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A fennec fox, Vulpes zerda, in the Sahara. This is the smallest canid in the world.

January 2, 2020

In analysis we generalize sequences to nets in order to handle topological spaces that are too big for sequences to get the
job done. A sequence xi has indices that are natural numbers. In a net, the indices can be in any directed set.

A function between metric spaces is continuous iff it maps every
convergent sequence to a convergent sequence. This
nice
result fails for topological spaces. But a function between
topological spaces is continuous iff it maps every
convergent net to a
convergent net!

A metric space is compact iff every sequence has a convergent
subsequence. This nice result fails for topological
spaces.
But a topological space is compact iff every net has a convergent
subnet!

But you have to be careful: the concept of 'subnet' is subtle. The
definition is here:

Wikipedia, Subnet.
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The key nuance is that a net xi with i ranging over some index set can have a subnet with some other index set... perhaps
even a larger index set!

This leads to a puzzle that's bothered me for years. There are
topological spaces that are compact where not every
sequence has a
convergent subsequence!

So the puzzle is: find such a space, and a sequence in that space that
has no convergent subsequence, but has a
convergent subnet!

By general theorems we know such a situation is possible, but I
wanted to find an example that doesn't use the axiom of
choice. The reason
is that I wanted to know if there was an example that we can actually get our hands on.

I asked this question on Math Stackexchange in last year.
After 9 months, Robert Furber gave a promising answer:

John Baez, Sequence with convergent subnets but no convergent subsequences, Math StackExchange, March 22,
2019.

He begins: "Much to my surprise, there is an explicit example, and it
comes about at least in part because it seems that
the theorem going
back and forth between cluster points and convergent subnets does not
require the axiom of choice,
when done the right way."

He also explains why another style of example does require a
nonconstructive princple. The natural numbers embeds in
its
Stone–Čech compactification in such a way that it has no convergent subsequence.
The existence of a convergent
subnet implies the existence of
a nonprincipal
ultrafiter! But there are models of Zermelo-Fraenkel
set theory where
nonprincipal ultrafilters don't exist.

I still don't understand everything Furber wrote, but I'm pleased that
finally, after decades of worrying about this
problem, I may finally
get some satisfaction.

The mill of math grinds slow, but it grinds exceedingly fine.

January 3, 2020

My wife and I just saw a bobcat outside our house!

This is the second time she's seen it. It had tufted ears, just as a
bobcat should. It stared at her, tail twitching. Then it
walked away
before we could photograph it.

January 4, 2020
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Cute face. Nightmarish claws. It's the world's biggest bat: the
Bismarck masked flying fox.

It lives in Papua New Guinea. Not only the females of this species,
but also the males can give milk!

And its genome is much more efficient than yours.

About 45% of your DNA consists of transposons:
sequences of genes that can copy themselves from one location to
another. There are many kinds. Some act as parasites. Some cause
diseases. Many become deactivated and lose the
ability to hop around.

About 17% of your DNA is made of transposons called LINEs. Each one
is about 7000 base pairs long. Most have lost
the ability to
replicate — but about 100 still can. As they cut and paste themselves
from here to there, they can disrupt
your genes and cause cancer.
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There are different lineages of LINEs. In humans, the only kind that
can still replicate on its own is called LINE1. The
rest became
inactive about 200 million years ago.

LINE1 is found in all mammals...

... except Old World bats, called megabats, like the Bismarck masked flying fox!

Here's the genome size of various Old World bats (black) and New World
bats (gray) compared to the average for
mammals. Bats have smaller
genomes... and the Old World bats have completely lost their LINE1
junk DNA.

Why? Birds also have smaller genomes, with those that work
harder to fly having the smallest. So there's a theory that
the need
for energy efficiency somehow produces evolutionary pressure to trim
down the genome. But nobody really
knows.

Here's the paper on the genome sizes of megabats where I got the above
figure:

Jillian D.L. Smith and T. Ryan Gregory, The genome sizes of megabats (Chiroptera: Pteropodidae) are
remarkably constrained, Biology Letters 5 (2009), 347–351.

And here's some more information on LINEs:

Wikipedia, Long interspersed nuclear element.

January 12, 2020

Could the Solar System be unstable? Could a planet eventually be
thrown out of the Solar System?

People have done a lot of work on this problem. It's hard. The Solar System is chaotic in a number of ways.
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Saturn's moon Hyperion wobbles
chaotically thanks to interactions with Titan. It has
a Lyapunov
time of 30 days. That
is, a slight change in its rotation axis gets magnified by a factor of e after 30 days. You can't really predict what it will
do a year from now.

Pluto's moon Nix also rotates
chaotically, thanks to its elongated shape and its interactions with
Pluto's larger moon
Charon. You could spend a
day on Nix where the sun rises in the east and sets in the north!
Watch the video to see how
weird it is.

