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MATHEMATICAL KINDS, OR BEING
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David Corfield

1. Introduction

In  Chapter  III  of  his  Science  et  Méthode,  published  in  1908,  Henri 
Poincaré claimed that:

Les faits mathématiques dignes d’être étudiés, ce sont ceux qui, par 
analogie avec d’autres faits, sont susceptibles de nous conduire à la 
connaissance d’une loi mathématique de la même façon que les faits 
expérimentaux nous conduisent à la connaissance d'une loi physique. 
Ce  sont  ceux  qui  nous  révèlent  des  parentés  insoupçonnées  entre 
d’autres faits,  connus depuis longtemps,  mais qu’on croyait  à  tord 
étrangers les uns aux autres. (Poincaré 1908: 49)1

Towards the end of the twentieth century, with many more mathematical 
facts  since  discovered,  several  mathematicians  proposed  overarching 
schemes to organise the facts  they considered most significant.  In this 
paper,  I shall  briefly discuss  three  of these schemes (those  of Arnold, 
Atiyah,  and  Baez  and  Dolan),  before  drawing  some  philosophical 
consequences from their attempts. Rather than the kind of claim made by 
Frege that with the entry of imaginary numbers we reach the ‘natural end 
of the domain of numbers’, we are dealing here with a more open-ended 

1 The mathematical facts worthy of being studied are those which, by their 
analogy with other facts, are capable of leading us to the knowledge of a 
mathematical law, just as experimental facts lead us to the knowledge of a 
physical law. They are those which reveal to us unsuspected kinship between 
other facts, long known, but wrongly believed to be strangers to one another.
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sense of conceptual growth. I shall illustrate this theme by discussing the 
elaboration of algebraic structures designed to measure symmetry.

What  emerges  is  that  at  any  one  time  mathematicians  are 
operating with a notion very similar to that discussed in the philosophy 
of science under the heading of ‘natural kinds’. We find ‘quasi-causal’ 
talk of properties being ‘responsible’ for a phenomenon, projectability, 
the  transfer  of  robust  mechanisms between domains,  and reference  to 
entities  not  yet  fully  determined.  Debates  in  philosophy  of  science 
prompt further questioning as to the ‘naturalness’ of these mathematical 
kinds,  whether  one  should  expect  them  to  be  dependent  on  varying 
human interests,  whether there is a distinction between artefactual and 
real kinds, and whether there is convergence of kinds. I believe that these 
questions  present  a  wonderful  opportunity  for  a  philosophy  of 
mathematics to treat ‘real’ mathematics, while making powerful points of 
contact with philosophy of science, and philosophy in general.

As regards science, these themes relating to laws and kinds have 
received  extensive  treatment.  From  where  we  stand  today  it  seems 
intuitively obvious that some events that occur in the world are of greater 
potential scientific interest than are others:

(1) The plastic tea tray I left on the cooker melted.
(2) The ball-point pen I found under my armchair was blue. 

This  conviction  relates  to  my  knowledge  that  every  time  I  am  fool 
enough to leave my tray on an extremely hot cooker it will melt, while 
my elusive ball-point pen might have been lost and found whatever its 
colour. In the former case, if it pleases us we know we can tap into the 
scientific literature on the temperature at which different plastics melt, 
and  perhaps  then  proceed  to  a  larger  exploration  of  the  stability  of 
polymer  structures.  Fact  (2),  meanwhile,  does  not  present  itself  as  a 
promising  starting  point.  At  best,  we  might  hope  to  find  a  statistical 
regularity that blue pens are lost more or less frequently, or found more 
or less quickly than pens of other colours. 

Much has been written about facts being necessitated by laws. 
During the  zenith  of  logical  empiricism, the  hope was that  one could 
distinguish between general scientific statements as to their lawlikeness 
merely  on  the  grounds  of  elementary  syntactic  or  semantic 
considerations.  Any  such  hope  has  long  been  extinguished  by  the 
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comparison of pairs of statements such as:

(1) All solid spheres of enriched uranium have a diameter of less 
than one mile.

(2) All solid spheres of gold have a diameter of less than one 
mile.

While  the  second  statement,  if  true,  appears  to  be  so  for  contingent 
reasons,  the possibility of a falsifier  of the first  is ruled out,  it  would 
appear, by the iron rule of physical law, in this case the laws of nuclear 
physics. Of course, fact (2) is not completely divorced from the web of 
science. We have theories concerning the synthesis  of elements within 
stars. Knowledge of the likely distribution of gold in a planetary system 
must  make it  highly  implausible  that  a  large  golden  sphere  could  be 
formed without intelligent intervention, and even then it would require 
technological  resources  far  greater  than  our  own.  On the  other  hand, 
whatever  those  resources  may  be,  large  solid  spheres  of  enriched 
uranium just cannot be put together for more than an instant, or so we 
believe.

With much of the discussion of laws and necessity carried out in 
the  metaphysical  language  of  possible  worlds,  the  notion  that 
mathematical  facts  might  vary  similarly  as  to  their  lawlikeness  has 
appeared to be hopeless. Where I can imagine possible worlds in which 
very large golden balls exist, I cannot imagine a possible world in which 
the number denoted in the decimal system by ‘13’ is not prime. But we 
are not forced to let this observation stand in our way. Instead, we might 
choose to question the extent to which the possible worlds conception is 
our only way of dealing with lawlikeness. 

Here  I  shall  not  be  directly  treating  the  question  of  whether 
possible  worlds are a worthwhile metaphysical  debt  to incur for  those 
working  in  philosophy  of  science.  I  believe  van  Fraassen,  Harré  and 
others  have  produced  powerful  arguments  in  this  regard.  Rather,  the 
burden of this paper is to point to the presence of a parallelism between 
mathematics  and science  in  respect  of  facts  being made more  or  less 
significant  by the  degree  of  their  participation  in  a  grand network  of 
theories.  In other words, the claim to be substantiated is that Poincaré 
was largely right in the quotation with which I began this paper. In doing 
so, I do see myself as making a significant contribution to van Fraassen 
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et al.’s crusade against key components of modern analytic metaphysics: 
“However  plausibly  the  story  begins,  the  golden  road  to  philosophy 
which possible-world ontologies promise, leads nowhere” (van Fraassen 
1989: 93). For, once we have come to terms with Poincaré’s perception, 
we shall then be in a position to confront two opposing intuitions:

(A) Our best  metaphysicians have shown us that  the 
way  to  deal  with  necessity  and  contingency  is 
through the apparatus of possible world semantics. 
All mathematical truths are necessary in the sense 
that  they  hold  in  all  possible  worlds.  The 
distinction  being  treated  here  is  thus  merely  a 
reflection of human psychology.

