inverse:

x

yx

y

In a symmetric monoidal category it doesn’t matter which wire
goes over which:

x

y x

y

=

y

xy

x

All these kinds of categories obey some axioms, which are easy to
find.

http://math.ucr.edu/home/baez/rosetta.pdf
http://math.ucr.edu/home/baez/rosetta.pdf

The category with vector spaces as objects and linear maps
between these as morphisms becomes a symmetric monoidal
category with the usual ⊗.

In particle physics, ‘Feynman diagrams’ are pictures of morphisms
in this category:

The category with vector spaces as objects and linear maps
between these as morphisms becomes a symmetric monoidal
category with the usual ⊗.

In particle physics, ‘Feynman diagrams’ are pictures of morphisms
in this category:

But why should particle physicists have all the fun? This is the
century of biology.

Now is our chance to understand the biosphere, and stop
destroying it! We should use everything we can — even
mathematics — to do this.

But why should particle physicists have all the fun? This is the
century of biology.

Now is our chance to understand the biosphere, and stop
destroying it! We should use everything we can — even
mathematics — to do this.

Back in the 1950’s, Howard Odum introduced an Energy Systems
Language for ecology:

http://en.wikipedia.org/wiki/Energy_Systems_Language
http://en.wikipedia.org/wiki/Energy_Systems_Language
http://www.cep.ees.ufl.edu/emergy/resources/presentations.shtml

Biologists use diagrams to describe the complex processes they find
in life. They use at least three different diagram languages, as
formalized in Systems Biology Graphical Notation.

We should try to understand these diagrams using all the tools of
modern mathematics!

http://www.sbgn.org/Main_Page

But let’s start with something easier: engineering. Engineers use
‘signal-flow graphs’ to describe processes where signals flow
through a system and interact:

http://en.wikipedia.org/wiki/Signal-flow_graph

Think of a signal as a smooth real-valued function of time:

f : R→ R

We can multiply a signal by a constant and get a new signal:

f

c

cf

We can also integrate a signal:

f

∫
∫
f

Here is what happens when you push on a mass m with a
time-dependent force F :

q

∫ v

∫ a

1
m

F

Integration introduces an ambiguity: the constant of integration.
But electrical engineers often use Laplace transforms to write
signals as linear combinations of exponentials

f (t) = e−st for some s > 0

Then they define

(
∫
f)(t) =

e−st

s

This lets us think of integration as a special case of scalar
multiplication! We extend our field of scalars from R to R(s), the
field of rational real functions in one variable s.

Let us be general and work with an arbitrary field k . For us, any
signal-flow graph with m input edges and n output edges

will stand for a linear map

F : km → kn

In other words: signal-flow graphs are pictures of morphisms in
FinVectk , the category of finite-dimensional vector spaces over k ...
where we make this into a monoidal category using ⊕, not ⊗.

We build these pictures from a few simple ‘generators’.

First, we have scalar multiplication:

c

This is a notation for the linear map

k → k
f 7→ cf

Second, we can add two signals:

This is a notation for
+: k ⊕ k → k

Third, we can ‘duplicate’ a signal:

This is a notation for the diagonal map

∆: k → k ⊕ k
f 7→ (f , f)

Fourth, we can ‘delete’ a signal:

This is a notation for the linear map

k → {0}
f 7→ 0

Fifth, we have the zero signal:

This is a notation for the linear map

{0} → k
0 7→ 0

Furthermore, (FinVectk , ⊕) is a symmetric monoidal category.
This means we have a ‘braiding’: a way to switch two signals:

f

g f

g

This is a notation for the linear map

k ⊕ k → k ⊕ k
(f , g) 7→ (g , f)

From these ‘generators’:

c

together with the braiding, we can build complicated signal flow
diagrams. In fact, we can describe any linear map F : km → kn

this way!

But these generators obey some unexpected relations:

=

−1

−1

Luckily, we can derive all the relations from some very nice ones!

Theorem (Jason Erbele)

FinVectk is equivalent to the symmetric monoidal category
generated by the object k and these morphisms:

c

where c ∈ k , with the following relations.

Addition and zero make k into a commutative monoid:

=
=

=

Duplication and deletion make k into a cocommutative comonoid:

=
=

=

The monoid and comonoid operations are compatible, giving a
bimonoid:

=

= =

=

The ring structure of k can be recovered from the generators:

bc =
b

c
b + c = b c

1 =
0 =

Scalar multiplication is linear (compatible with addition and zero):

c c
=

c

c =

Scalar multiplication is ‘colinear’ (compatible with duplication and
deletion):

c c
=

c

c =

Those are all the relations we need!