But what about planets?

Pluto is locked in a 2:3 resonance with
Neptune. Apparently this creates chaos: uncertainties in Pluto's
position in its
orbit grow by a factor of e every 10â€“20 million years.
This makes long-term simulations of the Solar System harder.
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In 1989, Jacques Laskar showed that the Earth's orbit is chaotic. An
error as small as 15 meters in measuring the
position of the Earth
today would make it completely impossible to predict where the Earth
would be in its orbit 100
million years from now!

The planet Mercury is especially susceptible to Jupiter's influence.
Why? Mercury's perihelion, the point where it gets
closest to the
Sun, precesses at a rate of about 1.5 degrees every 1000 years.
Jupiter's perihelion precesses just a little
slower.

In some simulations, Jupiter's gravitational tugs accumulate and pull
Mercury off course 3-4 billion years from now.
Astronomers estimate
there's about a 1% probability that it could collide with Venus, the Sun,
or Earth — or even be
ejected from the Solar System!

Jacques Laskar and Mickaël Gastineau, Existence
of collisional trajectories of Mercury, Mars and Venus with the
Earth, Nature 459 (2009), 817–819.

In this paper, Laskar and Gastineau simulated 2500 futures for the Solar
System, changing the initial position of
Mercury by about 1 meter. In 20 cases, Mercury went into a dangerous orbit! In one it passed within 6500 kilometers of
Venus. In one it collided with Venus, and in
three it collided with the Sun. In one it led to Mars coming within
800
kilometers of Earth 3.3443 billion years from now. This would probably
disrupt of Mars, with large fragments hitting
Earth.

They were very interested in this last scenario, so they studied 201 slight
variants starting at 3.344299 billion years from
now, each with
slightly different positions of Mars. In five of these Mars was
ejected from the Solar System, while the
remaining 196 led to
collisions: 33 between Mercury and the Sun, 48 between Mars and the
Sun, 43 between Mercury
and Venus, 1 between Mercury and the Earth, 18
between Venus and the Earth, 23 between Venus and Mars, and 29
between
the Earth and Mars.

The most surprising one was a collision between Venus and the Earth
that took place in a 5-stage process. First
Mercury's orbit became
more eccentric through its perihelion resonance with Jupiter, as
described. This then increased
the eccentricity of the orbits of
Venus, the Earth and Mars. When the orbits of the Earth and Mars
became very
eccentric, it became possible for them to collide. But in
the case at hand, Mars didn't hit the Earth. Instead, Mars made
the
orbit of Venus more eccentric until Venus hit the Earth!

But here's the good news: the work of Laskar and Gastineau — and also
another team — shows that nothing dramatic
should happen to the
planets' orbits for the next billion years. So we can worry about
other things.

In the really long term, most of the stars in the Milky Way will be ejected. Through random encounters, individual stars
will pick up enough speed to reach escape velocity. The whole Galaxy will slowly 'boil away'. It will dissipate in about 
1019 years.
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This chart shows the change in the oceans' heat energy measured in zettajoules. A zettajoule is 1021 joules.

It's incredible how much better fossil fuels are at making the Earth
retain solar energy than they are at producing useful
energy. Let's
think about what a zettajoule means!

If you convert one kilogram of mass into energy, you create 0.00009
zettajoules of energy.

The world's largest nuclear bomb ever tested, the Tsar Bomba, released
0.00021 zettajoules of energy.

The energy released by the explosion of Krakatoa was about 0.0008
zettajoules.

The total amount of electrical energy used by humans in 2008 was 0.064
zettajoules.

The total of all kinds of energy used by humans in 2010 was 0.5
zettajoules.

The estimated energy in the world's oil reserves is about 8 zettajoules.

The amount of energy in sunlight hitting the Earth each day is 15
zettajoules.

The estimated energy in the world's coal reserves is about 24 zettajoules.

The heat energy that's gone into the oceans from global warming since
2000 is about 200 zettajoules.

It's interesting how global warming is the evil twin of solar energy: both
rely on the immense power of the Sun.

January 20, 2020

I see a lot of TV ads from oil and gas companies about how they're
working on renewable energy. They make me feel so
good. Women and
men working together for a better future!

Uh-oh.



Since 2015 these companies have doubled their spending on
renewable energy and carbon capture and storage! That
makes me feel
so good!

Uh-oh.

Let's face it: oil and gas firms are in business to sell us oil and
gas. This might change someday... around when it stops
being
profitable to them.

We should make that day come soon.

For the full report from the International Energy Agency, go here:

IEA, The oil and gas industry in energy transitions.