(B) There is a distinction here very salient for our best 
mathematical  reasoning.  If our metaphysics  does 
not speak to this distinction, something is wrong 
with our metaphysics.

This is largely a matter of one’s philosophical stance. For my part I am 
on Collingwood’s side when he says:

There are two questions to be asked whenever anyone inquires into 
the nature of any science: ‘what is it like?’ and ‘what is it about?’…
of these two questions the one I have put first must necessarily be 
asked before the one I have put second, but when in due course we 
come to answer the second we can only answer it by a fresh and 
closer consideration of the first. (Collingwood 1999: 39-40)

One feature of what it is like to think mathematically is to know 
that some facts look, and remain looking, highly unpromising as places to 
begin an investigation, whereas others look likely to, and often turn out 
to, tap into very deep waters. To put it in a blunt Collingwoodian way, if 
as a philosopher you do not recognise this difference, you have amply 
demonstrated  that  you  do  not  understand  what  it  is  like  to  think 
mathematically,  and  therefore  should  not  pursue  philosophical 
investigations of mathematics.

2. ‘Quasi-Contingent’ Mathematical Facts
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Lakatos was always keen to emphasise the similarities he saw between 
mathematical  and  scientific  reasoning.  In particular,  he  used  the  term 
‘quasi-empiricism’ to  denote  the  common pattern  to  the  flow of  truth 
operating  in  mathematics  and  science.   Extending  the  range  of  these 
similarities, what I am arguing for here is the existence in mathematics of 
‘quasi-contingent’ facts, i.e., facts which are shallow or ‘happenstantial’. 
For example, consider the two following elaborations of the primality of 
13:

(a) ‘13’ is prime, and, reversing its digits, so is ‘31’.
(b) ‘13’ is prime, and 13 = 2² + 3².

Each of these naturally prompts a study of its generality. Starting from 
(a), we quickly find that 17 and 71 are both prime, but, alas, while 19 is 
prime, 91 is not. Furthermore, we observe that primes beginning with an 
even  digit  or  a  ‘5’  will  not  reverse  to  give  a  prime.  This  route  to 
generalisation  seems  hopeless.  Another  line  to  pursue  is  to  question 
whether  the  mild  coincidence  that  ‘13’  and  ‘31’  are  both  prime  is 
dependent  on  the  arbitrary  base  choice  of  the  decimal  system.  A 
worthwhile mathematical fact should not be so beholden. For example, 
had our number system been expressed in base 8 rather than base 10, 
what  we  call  ‘13’  would  have  been  written  as  ‘15’.  Reversing  these 
digits, ‘51’ in base 8 expresses our ‘41’, which is prime.  The following 
table records the results of the same calculation for bases between 2 and 
12.

Base         ‘13’          Reverse  d               Decimal                
12 11 11 13
11 12 21 23
10 13 31 31
9 14 41 37
8 15 51 41
7 16 61 43
6 21 12 8
5 23 32 17
4 31 13 7
3 111 111 13
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2 1101 1011 11

We may also extend this table upwards: 13 in base 13 is ‘10’, 
which reversed is ‘01’; ‘13’ in any higher base is represented by a single 
symbol,  so  left  unchanged  by  reversal.  We  arrive,  then,  at  the  near 
universal result that the reversal of ‘13’ in all bases except 6 is prime or 
unity, or the full universal result that the reversal of ‘13’ in all bases is 
either  prime or  equal  to  ‘1’  or  to  ‘8’.  Coining a  term ‘cubeprime’  to 
characterise any natural number which is either prime or a perfect cube, 
we arrive  at  the  result  that:  In any base,  the reversal  of  what  we call 
‘thirteen’ is cubeprime.

Notice that,  rather like the way that the non-existence of large 
gold spheres ties in with our scientific knowledge to some extent, there 
are  some  mathematical  considerations  relevant  to  this  ‘law’.  For 
example, the entries in the right hand columns of rows 7 to 12 are forced 
to be odd, increasing the likelihood of primality. 

Pushing our investigations further, we find the same result holds 
for  2,  3,  5 and 7.  At 11, to produce a ‘law’ we need a new property 
‘cubeprimeproduct’  to  describe  any  natural  number  which  is  either 
cubeprime or the product of two primes. In any base, the reversal of any 
prime less than or equal to what we call ‘thirteen’ is cubeprimeproduct. I 
shall  leave  further  explorations  of  this  fascinating  corner  of  number 
theory to the eager reader.

Let us now choose (b) as our point of departure, and see whether 
other primes can be expressed as the sum of two squares. We find that: 5 
= 1² + 2²; 17 = 1² + 4²; 29 = 2² + 5². However, 7, 11, 19 and 23 cannot be 
expressed in this way. But all is not lost. We note that 5, 13, 17 and 29 
are all of the form 4n + 1, while 7, 11, 19 and 23 are all of the form 4n + 
3, for integer n. Since squares leave remainder 0 or 1 on division by 4, it 
should be clear that primes of the latter form can never be expressed as a 
sum of two squares. What can we say in the opposite direction?

Now I meet a problem in my presentation. I expect that most of 
my  readership  will  know  something  no  human  knew  80  years  ago, 
namely that uranium 235 has a critical mass. If the mass of a body of this 
uranium exceeds the critical mass, there will be a chain reaction causing 
a huge liberation of energy. On the other hand, experience has shown me 
that I cannot similarly rely on their knowing a simple mathematical fact 
known  for  at  least  350  years,  namely,  that  the  pattern  noted  in  the 
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previous paragraph holds for all primes: 

A prime may be expressed as a sum of two squares if and only if it 
is either 2, or of the form 4n + 1. 