However, control theory also needs more general signal-flow
graphs, which have ‘feedback loops’:

This is the most important concept in control theory: letting the
output of a system affect its input.

http://en.wikipedia.org/wiki/Control_theory

To allow feedback loops we need morphisms more general than
linear maps. We need linear relations!

A linear relation F : U V from a vector space U to a vector
space V is a linear subspace F ⊆ U ⊕ V .

We can compose linear relations F : U V and G : V W and
get a linear relation G ◦ F : U W :

G ◦ F = {(u,w) : ∃v ∈ V (u, v) ∈ F and (v ,w) ∈ G}.

A linear map φ : U → V gives a linear relation F : U V , namely
the graph of that map:

F = {(u, φ(u)) : u ∈ U}

Composing linear maps becomes a special case of composing linear
relations.

There is a symmetric monoidal category FinRelk with finite-
dimensional vector spaces over the field k as objects and linear
relations as morphisms. This has FinVectk as a subcategory.

Fully general signal-flow diagrams are pictures of morphisms in
FinRelk , typically with k = R(s).

Jason Erbele showed that besides the previous generators of
FinVectk , we only need two more morphisms to generate all the
morphisms in FinRelk : the ‘cup’ and ‘cap’.

f = g

f g

f = g

f g

These linear relations say that when a signal goes around a bend in
a wire, the signal coming out equals the signal going in!

More formally, the cup is the linear relation

∪ : k ⊕ k {0}

that is, the subspace

∪ ⊆ k ⊕ k ⊕ {0}

given by:
∪ = {(f , f , 0) : f ∈ k}

Similarly, the cap
∩ : {0} k ⊕ k

is the subspace
∩ ⊆ {0} ⊕ k ⊕ k

given by:
∩ = {(0, f , f) : f ∈ k}

More formally, the cup is the linear relation

∪ : k ⊕ k {0}

that is, the subspace

∪ ⊆ k ⊕ k ⊕ {0}

given by:
∪ = {(f , f , 0) : f ∈ k}

Similarly, the cap
∩ : {0} k ⊕ k

is the subspace
∩ ⊆ {0} ⊕ k ⊕ k

given by:
∩ = {(0, f , f) : f ∈ k}

Theorem (Jason Erbele)

FinRelk is equivalent to the symmetric monoidal category
generated by the object k and these morphisms:

c

where c ∈ k , and an explicit list of relations.

For details, see:

I J. Baez and Jason Erbele, Categories in control.

I Filippo Bonchi, Pawel Sobocinski and Fabio Zanasi,
Interacting Hopf algebras.

https://arxiv.org/abs/1405.6881
https://arxiv.org/abs/1403.7048

Theorem (Jason Erbele)

FinRelk is equivalent to the symmetric monoidal category
generated by the object k and these morphisms:

c

where c ∈ k , and an explicit list of relations.

For details, see:

I J. Baez and Jason Erbele, Categories in control.

I Filippo Bonchi, Pawel Sobocinski and Fabio Zanasi,
Interacting Hopf algebras.

https://arxiv.org/abs/1405.6881
https://arxiv.org/abs/1403.7048

Besides signal-flow diagrams, we have also analyzed the categories
where morphisms are:

I electrical circuits

I open Markov processes

I open Petri nets

I open chemical reaction networks

So, we are working toward a unified theory of networks — but
there’s a lot more to do!

For more, see:

http://math.ucr.edu/home/baez/networks/

http://math.ucr.edu/home/baez/networks/

Besides signal-flow diagrams, we have also analyzed the categories
where morphisms are:

I electrical circuits

I open Markov processes

I open Petri nets

I open chemical reaction networks

So, we are working toward a unified theory of networks — but
there’s a lot more to do!

For more, see:

http://math.ucr.edu/home/baez/networks/

http://math.ucr.edu/home/baez/networks/

Besides signal-flow diagrams, we have also analyzed the categories
where morphisms are:

I electrical circuits

I open Markov processes

I open Petri nets

I open chemical reaction networks

So, we are working toward a unified theory of networks — but
there’s a lot more to do!

For more, see:

http://math.ucr.edu/home/baez/networks/

http://math.ucr.edu/home/baez/networks/

Besides signal-flow diagrams, we have also analyzed the categories
where morphisms are:

I electrical circuits

I open Markov processes

I open Petri nets

I open chemical reaction networks

So, we are working toward a unified theory of networks — but
there’s a lot more to do!

For more, see:

http://math.ucr.edu/home/baez/networks/

http://math.ucr.edu/home/baez/networks/

Besides signal-flow diagrams, we have also analyzed the categories
where morphisms are:

I electrical circuits

I open Markov processes

I open Petri nets

I open chemical reaction networks

So, we are working toward a unified theory of networks — but
there’s a lot more to do!

For more, see:

http://math.ucr.edu/home/baez/networks/

http://math.ucr.edu/home/baez/networks/