January 24, 2020

Click to see a zoomable image of the Milky Way with 84 million stars:
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But stars contribute only a tiny fraction of the total entropy in the
observable Universe. If it's random information you
want, look
elsewhere!

First: what's the 'observable Universe', exactly?

The further you look out into the Universe, the further you look back
in time. You can't see through the hot gas from
380,000 years after
the Big Bang. That 'wall of fire' marks the limits of the observable
Universe.

But as the Universe expands, the distant ancient stars and gas we see
have moved even farther away, so they're no

https://eso.org/public/images/eso1242a/zoomable/


longer observable. Thus,
the so-called 'observable Universe' is really the 'formerly observable
Universe'. Its edge is 46.5
billion light years away now! This is true
even though the Universe is only 13.8 billion years old. (A standard challenge
in understanding general relativity is to figure out how this
is possible, given that nothing can move faster than light.)

What's the total number of stars in the observable Universe?
Estimates go up as telescopes improve. Right now people
think there
are between 100 and 400 billion stars in the Milky Way. They think
there are between 170 billion and 2
trillion galaxies in the Universe.

In 2009, Chas Egan and Charles Lineweaver estimated the total entropy
of all the stars in the observable Universe at
1081 bits.
You should think of these as qubits: it's the amount of information to
describe the quantum state of everything
in all these stars.

But the entropy of interstellar and intergalactic gas and dust is
about 10 times more the entropy of stars! It's about 1082

bits.

The entropy in all the photons in the Universe is even more! The
Universe is full of radiation left over from the Big
Bang. The photons
in the observable Universe left over from the Big Bang have a total
entropy of about 1090 bits. It's
called the 'cosmic microwave
background radiation'.

The neutrinos from the Big Bang also carry about 1090 bits
— a bit less than the photons. The gravitons carry much less,
about 1088 bits. That's because they decoupled from other
matter and radiation very early, and have been cooling ever
since. On
the other hand, photons in the cosmic microwave background radiation
were formed by annihilating electron-
positron pairs until about 10
seconds after the Big Bang. Thus the graviton radiation is expected
to be cooler than the
microwave background radiation: about 0.6
kelvin as compared to 2.7 kelvin.

Black holes have immensely more entropy than anything listed so
far. Egan and Lineweaver estimate the entropy of
stellar-mass black
holes in the observable Universe at 1098 bits.
This is connected to why black holes are so stable: the
Second Law
says entropy likes to increase.

But the entropy of black holes grows quadratically with mass!
So black holes tend to merge and form bigger black
holes —
ultimately forming the 'supermassive' black holes at the centers of
most galaxies. These dominate the entropy
of the observable Universe:
about 10104 bits.

Hawking predicted that black holes slowly radiate away their mass when
they're in a cold enough environment. But the
Universe is much too
hot for supermassive black holes to be losing mass now. Instead, they
very slowly grow by eating
the cosmic microwave background, even when they're not eating stars, gas and dust.

So, only in the far future will the Universe cool down enough for
large black holes to start slowly decaying via Hawking



radiation.
Entropy will continue to increase... going mainly into photons and
gravitons! This process will take a very
long time. Assuming nothing
is falling into it and no unknown effects intervene, a solar-mass
black hole takes about
1067 years to evaporate due to
Hawking radiation — while a really big one, comparable to the
mass of a galaxy, should
take about 1099 years.

For more details, go here:

Chas A. Egan and Charles H. Lineweaver, A larger estimate of the entropy of the universe,
The Astrophysical
Journal 710 (2010), 1825.

Also read my page on information.

For my February 2020 diary, go here.
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The world's expert on snowflakes has written a 540-page book on them.
Now he's giving it away for free here:

Kenneth Libbrecht, Snow Crystals.

He has figured out how to grow identical twin snowflakes, like those shown
here.

February 2, 2020

Condensed matter physics is so cool! Bounce 4 laser beams off mirrors
to make an interference pattern with 8-fold
symmetry. Put a
Bose–Einstein condensate of potassium atoms into this 'optical
lattice' and you get a superfluid
quasicrystal! But that's not
all....

As you increase the intensity of the lasers, the Bose-Einstein
condensate (in blue) suddenly collapses from a quasicrystal
to a
'localized' state where all the atoms sit in the same place!

Here the gray curve V0 is the potential formed by the lasers, while the blue curve ψ0 is the wavefunction of the Bose–
Einstein condensate:
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When V0 exceeds a certain value, localization occurs. For more, see:

John Baez, Superfluid quasicrystals, Azimuth,
January 31, 2020.

February 5, 2020

An 'optical vortex' is a beam of light that turns like a corkscrew as
it moves. It's dark at the center.

You can use an optical vortex to trap atoms! They move along the dark
tube at the center of the vortex.