When Fermat demonstrated this in the seventeenth century he used what 
was later called the ‘method of descent’, which establishes that for any 
potential counterexample there is a smaller one, and hence there can be 
no minimal counterexample to this  rule.  The notion of descent  is  still 
being  vigorously  elaborated  to  this  day.  On  the  other  hand,  Gauss’s 
approach  to  this  field  introduced  the  notion  of  Gaussian  integers  200 
years ago, and proved that prime factorisation holds for them. Fact (b) is 
linked to the factorisation 13 = (2 + 3i)(2 – 3i), i.e., 13 is no longer prime 
in the ring of Gaussian integers. Gauss’s work marked the origins of the 
enormous field of algebraic number theory. 

So our fact (b) looks less happenstantial because it is an instance 
of a law, which in turn is a surface indicator of the presence of a richly 
entangled  network  of  ideas.  Now,  some  philosophers  of  science  are 
coming to  a similar  conclusion  in  their  own field.  My sympathies  lie 
there with the model-based approach, not in the logicist form of Suppes, 
but  that  of  the  ‘Models  as  Mediators’  programme  (Morgan  and 
Morrisson 1999), where laws become indices of deeper theorising:

What has happened to the laws of Nature? They were once thought 
to be the very heart of scientific achievement. We can now see how 
superficial a role they play. Laws of Nature are sometimes no more 
than  records  of  conceptual  relations  involved  in  classificatory 
systems.  Sometimes  they  are  descriptions  of  the  workings  of 
models, analytic or explanatory. (Harré 2002: 55-56)

I indicated above a tiny part of the tangled network which may be 
quickly reached from the solitary fact  (b).  Unfortunately, the educated 
lay person is not expected to know anything of this network. We have not 
moved on so far from the “common superstition”, alluded to by Hilbert, 
“that  mathematics is  but a continuation,  a further  development,  of  the 
fine  art  of  arithmetic,  of  juggling  with  numbers”  (Hilbert  and  Cohn-
Vossen  1952:  iv).  This  ignorance  presents  a  huge  obstacle  for  a 
philosophy  of  mathematics  sensitive  to  what  mathematicians  have 
discovered, but let’s try to delve a little.
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3. The Huge Obstacle

Often the philosophical  treatment  of  a given notion follows a pattern. 
Philosophers starting out with an overall conception of a domain want to 
treat some notion pertaining to that domain generically, to find what can 
be said uniformly of all its instances. Some will then come to realise that 
important  aspects  of  the  notion  relative  to  a  specific  subdomain  are 
overlooked.  They  then  dig  deeply  into  that  subdomain  and  find 
distinctive new features. Some imagine that there is still a right way to 
think about the notion universally by reinterpreting these findings or else 
see this  subdomain as distinctively ‘foundational’;  others choose to be 
philosophers  of  the  specific  subdomain  and emphasise  its  uniqueness. 
The very hard task of patching together these local studies into a richer 
global picture too often doesn’t get done. 

In the case of the philosophy of science, for instance, one may 
either be a reductionist and take a few physical properties and their laws 
as fundamental or natural, or else think that some chemical or biological 
properties are not reducible, and so argue for a disparate array of local 
laws. The harder step is to attempt to patch together these local studies. 

In twentieth century philosophy of mathematics, we start at the 
beginning of the century with a philosopher’s conception of mathematics 
as  a  whole,  perhaps  what  Russell  includes  in  The  Principles  of  
Mathematics.  This  was already an impoverished conception,  as  Frege, 
Hilbert,  Brouwer  and  Weyl  could  have  told  you.  By  1930,  from  a 
philosophical viewpoint,  it  could be stated universally of any piece of 
mathematical reasoning that all the definitions employed are expressible 
in the  language of set  theory (the theory of classes  included),  and all 
reasoning represented within the confines of first order classical logic. 

Towards the end of the century, a few were beginning to realise 
that  set  theoretic  reductionism  ignores  distinctions  between  specific 
kinds of reasoning and went in search of local particularity, noting, for 
example,  that  the  development  of  the  most  sensitive,  while  still 
computationally tractable, algebraic ‘machinery’ in algebraic topology is 
very different from Paul Erdös’s combinatorial style of research in graph 
theory;  and  that  the  use  of  the  analogical  transfer  of  constructions 
between fields  differs from the use of extensive computer  calculation. 
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These moves are important,  but in selecting local  studies,  and later  in 
fitting them together, we needed to be guided by a larger conception of 
mathematics.  Here  the  huge obstacle  looms:  we have no overview of 
mathematics as a whole. Where a philosopher of physics will be able to 
offer you some kind of sketch of the whole domain of physics, for most 
outside  of  mathematics,  including  most  philosophers  of  mathematics, 
there is little more to work with than the idea gained from the generic 
view that everything is expressible set theoretically. 

4. Mathematical Visions

I now want to offer the reader an impressionistic glimpse of some “big 
pictures”  in  mathematics,  and  subsequently  show  how  they  lend 
themselves  to  our  asking  rather  different  questions  in  philosophy  of 
mathematics.  We  begin  with  a  recent  suggestion  of  the  Russian 
mathematician Vladimir Arnol’d, who reckons that something about the 
Russian training alerts you to the connectivity of mathematics:

One (…) characteristic of the Russian mathematical tradition is the 
tendency to regard all of mathematics as one living organism. In the 
West it is quite possible to be an expert in mathematics modulo 5, 
knowing nothing about  mathematics  modulo  7.  One’s  breadth is 
regarded  as  negative  in  the  West  to  the  same  extent  as  one’s 
narrowness is regarded as unacceptable in Russia. (Lui 1997: 436)

Elsewhere, Arnol’d explains humorously:

All mathematics is divided into three parts: cryptography (paid for 
by  CIA,  KGB  and  the  like),  hydrodynamics  (supported  by 
manufacturers  of  atomic  submarines)  and  celestial  mechanics 
(financed  by  military  and  by  other  institutions  dealing  with 
missiles, such as NASA. (Arnol’d 1999a: 403)

Then more seriously

Cryptography  has  generated  number  theory,  algebraic  geometry 
over finite fields, algebra, combinatorics and computers. 
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Hydrodynamics  procreated  complex  analysis,  partial  derivative 
equations, Lie groups and algebra theory, cohomology theory and 
scientific computing. 
Celestial  mechanics  is  the  origin  of  dynamical  systems,  linear 
algebra,  topology,  variational  calculus  and  symplectic  geometry. 
(Arnol’d 1999a: 403)

He continues:
The existence of mysterious relations between all  these different 
domains is the most striking and delightful feature of mathematics 
(having no rational explanation). (Arnol’d 1999a: 403)

Mathematicians have been screaming to us for years to look at this kind 
of  phenomenon,  but  their  pleas  have  largely  fallen  on  deaf  ears. 
Arnol’d’s own suggestion is that there is a way of thinking systematically 
about these ‘mysterious relations’ via various informal processes:

The informal complexification, quaternionization, symplectization, 
contactization etc., described below, are acting not on such small 
things, as points, functions, varieties, categories or functors, but on 
the whole of mathematics. 