Photons have spin angular momentum, and in circularly polarized light this equals +1 or -1. An optical vortex is
different: it exploits the fact that photons can also have orbital angular momentum! This can be any integer m, as shown
above.

So, some hotheads call an optical vortex a 'photonic quantum vortex'. But you can study optical vortices without
quantum mechanics, using the classical Maxwell equations! The electromagnetic field is described using a complex
function that in cylindrical coordinates is exp(imθ) times some function that vanishes at r = 0: the dark center. One
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class of functions like this are the 'hypergeometric-Gaussian modes':

Rather complicated! More importantly, the phase of the electromagnetic field, exp(imθ), is undefined at the center of
the optical vortex. It turns around m times as you go around the vortex. So this number m has to be an integer. It's a
simple example of a 'topological charge'.

People make optical vortices using many different technologies,
including spiral-shaped pieces of plastic, 'computer-
generated
holograms', and computer-controlled liquid crystal gadgets called
''.

February 6, 2020

What's the difference between a polaron and a polariton?

When an electron moves through a crystal, it repels other electrons
and attracts the protons. The electron together with
this cloud of
distortion acts like a particle in its own right: a 'polaron'.

A polariton is more complicated.

First, when an electron in a crystal is knocked out of place, it
leaves a 'hole'. This hole
can move around — and it acts
like a positively charged
particle!
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Since electrons are negative and holes are positive, they attract each
other! An electron orbiting a hole acts like a
hydrogen atom. It's
called an 'exciton'. It can move
around! But after a while, the electron falls into the hole.

Finally, an exciton can attract a photon! They can stick to each
other a form a new particle called a 'polariton'!

https://en.wikipedia.org/wiki/Electron_hole
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Polaritons are exciting to me because they're made of an electron, an
absence of an electron, and light. Here's the
dispersion relation
(the relation between energy and moment) for polaritons as compared with
that for photons and
excitons.

You'll notice there are two kinds of polaritons. These form another
basis of the space of quantum states spanned by the
photon and exciton.

February 7, 2020
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Scientists have made 'liquid light' by blending light and matter. It
can be superfluid and flow smoothly past an obstacle
(left), or an
ordinary fluid that forms eddies as it flows past (middle), or it can
form a sonic boom (right).

That's right: a sonic boom in liquid light!

As I explained on February 6, a polariton is a particle
that's a blend of light and matter. More precisely, it's a quantum
superposition of a photon and an exciton, which
is an electron-hole pair.

Scientists made a fluid of polaritons! Then they made it flow.
The polaritons only last for 4-10 picoseconds (trillionths
of
a second). But that was long enough to watch the fluid do all the
usual things fluids do: turbulence, sonic booms, etc.

Try my blog for more:

John Baez, Liquid light, Azimuth, November 28, 2011.

February 8, 2020

The magic of condensed matter physics: by carefully crafting
materials, you can make familiar particles behave in
strange new ways.

You can effectively manage to adjust the mass of photons by trapping
it between two parallel mirrors. Its frequency in
the transverse
direction affects its energy as if it had a mass. Now you have a
massive photon in 2 dimensions!

This lets you do some interesting things.
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To get your massive photons to interact, you should get them to
interact strongly with the material between your parallel
mirrors.

The quotes are from this absolutely delightful article:

David W. Snoke and Jonathan Keeling, The new era of polariton condensates, Physics Today 70 (2017), 54–60.

They describe, step by step, how to make a polariton condensate and
why it works.

February 11, 2020

A 'topological
insulator' is insulating on the inside, but its surface
conducts electricity. More importantly, electrons on
the surface have
their spin locked at right angles to their momentum, so they come in
two kinds.

(This is the simplest type of topological insulator — there are others.)

https://amolf.nl/wp-content/uploads/2018/05/PhysicsToday_ExcitonPolariton.pdf
https://en.wikipedia.org/wiki/Topological_insulator


So far, most topological insulators have been made with bismuth
compounds like Bi2Se3 and
Bi2Te3. Someday they
may have applications in
'spintronics': a
version of electronics where information is encoded in electron spins.
A spin,
after all, is nature's own qubit!

But right now, a lot of interest in topological insulators comes from
the math. Their classification, the 'tenfold way',
unifies the 8
types of real and 2 types of complex Clifford algebras! For more
about it, read this:

John Baez, The tenfold way.

February 12, 2020
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Condensed matter physicists are exciting. They're exciting electrons,
knocking them out of their usual places in crystals,
leaving holes.
The electrons and holes orbit each other, forming 'excitons'.

They've been trying to make a metal out of excitons: 'excitonium'!

When a hole is much heavier than an electron, it stands almost still
when an electron orbits it. So, they form an exciton
thatâ€™s very
similar to a hydrogen atom!

Hydrogen comes in many forms. At high densities, like the core of
Jupiter, it becomes a metal.

Any ideas?

In 1978 the Russian physicist Abrikosov wrote a short and very
creative paper in which he raised the possibility that
excitons could
form a crystal similar to metallic hydrogen! He called this new state of matter 'metallic excitonium'.

Can we actually make it? I don't think anyone has made metallic
excitonium yet — correct me if I'm wrong. But in
2016,
researchers made something equally exciting! An electron is a fermion
and so, therefore, is a hole. Two fermions
make a boson — so an
exciton is a boson.

Any ideas?

At low temperatures, identical bosons like to be in the exact same
state. This is called a 'Bose-Einstein condensate'. And

https://johncarlosbaez.wordpress.com/2017/12/10/excitonium/
https://en.wikipedia.org/wiki/Exciton
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in 2016,
researchers made a Bose-Einstein condensate of excitons! At
shockingly high temperatures, too.

Here's the paper:

Anshul Kogar, Melinda S. Rak, Sean Vig, Ali A. Husain, Felix Flicker,
Young Il Joe, Luc Venema, Greg J.
MacDougall, Tai C. Chiang, Eduardo
Fradkin, Jasper van Wezel and Peter
Abbamonte, Signatures of
exciton
condensation in a transition metal
dichalcogenide, Science 358 (2017), 1314–1317.

And here's something I wrote:

John Baez, Metallic excitonium, Azimuth, December 10, 2017.

February 20, 2020

Max Planck was the first established physicist to embrace Einstein's
work on special relativity. He worked out some
important
consequences.

His formula for momentum almost matches Newton's for speeds much
slower than light. But it gives dramatically
different answers at
high speeds.

Planck published the paper containing this formula
shortly after a physicist named Walter Kaufmann had done
experiments
that seemed to confirm a
different formula for momentum, due to Max Abraham! But Planck
wrote:

However, in view of the complicated theory of these
experiments I would not completely exclude the
possibility, that the
principle of relativity on closer elaboration might just prove
compatible with the
observations.

You can read his paper, translated into English, here:

Max Planck, The
principle of relativity and the fundamental equations of mechanics,
Verhandlungen Deutsche
Physikalische Gesellschaft 8 (1906),
136–141.

It's short and sweet. Equation 6) contains the new formula for momentum, built into the new relativistic version of
Newton's F = dp/dt.

Later, in 1914, Planck helped Einstein get a research position in Berlin.

February 21, 2020
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In 1907 Einstein tried to combine special relativity with gravity —
and very soon he realized gravity would make clocks
tick slower, and
would bend light.

It took him until 1915 to find the equations of general relativity. He needed the right kind of math.

In 1912 an old college friend, a mathematician named Marcel Grossman,
helped Einstein get a job in Zurich. That year,
Grossman told
Einstein that the math he needed for describing gravity had been
invented by Riemann. He warned
Einstein that it was a "terrible
mess".

Grossman was not an expert on Riemannian geometry, but he and Einstein
quickly learned the subject together. They
came out with a paper
applying it to gravity in 1913.

They ran into a big problem, though, which Einstein only surmounted later. They realized: if the equations of gravity are
'generally covariant' — preserved by all coordinate transformations — you cannot use complete knowledge of what's
happening at t = 0 to predict what will happen at a point in the future with specific coordinates (t, x, y, z). After all, a
coordinate transformation could change the coordinates of that point to some other coordinates (t ′, x ′, y ′, z ′). Nature
can't guess what coordinates you are using!

Einstein and Grossman erroneously concluded that the equations of
gravity should not be generally covariant. Only later
did Einstein
realize that they should be!

It turns out to be okay that we can't predict what will happen at a point with coordinates (t, x, y, z). All a theory needs to
predict is what we can observe. Coordinates are not something we observe.

This realization freed Einstein, and he found the correct equations of
general relativity on November 25, 1915. It was
still a long road to
our current understanding of black holes, the Big Bang and
gravitational waves. But that's another
story.



February 26, 2020

What's even cooler than sound? Second sound!

Usually heat spreads out like the picture on top. Second sound
when heat moves in waves.

You see, ordinary sound — 'first sound' — is waves
of pressure. 'Second sound' is waves of temperature.

Liquid helium is a mix of normal liquid and superfluid. In ordinary sound in liquid helium,
a wave of high pressure has
more of both normal liquid (n) and superfluid (s):

https://en.wikipedia.org/wiki/Second_sound


But in second sound, a wave of high temperature has more
normal fluid and less superfluid. The total pressure is
constant:

Here's a great introduction to second sound in liquid helium:

Russell J. Donnelly, The two-fluid
theory and second sound in helium, Physics Today (October 2009), 34–39.