I  have successfully used these ideas many times as a method to 
guess new results. I hope therefore that in the future this method of 
the multiplication of mathematics will be as standard, as is now the 
transition from finite-dimensional linear algebra to the theory of 
integral equations and to functional analysis. (Arnol’d 1999a: 404)

He goes on to consider examples of three way parallels or trinities as he 
puts it, where one seeks to fill in places in a long three-columned table. 
In this table, you find mentioned the ubiquitous Dynkin diagrams. The 
associated A-D-E metapattern, linked to singularity theory and subfactor 
theory,  Arnol’d  had  earlier  (in  Browder  1976)  picked  out  as  a 
phenomenon meriting the  same sort  of  attention as  has been given to 
Hilbert’s problems. He gives the following examples of their appearance: 
Platonic solids; finite groups generated by reflections; Weyl groups with 
roots  of  equal  length;  representations  of  quivers;  singularities  of 
algebraic hypersurfaces with definite intersection form; critical points of 
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functions having no moduli.2 Elsewhere, he claims that “The belief that 
all simple (having no continuous moduli) objects in the [sic] nature are 
controlled by the coxeter groups is a kind of religion.” (Arnol’d 1999b: 
1123)

I’m certainly not suggesting that  Arnol’d has a monopoly on 
systematising schemes. Here’s another scheme which explicit argues for 
the  continuity  of  mathematics  over  the  centuries,  this  time  from  Sir 
Michael Atiyah (1976):

19th century The study of functions of one (complex) variable
20th century The study of functions of many variables 

Of course, this is not to say that in the nineteenth century linear algebra 
in  higher  dimensions  wasn’t  being  developed  right  up  to  algebras  of 
functionals operating on infinite dimensional function spaces. It’s a claim 
about global, non-linear mathematics. Where Riemann’s explorations of 
the links between algebra, topology and geometry on the surfaces named 
after  him mark  a  high  point  of  the  nineteenth  century,  by  the  1890s 
Poincaré still saw the need to justify the same kind of treatment of spaces 
of dimension higher than three.

Can we fill in Atiyah’s scheme for our current century? Well, 
recently he has done so himself:

What about the 21st century? I have said the 21st century might be 
the  era  of  quantum  mathematics  or,  if  you  like,  of  infinite-
dimensional  mathematics.  What  could  this  mean?  Quantum 
mathematics could mean, if we get that far, `understanding properly 
the  analysis,  geometry,  topology,  algebra  of  various  non-linear 
function  spaces',  and  by  `understanding  properly'  I  mean 
understanding it in such a way as to get quite rigorous proofs of all 
the  beautiful  things  the  physicists  have  been  speculating  about. 
(Atiyah 2002: 14)3

2 John Baez  (1995)  explains what is  going on here  and mentions two more 
instances: Minimal models; quantum categories. 

3 This work requires generalising the duality between position and momentum in 
classical  mechanics:  “This  replaces  a  space  by  its  dual  space,  and  in  linear 
theories that duality is just the Fourier transform. But in non-linear theories, how 
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In chapter 10 of Corfield (2003), I amalgamated Atiyah’s scheme to one 
of  Baez  and  Dolan,  which  derives  in  part  from another  giant  of  the 
twentieth century, Alexandre Grothendieck. Extending this amalgamated 
scheme a little suggests:

19th century The study of functions of one (complex) variable
The codification of 0-category theory (set theory).

20th century The study of functions of many variables 
The codification of 1-category theory.

21st century Infinite-dimensional mathematics
The codification of n-category theory, and ω-category

                             theory.

I shall not repeat here what I have said about this scheme. Interestingly, 
Baez has had the idea that the objects of Arnold’s interests, the A-D-E 
metapattern,  and  the  processes  of  complexification,  quaternionization 
(and  octonianization)  may in  future  be  brought  into  his  n-categorical 
vision (personal communciation). 

Although from Arnol’d’s declaration of support for Poincaré’s 
style over Hilbert’s,  characterised often,  though rather inaccurately, as 
the  geometric  over  the  algebraic,  one  might  guess  that  he  would 
disapprove of this synthesis with category theory, he does remark that: 

The main dream (or conjecture) is that all these trinities are united 
by some rectangular “commutative diagrams”. I mean the existence 
of  some  “functorial”  constructions  connecting  different  trinities. 
(Arnold 1997: 10)

This  is  important.  Just  because  someone  aligns  themselves  with  the 
Poincaré  style  does  not  mean  they  are  averse  to  working  rigorously. 

to  replace  a  Fourier  transform is  one  of  the  big  challenges.  Large  parts  of 
mathematics  are  concerned  with  how  to  generalise  dualities  in  nonlinear 
situations. Physicists seem to be able to do so in a remarkable way in their string 
theories and in M-theory…understanding those non-linear dualities does seem to 
be one of the big challenges of the next century as well.” (Atiyah 2002:15)
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Rather there is a fear on their part that the algebra will come to dominate 
and so cut us off from an immensely powerful source of ideas.

5. Real Mathematical Kinds

So  we  have  a  series  of  interrelated  schemes  covering  large  tracts  of 
mathematics, but what to make of them? There is a temptation to relate 
these forms of mathematical  classification to types of  classification in 
other sciences:  physical  particles,  periodic  table  of chemical  elements, 
animal species. From there it is a short step to the idea that something 
like a notion of real kinds is operating in mathematics. Perhaps, then, it 
would be fruitful to explore the notion of ‘quasi-real kinds’.