Second sound in liquid helium moves much slower than ordinary first
sound: it moves faster at lower temperatures, with
a top speed of
about 20 meters per second. Second sound has also been seen in graphite
at much higher temperatures:
120 kelvin! But it dies out after
traveling just a few microns.

February 27, 2020

Luitzen
Egbertus Jan Brouwer was born 139 years ago today, in 1881. He
invented 'intuitionism', an approach to
mathematics where the law of
excluded middle ("p or not p") doesn't hold. So today I wrote about
intuitionism and
topos theory:

John Baez, Topos theory (part 8), Azimuth, February 27, 2020.

Define a "time-dependent set" to be a set X(n) for each natural number n, together with functions X(n) → X(n + 1).

For example, X(n) could be the set of solutions to some equation that you know on the nth day of your research.

As days pass you can find new solutions, and also prove that two
solutions you knew are actually equal. You can never

https://tinyurl.com/second-sound-donnelly
https://en.wikipedia.org/wiki/L._E._J._Brouwer
https://johncarlosbaez.wordpress.com/2020/02/27/topos-theory-part-8/


lose
solutions, or discover that two solutions you thought were equal are
different. So this is a simple model of an
infallible but not
omniscient mathematician.

There is a category of time-dependent sets, and it's a topos. This means you can do all of mathematics
and logic in this
category — like you can with sets. But logic
works differently in the topos of time-dependent sets, because you
learn
new truths as time goes on!

Instead of a mere set of truth values,

{true, false}

there's a time-dependent set of truth values, called Ω. For each time n, Ω(n) has infinitely many elements: known today,
known tomorrow, known the next day, etc.,... and never known.

In my article, I don't yet say much about how logic works with
time-dependent truth values — like why the law of
excluded
middle fails. Instead, I show how to derive time-dependent
truth values from the category of time-dependent
sets.

In previous articles I explained why any presheaf category is a topos
and how to figure out the truth values in such a
category. Here I'm
illustrating how that works for time-dependent sets.

Later I'll get into Heyting algebras and the law of excluded middle!

February 29, 2020

Condensed matter physics is so full of surprises. I am constantly
awed by it. I just learned:

You can make particles that act like massless particles moving
at the speed of light when they move in one direction —
but like
massive particles that move slower than light when they move
in the orthogonal direction!

In classical mechanics, at low momenta, ignoring relativistic effects, the
energy of a massive particle grows
quadratically with the magnitude of its momentum:

E =
p2

2m

where m is the particle's mass.

This doesn't make sense for a particle of mass zero. That's because a
massless particle moves at the speed of light and
we need special
relativity to understand it. In special relativity, the energy of a
massless particle depends in a very
different way on its momentum: it
grows linearly with the magnitude of the momentum! More precisely,

| E | = c |→p |

where c is the speed of light.

All these formulas are still true in quantum mechanics, but we have
more.

In quantum mechanics, energy is proportional to the rate at which the wavefunction wiggles in time: that is, its
frequency ω. Similarly, momentum is proportional to the rates at which the wavefunction wiggles in the 3 spatial
directions: that is, its wave vector 

→
k = (kx, ky, kz). In both cases the constant of proportionality is Planck's constant:

E = ℏω, →p = ℏ
→
k

file:///D/My%20Website/topos.html
https://en.wikipedia.org/wiki/Wave_vector


We can combine these our earlier formulas. The result is that at low momenta, ignoring relativistic effects, the
frequency of the wavefunction of a massive particle is a quadratic function of the magnitude of the wave vector:

ω = ℏ
k2

2m

but for a massless particle, the frequency depends linearly on the magnitude of the wave vector, or more precisely

|ω | = c |
→
k |

So that's how massive and massless particles are different. But you
can make the energy of a photon, or electron, or a
quasiparticle of
your choice, be almost any function of its momentum if you're
good enough at making strange
materials. The reason is that
its effective energy and momentum depend on its interactions
with the material.

So, if you're clever enough, you can make the relation between energy
and momentum look like this:

Note that if you set ky to zero you get

|ω | k2
x

like a massive particle at low momentum, except that ω takes both signs. But if you set kx to zero you get

|ω | | ky |

like a massless relativistic particle.

The relation between a particle's frequency and its wave vector is
called its dispersion
relation. The unusual dispersion
relation in the picture above is called a 'semi-Dirac cone'.

One way to create a semi-Dirac cone is described here:

https://en.wikipedia.org/wiki/Dispersion_relation


Wu created a photonic crystal
consisting of square array of elliptical cylinders of plastic with a
high dielectric constant
in air. But in condensed matter physics there are other very different ways to make dispersion relations with semi-Dirac
cones.

Wu's paper is here:

Ying Wu, Semi-Dirac
dispersion relation in photonic crystals,
Optics Express 22 (2014), 1906–1917.

For my March 2020 diary, go here.
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Lynxes, from HourlyLynxes:
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Why is there just 1 thing that acts like 1?

2 nice things about 1:

1x = x  (it's a 'left unit')

and

x1 = x  (it's a 'right unit')

There are number systems with many left units, or many right units.
But if there's a left unit and a right unit, there's just
one.

For any set you can define a funny multiplication like this:

ab = b

Then every element is a left unit! This multiplication is even
associative.

Similarly, if you define

ab = a

then every element is a right unit.

But suppose you have a multiplication with a left unit, say L. Then there can be at most one right unit! For suppose you
have two right units, say R and R ′. Then

R = LR = L = LR ′ = R ′

Similarly, if you have a multiplication with a right unit R, there can be at most one left unit. For suppose you have two
left units, say L and L ′. Then

L = LR = R = L ′R = L ′

So if your multiplication has both a left unit L and a right unit R, they are both unique.

Furthermore, they are equal! Why? We've already seen why:

L = LR = R

In the battle of left and right units, both win... so they must be equal!

So: if you have a binary operation with a left unit and a right unit,
they are both unique — and they're equal.

If we call the binary operation 'multiplication', then it makes sense
to call this unique left and right unit '1'.

After all, there's just one.

March 7, 2020



The drastic measures taken by China to contain coronavirus seem to
be working there, if their data can be trusted.

However, outside
China the disease is spreading rapidly.

March 8, 2020



Why is there more matter than antimatter? Nobody knows, but the
Standard Model does allow a process where 9 quarks
and 3 leptons all
annihilate each other! This 'sphaleron' process can also turn 9
antiquarks into 3 leptons. Is that where
the antimatter went?

The sphaleron process is nonperturbative, so you can't understand it
using the usual Feynman diagrams in the Standard
Model. The minimum
energy required to trigger it is about 9 TeV, but it's hard to get
enough particles to collide to make
it happen!

The early universe was very hot. As it cooled there was probably an
electroweak phase
transition (EWPT): bubbles
formed, in which the electromagnetic
and weak forces became different. Sphalerons might form at the
bubble walls,
preferentially destroying antimatter.

Alas, the best calculations people have done so far do not predict a
'first-order'
electroweak phase transition &mdash a
phase transition
involving latent
heat, like freezing water. So, the bubble walls would not be
discontinuous enough to
create lots of sphalerons.

So, physicists are looking for earlier phase transitions to explain
'baryogenesis': the creation of more baryons (protons,
neutrons, etc.)
than antibaryons.

Here's an excellent introduction:

https://arxiv.org/abs/hep-ph/9611462
https://en.wikipedia.org/wiki/Phase_transition#Modern_classifications
https://en.wikipedia.org/wiki/Latent_heat


James M. Cline, Baryogenesis.

If reading a paper on baryogenesis sounds too ambitious, maybe some
Wikipedia articles will be enough to satisfy your
thirst for knowledge:

Wikipedia, Baryogenesis.
Wikipedia, Sphaleron.

If you know some differential geometry, you may enjoy reading how
sphalerons arise from Morse theory — they are
really saddle points:

N. S. Manton, The inevitability of sphalerons in field theory, Philosophical Transactions of the Royal Society A
377 (2019): 20180327.

March 11, 2020

Today, Wednesday, Dean Ulrich of the College of Natural and
Agricultural Sciences here at U. C. Riverside announced
some
coronavirus measures:

Winter quarter final exams will not be held in person.
In-person instruction for Spring quarter will be suspended
through April 3, 2020.
As of today, campus is not closed.

Since final exams start on Monday next week, we're all having to
rush to figure out how to give final exams online!

March 15, 2020

I think I've figured out how to create a multiple choice final
that my undergraduate calculus students can take on iLearn,
U. C.
Riverside's electronic system for delivering homework, etc. The difficulty is that it doesn't do LaTeX, so it's hard
to present
questions and answers involving equations. I realized I can upload
images that I create using LaTeX to give
questions involving equations.
For some idiotic reason it's impossible to upload images for answers,
but I can link to
images stored elsewhere. It's a lot of work.

Meanwhile, a dramatic announcement from U. C. Riverside! Three
days ago classes were going to be done
electronically for the first
week of the next quarter. Now that's changed:

All instruction (including but not limited to labs, studios, and
directed studies) will be delivered remotely for the
entirety of the
spring quarter. This is a change from the April 3 end date for remote
instruction.
On campus housing and residential dining services remain open and
residents can elect to remain on campus if
needed.