But there is nothing new here you might say. Don’t we already 
have philosophers treating this matter? Well, certainly there are so-called 
‘realist’  and  ‘nominalist’  positions  in  contemporary  philosophy  of 
mathematics.  However,  recent  realist/nominalist  debates  concerning 
mathematics have become largely between a blanket nominalism and a 
blanket realism. Hartry Field, an ardent nominalist, makes very little of 
the distinction between a cooked-up concept and a concept vital for the 
life  of  mathematics,  between  a  concept  of  no  interest  and  one  first 
glimpsed in the course of some exploration, then years later brought into 
sharp focus, one that’s then rediscovered independently a dozen times, 
one that systematises large domains and fits into many stories. Instead, 
Field  restricts  himself  to  mathematics  directly  mentioned  in  scientific 
theories.

The extent of philosophers attending to the notion of ‘getting 
concepts right’ is all but exhausted by the continued activity to refine the 
notion of a set, and by talk of whether the elaboration of the notion of 
number has reach its final stage: 

Stated in realist terms, the extended number system [of the complex 
numbers – DC] is presumed in effect to stake out a ‘natural kind’ of 
reality. Far from ‘carving reality at the joints’, however, the system 
can be  shown to  feature a  flagrantly gerrymandered fragment of 
heterogeneous reality that is hardly suited to enshrinement at the 
centre of a serious science like physics, not to mention a rigorous 
one like pure mathematics. Couched in these ultra-realist terms, the 
puzzle  might  be  thought  to  be  one  that  someone  with  more 
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pragmatic  leanings–the  system works,  doesn’t  it?–need  not  fret 
over; and in fact such a one might even look forward to exploiting it 
to the discomfort of the realist. Fair enough. I should be happy to 
have  my discussion  of  this  Rube  Goldberg  contraption  (as  the 
extended number system pretty much turns out to be) serve as a 
contribution to  the quarrel  between anti-realist  and realist  that  is 
being waged on a broad front today (Bernardete 1989: 106).

I quote from Bernardete at length because he covers many of the themes 
to be treated below. Not that  I think he gives the complex numbers a 
decent run for their money. If you pass them off as pairs of real numbers, 
each  of  which  is  a  Dedekind  cut  of  rationals,  each  of  which  is  an 
equivalence class of pairs of integers, each of which is an equivalence 
class of pairs of natural numbers, then gerrymandering is easy to argue 
for. In what I hope to be a more sensitive way, all of the chapters of my 
book (Corfield 2003) deal, with varying degrees of explicitness, with the 
possibility of there being real kinds in mathematics. 

One of the key case studies (chap. 9) concerns the question of 
whether groupoids are a good way to generalise groups. Here are two 
definitions of the concept:

(1) A groupoid is composed of two sets, A and B, two functions, a 
and b, from B to A, and an associative partial composition,  s⋅t, of 
pairs of elements of  B with a(s) = b(t), such that  a(s⋅t) = a(t) and 
b(s⋅t) = b(s). Furthermore, there is a function, c, from A to B such 
that a(c(x)) = x = b(c(x)) and such that c(x)⋅s = s for all s with b(s) 
= x and t⋅ c(x) = t for all t with a(t) = x. Finally, there is a function, 
i,  from  B  to  B such  that,  for  all  s, i(s)⋅s =  c(a(s))  and  s⋅i(s)  = 
c(b(s)).
(2)  A  groupoid  is  a  small  category  in  which  every  arrow  is 
invertible.

Rather like translating a piece of French text  into English,  we end up 
with a much more concise definition, even taking into account the need 
to define what a category is.

The debate surrounding groupoids resembles one between three 
parties who when told about the coining of a certain term, one says it’s 
like  those  philosophical  chestnuts  ‘grue’  or  ‘emeroses’,  or  my 
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‘cubeprime’  – i.e.,  having no scientific  purpose,  another  says it’s  like 
‘tree’ or ‘bush’ – not a natural, intrinsic term, but one which has its uses, 
and the last says no – it’s like copper – a real kind. You can see the point 
of advocates of the first position: if I kludge together the monster group 
(an object with 1052 arrows) and an equivalence relation representing all 
the people within 100 metres of you, partitioned according to the initial 
letter  of  their  family name, then  the  resulting groupoid feels  far  from 
natural.

The middle position now chips in: Yes, groups are where it’s at 
when it comes to symmetry measuring. However, there are advantages to 
working with groupoids. For example, maps from one group to another 
group don’t form groups, whereas maps from a groupoid to another do 
form a groupoid. So it’s worth working with (the category of) groupoids, 
even if one is only interested in groups.

The final party now unleashes the full force of its persuasive 
weaponry on you. Groupoids are found to lie at the intersection of a large 
number  of  schemes:  Connes’  noncommutative  geometry (groupoids  to 
help  with  bad  spaces  which  resist  classical  topology/geometry); 
Grothendieck’s notions of space;4 Baez and Dolan’s  n-categories. They 
also  tell  you of  the  many independent  discoveries,  about  their  use  in 
crystallography,  energy  levels  of  atomic  electrons.  (See  chap.  9  of 
Corfield 2003 for the details.)

It is important to note that a presupposition made by all parties 
to  these  debates  is  the  recognition  of  a  distinction  between 
gerrymandered concepts  and those  ‘good for  the  life  of  mathematics’, 
even if they disagree about where the boundary lies. Weil (1960) talks of 
sculpting from porphyry when working on analogies between function 
fields and number fields, and moulding with snow when giving axioms 
for uniform spaces. Philosophers cannot choose to ignore this difference. 
Following this lead they will encounter further questions: Is ‘good for the 
life of mathematics’ a mind-independent quality or connected to the ways 
in which our embodied minds work or have been trained to work? Are 
mathematicians engaged on a never-ending quest, or do we foresee the 
arrival at a terminus? 

6. Tradition

4 See Cartier 2001 for ideas about how to unify these two visions.

44



DAVID CORFIELD

I’m often asked what bearing my work has on “traditional” questions in 
the philosophy of mathematics.  When given limited time to  respond I 
feel  pulled  by  two  seemingly  contradictory  trains  of  thought: 
philosophers  are  allowed  to  ask  new  questions;  these  are  not  new 
questions. Allowing myself a little extra elbow room, I’ll also suggest a 
synthesis.

(a) Questions change with the times

One defense against the charge that one is cooking up a philosophical 
problem out  of  nowhere  is  the  thought  that  philosophical  questioning 
must adapt itself to the state of development of a field of knowledge. It 
wasn’t likely that the mathematician-philosophers of around 1900 would 
be talking about real  kinds, the notion of function and number having 
been radically transformed through the nineteenth century (Gray 1992). 
They  were  just  happy  to  make  advances  towards  an  all-embracing 
definition of these types of entity. After  Hilbert’s  discovery of hidden 
assumptions in Euclidean geometry, a further point of concern was the 
security  of  extant  mathematics.  This  stimulated  a drive  to  construct  a 
common language to embrace all of mathematics, which at the same time 
provided mathematicians with a sense of definitively establishing truth, 
is thus understandable.

Of course,  there were questions then of organization,  Hilbert 
himself playing a major part in these. But a hundred years down the track 
and many thousands of tons of mathematics papers later, the pendulum 
has swung very much towards concerns about organization rather than 
certainty, even with the advent of computer assistance.

Similarly  in  the  natural  sciences,  philosophical  questioning 
depends on the state of play. Locke’s talk of real essences coincides with 
the  rise  of  Boyle’s  corpuscularism:  Is  there  a  real  essence  to  that 
yellowish,  dense  metal  we  call  gold?  According  to  Kornblith  (1993), 
Locke gives two nominalist responses: there’s no satisfactory empirical 
evidence for real  essences,  and in principle we could never know real 
essences. What happened in subsequent centuries has a bearing on this 
matter. For most, Locke is vulnerable to what we have found out about 
the  world,  that  is,  we  do  now have  evidence  for  gold  having  a  real 
essence. His ‘a priori’ argument shows a lack of imagination rather than 
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contact with conceptual necessity. It is perhaps not accidental that natural 
kind  talk  crops  up  again  in  the  1960s  when  a  good  account  of  the 
periodic table had been made available by quantum mechanics.

As another example of historical parochialism, one case Locke 
makes against there being natural kinds in the animal kingdom is the lack 
of gaps or chasms between species. Some sea-birds dive, some fish fly. 
Even if one allowed that at the high point of set theoretic reductionism 
there was nothing to prevent interpolation between any two entities, this 
reveals  itself  as  a  parochialism.  Interpolation  is  heavily  constrained: 
groupoids have to fight for the right to be seen as properly interpolating 
between groups and equivalence relations. We have to look behind the 
scenes  to justify  kinds,  just  as  we now have good reason  to  think of 
diving birds as very like sparrows, and flying fish as very like cod.

(b) This is a traditional question

The second defence against charges of not being “traditional” is to show 
that ‘real kind’ talk has always been there. Listen to Frege:

[Kant] seems to think of concepts as defined by giving a simple list 
of characteristics in no special order; but of all ways of forming 
concepts, that is one of the least fruitful. If we look through the 
definitions given in the course of this book, we shall scarcely find 
one that is of this description. The same is true of the really fruitful 
definitions  in  mathematics,  such  as  that  of  the  continuity  of  a 
function.  What  we  find  in  these  is  not  a  simple  list  of 
characteristics;  every  element  is  intimately,  I  might  almost  say 
organically, connected with others. (Frege 1950: 100)

Had he been talking about science, these might have been words spoken 
by the realist philosopher of science Richard Boyd.

If 120 years is not enough and Frege’s authority insufficient, 
we can also appeal to Plato, and by doing so restore the term ‘Platonism’ 
to  something  closer  to  the  intricate  cluster  of  ideas  contained  in  his 
works. For Plato, it is not any old ‘mathematical’ notion we seek. Rather, 
through  dialogue  we  question  the  first  principles,  including  the 
definitions, so as to sharpen them and get them right. In The Republic the 
ideal education for the future philosopher-king is given as follows:
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Non-systematic education to age 18: play, sport, music.
18-20 military training
20-30 mathematics
30-35 dialectical discussion
35-50 practical experience of military and administrative offices
50-55 dialectic.

During  the  30-35  period,  you  discuss  the  definitions  and  hypotheses 
which  geometers  merely  assume.  This  would  lead,  presumably,  to 
something like Euclid’s later definition of the line: “A straight line lies 
evenly on its  points”.  In a sense,  then,  the ‘true’ Platonist  of  the  20 th 

century was Lakatos:

As far as naïve classification is concerned, nominalists are close to 
the truth when claiming that the only thing that polyhedra have in 
common is  their  name.  But  after  a  few centuries  of  proofs  and 
refutations,  as  the  theory  of  polyhedra  develops,  and  theoretical 
classification replaces naïve classification, the balance changes in 
favour of the realist. (Lakatos 1976: 92n)

(c) A more honest answer

I could compose a more complete answer which recognises that both the 
above  components,  attaining  epistemic  security  and  getting  concepts 
right,  have been given philosophical  attention since Plato, that even at 
times where one is given greater consideration, the other persists, that the 
perception  of  the  relationship  between  the  components  alters  and  has 
been influenced by the state of mathematics, and that the time is now ripe 
for  a change of  emphasis.  A happy composite  answer,  but  it  is  not  a 
totally honest one, as I shall explain.

The quotations from Lakatos surprise many philosophers when 
I show them. Anyone who knows Lakatos’s work thinks of his emphasis 
on  continuing  growth  of  knowledge  in  the  Popperian  World  3.  Most 
would imagine that for Lakatos the evolution of concepts never ceases. 
However,  as  chapter  7  of  my book  relates,  Lakatos  cannot  see  how 
concepts  evolve once they have been defined precisely in a formal or 
quasi-formal language. When a proof is given in this language, we can 
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only find logical mistakes or that the language is inconsistent. I believe I 
have shown a way of getting around this obstacle in chapters 8 and 9. We 
should  not  be  talking  about  arriving  at  a  definite  end,  but  about  an 
ongoing  elaboration  of  ideas  of  number,  symmetry,  space,  etc.  By 
contrast to Frege’s claim that with the entry of imaginaries we reach the 
‘natural end of the domain of numbers’, we are dealing here with a more 
open-ended sense of conceptual connectivity. Listen to Arnol’d’s praise 
for Sylvester and his sense of the elaboration of ideas:

Sylvester  (1876)  already described  as  an  astonishing intellectual 
phenomenon,  the  fact  that  general  statements  are  simpler  than  
their particular cases. The antibourbakiste conclusion that he drew 
from this observation is even more striking. According to Sylvester, 
a  mathematical  idea  should  not  be  petrified  in  a  formalised  
axiomatic setting, but should be considered instead as flowing as a  
river. One should always be ready to change the axioms, preserving 
the informal idea. 
Consider  for  instance  the  idea  of  a  number.  It  is  impossible  to 
discover quaternions trying to generalise real, rational, complex, or 
algebraic number fields. (Arnol’d 1999a: 2)

This sounds very Lakatosian, but Arnold is not denying the need for a 
rigorous formal setting, just  that  one musn’t  forget  the  informal ideas 
animating them. So just because the informal notion of symmetry gets 
axiomatised  as  group  theory,  does  not  prevent  us  from continuing  to 
elaborate the notion. Indeed, the emergence of the groupoid concept is a 
stage on the path of its elaboration. A separate line of elaboration leads 
us  to  the  quantum  group  and  Hopf  algebra  concepts.  These  paths 
converge in the notions of quantum groupoid and Hopf algebroid.5

Of course, along the way of an elaboration we may hit  upon 
some  stable  concepts.  Just  because  mathematicians  are  reaching  out 
beyond  groups  does  not  mean  that  the  group  concept  will  become 
obsolete. As for the long run, although we might completely change our 
classification and decide to take another path than has been taken to date, 
it is worth considering the possibility of achieving a certain stability. In 
any  case,  at  any  given  moment,  the  evolving  concept  offers  us  a 
collection of natural kinds, so we may attempt to make contact with the 

5 Brown (2004:  11)  presents  a  very intricate  picture  of  the  elaboration  of  a 
cluster of concepts including symmetry.
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philosophy of science literature on this topic. Kinds are treated there in 
many  ways,  for  example,  in  terms  of  projectability,  reference,  and 
promiscuity.

7. Kind Properties

(a) Projectability

(…) the properties we take to be essential to a kind are those we 
project.  Indeed,  the  function  of  the  essence  placeholder  in  our 
cognitive  economy  just  is  to  drive  inductive  inference:  we 
conceptualize  kinds  in  such  a  way  in  order  to  separate  the 
properties  of  the members  of  a  kind which are projectable  from 
those that are not. We are aided in this task by our ability to detect 
clustered covariation. (Kornblith 1993: 106).

If a zoologist wandering through the Amazonian rainforest chances upon 
an animal of a species previously unknown to science, which is suckling 
its young, they know without further ado an immense amount about what 
to  expect  about  its  bone  structure,  internal  organs,  bodily  functions, 
genetic  constitution.  What  of  a  mathematician  stumbling  across 
something behaving rather like something he already knew? This is what 
happened  to  Euler  when  he  encountered  the  function  sin  x/x and 
reckoned  it  should  behave  much  like  a  complex  polynomial.  Like 
complex polynomials, but unlike some other functions, such as sin (1/x) 
it has non-accumulating zeros, unlike others, such as tan  x/x, it has no 
poles,  and unlike others,  such as exp  x,  it  has symmetric behaviour at 
plus/minus infinity. On the other hand, the function tends to zero at plus 
or  minus  infinity  unlike  a  complex  polynomial.  Is  this  difference 
significant?

Now, complex polynomials have roots to match their degree. 
Decomposing them into  a  product  of  (1  –  x/root)  times a  constant  is 
possible. What is it about them that allows this? I can construct a proof 
which shows me that any nonconstant polynomial has a root. Then given 
this first root, I divide by (1 – x /root) and continue the process. Have we 
got  at  the  ‘reason’  for  this  decomposition  phenomenon?  Might  the 
properties ‘responsible’ for this behaviour be found in other situations, 
perhaps with the function sin  x/x. Would we know when to expect the 
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phenomenon to occur in anything other than polynomials?
In  chapter  5  of  my  book,  I  discuss  Polya’s  ‘Bayesian’ 

conception of mathematical plausibility. That sin  x/x should decompose 
like a complex polynomial is plausible because of their shared properties. 
But there is more. What we have here is a ‘hope for a common ground’ 
to account for this decomposition, an explanation for its occurrence. This 
emerged in the result: all entire functions are of the form A zm exp(h(z))Π 
(1  –  z/root)  exp  ((z/root)  + (z/root)2/2  +  …+ (z/root)n/n),  the  product 
being taken over all roots, for entire h(z). From this story, being an entire 
function  seems  to  be  the  relevant  natural  kind,  just  as  the  class  of 
mammals was for the zoologist.

We shall also want to place our new species within the current 
hierarchical  classification.  We  have  just  spoken  of  entire  functions 
within the ring of analytic functions in one complex variable. These in 
turn are an instance of a more general notion which includes collections 
of algebraic integers, e.g., Z[i], factorisation in which we touched upon 
in our discussion of 13 = 2² + 3². Behind this lies the grand analogy I 
treat in chapter 4 of (Corfield 2003).

Being something in my pocket is not a natural property. All the 
coins there may be silver, but this doesn’t mean that for any coin were it 
in my pocket it would be silver. These properties do not ‘gel’ in some 
sense. Similarly, our zoologist noticing that the first twenty examples of 
the new mammal he has spotted have a bald patch in their fur, does not 
infer that the whole species will have this property, but rather postulates 
a local  skin infection.  In mathematics,  all  the  hundreds  of  millions  of 
non-trivial Riemann zeta zeros found to date have imaginary part ½, but 
it need not be the case that all of them have this property. The property of 
‘having been found to date’  does not  gel with being a zero,  nor  does 
being less than a certain size. This ‘gelling’ is something philosophers 
should work on.

(b) Making referential contact

Kinds  are  also  used  to  account  for  our  ability  to  establish  reference 
without  getting  it  quite  right,  so  that  we  can  say  of  J.J.  Thomson’s 
electron that it is the same as our electron, even if he mistook some of its 
properties.  In  his  (1983)  Hacking  had  argued  for  an  ‘entity  realism’ 
rather  than  a  ‘theoretical  realism’.  We are  to  identify  entities  by our 
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ability to manipulate them. Some of our ways of producing streams of 
electrons are derived from Thomson’s techniques. However, as several 
philosophers  have pointed out  there  must be some kind of connection 
between our earlier and later theoretical grasp of these entities, otherwise 
how would you know you were manipulating the same sort of thing. On 
the  other  hand,  merely counting  shared  properties  is  not  enough.  For 
Aronson,  Harré  and Way (1994)  achieving verisimilitude is  not  about 
getting more properties right than wrong, but about not straying too far 
from the correct kind in your hierarchical classification of what there is. 
At a party, have I successfully referred to the man over there holding a 
gin, if I point and say “See that woman with the vodka”? They would be 
close to each other on most people’s ontological hierarchy of kinds. With 
“See that gorilla over there with the gun”, the situation is not clear-cut. 
Both are primates holding artefactual objects. But if I say “see that car-
crash  taking  place”,  unless  my  audience  is  highly  adept  at  thinking 
metaphorically,  perhaps  the  man’s  life  is  being  ruined  by alcoholism, 
they’ll wonder what I’m on about.

Something similar occurs in mathematics:

(…) three areas of mathematics and physics, usually regarded as 
separate,  are  intimately  connected.  The  analogy is  tentative  and 
tantalizing, but nevertheless fruitful. The three areas are eigenvalue 
asymptotics  in  wave  (and  particular  quantum)  physics,  dynamic 
chaos, and prime number theory. At the heart of the analogy is a 
speculation concerning the zeros of the Riemann zeta function (an 
infinite sequence of numbers encoding the primes): the Riemann 
zeros  are  related  to  the  eigenvalues  (vibration  frequencies,  or 
quantum energies)  of  some wave system, underlying which is  a 
dynamical system whose rays of trajectories are chaotic. 
Identification  of  this  dynamical  system would  lead  directly  to  a 
proof of the celebrated Riemann hypothesis. We do not know what 
the  system is,  but  we do  know many of  its  properties,  and  this 
knowledge has brought insights  in  both directions (...)  (Berry & 
Keating 1999: 236)

If Berry and Keating find their system, even if it does not possess all the 
properties they expected, so long it is in the right kind of place in the 
hierarchy  of  mathematical  entities,  we  might  still  say  that  they  had 
already  made  reference  to  it  and  knew  how  to  manipulate  it.  A 
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fascinating case to study here would be when it could be said that the 
monster finite simple group had been referred to.

(c) Promiscuity

We saw several  organisational  schemes  in  mathematics  from Arnold, 
Atiyah,  and  Baez  and  Dolan.  Are  they  pointing  to  some  ultimate 
classification,  or  are  there  a  vast  range  of  schemes  shaped  by  our 
interests. For instance, computational complexity classes may be seen as 
not  intrinsic  characteristics,  but  as  part  of  a  classification  due  to  an 
interest in what we can compute with our present kinds of technology. In 
the philosophy of science, John Dupré is a representative of this way of 
thinking. He is a realist – science aims at mind-independent features of 
the world - but he is a  promiscuous realist  – there are many different 
classification schemes. E.g., regarding the animal kingdom we categorise 
according  to  agricultural,  culinary,  zoological  interests.  All 
classifications pick up real features, but these features are laden with our 
interests.  Is  this  a  realism worth  having?  Don’t  we  want  a  relatively  
chaste realism?

In his  Natural Kinds,  Wilkerson (1995) argues for  privileged 
sorts  of  classification,  ones  which  are  not  human-interest  related.  He 
does  so  by  invoking  Boyd’s  conception  of  homeostatic  cluster  of 
properties:  animals  have  systems  to  maintain  body  temperature,  cell 
walls work to maintain pressure from inside the wall in equilibrium with 
pressure  outside.  Properties  work  together  to  maintain  themselves. 
Causality  is  in  air,  and  yet  recall  Frege’s  comment  about  fruitful 
mathematical  concepts quoted above,  “What we find in these is  not a 
simple list of characteristics; every element is intimately, I might almost 
say organically, connected with others.” 

In  mathematics,  we  often  hear  that  such-and-such  a 
construction has been taken to be an example of an X, but that we get to 
its essence, how it is in itself, if we think of it as a Y. John Baez (2004) 
tells us that although mathematicians have taken the spectrum of a ring as 
a set, it is properly viewed as a groupoid. But what is the right way of 
talking here? Why not just say there are two different ways of thinking of 
a  spectrum,  one  of  which  may  interest  a  mathematician  more  than 
another? The point is that so often one way just  turns out to fit  much 
more satisfyingly and to lead to powerful new ways of taking research 

52



DAVID CORFIELD

further.
Likewise,  Wilkerson  wants  to  stress  that  the  biologists’ 

classifications are privileged ones, which cut far more deeply into nature 
than do the chef’s. The promiscuous realist could respond that there is 
still human interest at play in our concern with those parts of the living 
world  where  speciation  operates.  The  vast  majority  of  organisms  are 
bacterial,  and  so-called  ‘lateral  gene  transfer’  between  unicellular 
bacteria of different genealogical descent is common place. Gould claims 
that  unicellular  bacteria as “the true dominators of earth and rulers of 
life”  (2002:  301),  so  why  devote  so  much  time  to  large  mammals? 
Surely, it’s because they are like us that we are so interested in them. 
Then what of our predilection for visible over dark matter?

Similarly,  in  mathematics,  Robert  Solomon  points  out  that, 
despite  the  fact  that  the  majority  of  finite  groups  are  nilpotent  of 
nilpotence  class  at  most  2,  “experience  shows that  most  of  the  finite 
groups  which  occur  “in  nature”  –  in  the  broad  sense  not  simply  of 
chemistry and physics,  but of number theory, topology, combinatorics, 
etc. – are “close” either to simple groups or to groups such as dihedral 
groups,  Heisenberg  groups,  etc.  which  arise  naturally  in  the  study of 
simple groups.” (Solomon 2001, 347). What interests determine how we 
distribute our attention over the collection of all groups?

8. Conclusion

What I hope I have managed to show in this paper is that ongoing debates 
in  the  philosophy  of  science  could  find  parallels  in  philosophy  of 
mathematics every bit as nuanced. For the foreseeable future, the greatest 
benefit  will  come from philosophers  of  mathematics  dipping  into  the 
philosophy of science literature, but the issues in mathematics are often 
crisper,  and  one  should  expect  a  rapid  pay  back.  Opportunities  have 
already been missed. The philosophy of science could have saved itself 
much  effort  if  it  had  thought  to  read  the  work  of  George  Polyà  on 
encoding plausible reasoning in a probabilistic calculus (see chapter 5 of 
Corfield 2003).
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