March 21, 2020

Having been home all week, Lisa and decided to get dinner at a local
ribs joint, Smokey Canyon. Takeout, of course,
since restaurants in
California are all closed except for takeout orders. We decided to
combine this with a trip to the
supermarket, Ralphs in the same mall.
For the first time I tried wearing a mask and gloves, as my nurse had
recommended. So, I donned these before entering Ralphs.

Since we got there after 7:30 on a Saturday night it's perhaps not
surprising that the hoarders had taken all the paper
towels and bleach
and chicken. We managed to get hand lotion and peanut butter and
something else. I forget to look for
vinegar. The clerk said that
they have a special 'seniors hour' from 6:00 to 7:00 to let people
over 65 get the first crack at
the goods. So, Lisa may try that.

https://arxiv.org/abs/hep-ph/0609145
https://en.wikipedia.org/wiki/Baryogenesis
https://en.wikipedia.org/wiki/Sphaleron
https://royalsocietypublishing.org/doi/10.1098/rsta.2018.0327


At the ribs joint there was one woman eating dinner at the bar —
maybe a friend of the management? The waitress took
a little while to
bring out our order. I took off my mask because it made me
uncomfortable and there were just this one
woman and two employees
there.

At home I tried to take the ribs and onion rings and sweet potato
fries out of the packaging without letting the packaging
contaminate
our house too much, and I wondered how much this was even possible.
Of course I think there's a low
probability that the packaging had
COVID-19 viruses on it, since only a small number of cases have been
detected in
Riverside so far, but I figure I should get in the habit
of being very careful, since things will only get worse. The whole
idea of eating food that someone else has prepared becomes a lot less
attractive to me under these cicumstances.

For my April 2020 diary, go here.
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This is a 'cross fox': a red fox with some melanistic traits.

April 4, 2020
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I stand up for all downtrodden, oppressed mathematical objects.
Consider the humble commutative semigroup. This is a set with a
binary operation +  obeying

x + y = y + x

and

(x + y) + z = x + (y + z)

for all elements x, y, z. Too simple for any interesting theorems? No!

We can describe commutative semigroups using generators and relations.
I'm especially interested in the finitely presented ones.

We can't hope to classify all commutative semigroups, not even the
finitely presented ones. But there's plenty to say about them.
n

For starters, some examples. Take any set of natural numbers. If you take all finite sums of these you get a commutative semigroup.
So here's a finitely generated one:

{5, 7, 10, 12, 14, 15, 17, 19, 20, 21, 22, …}

See the generators? This kind of example is called a numerical semigroup, although by convention people decree that 0 must be an
element of any numerical semigroup, since if it's not you can always put it in without changing anything else.

We can also put in extra relations. So there's a commutative semigroup like this:

{5, 7, 10, 12, 14, 15, 17, 19, 20, 21, 22}

with addition as usual except if you'd overshoot 22 you decree the sum to be 22, e.g. 21 + 5 = 22.

Now it's time to bring a bit of order to this wilderness! Given any commutative semigroup C we can impose the relations a + a = a for
all a. The result is called a semilattice. Let's call it C ′. There's a homomorphism

p: C → C ′

Note that if p(x) = a and p(y) = a then

p(x + y) = a + a = a

So the set of x in C that map to a given element a in the semilattice C ′ is closed under addition! It's a sub-semigroup of C.

In short, given a commutative semigroup C it maps onto a semilattice

p: C → C ′

and each 'fiber'

{x : p(x) = a}

is a commutative semigroup in its own right.

And these fibers are especially nice: they're 'archimedean
semigroups'. A semigroup is archimedean if it's commutative and for any 
x, y we have

x + + x = y + z

for some z and some number of times of adding x. Can you guess why this property is called 'archimedean'? Hint: it's true for the
positive real numbers!

I'll let you check that the fibers of the map from a commutative semigroup C to its semilattice C ′ are archimedean. It's a fun way to
pass the time when you're locked down trying to avoid coronavirus. So, people say "any commutative semigroup is a semilattice of
archimedean semigroups".

https://en.wikipedia.org/wiki/Numerical_semigroup
https://en.wikipedia.org/wiki/Semilattice
https://en.wikipedia.org/wiki/Semigroup#Structure_theorem_for_commutative_semigroups


So, to a large extent we've reduced the classification of commutative
semigroups to two cases:

1. semilattices
2. archimedean semigroups

Semilattices are nice because they always have a partial order ≤  where a + b is the least upper bound of a and b. Archimedean
semigroups are a different story. For example, every abelian group is archimedean.

To see how the story continues, go to this great post:

Tim Campion, What are the main structure theorems on finitely generated commutative monoids?, MathOverflow, April 4,
2020.

Or if you get serious, this book:

Pierre A. Grillet, Commutative Semigroups, Springer, Berlin, 2013.

April 5, 2020

People often say non-Euclidean geometry was discovered in the 1800s,
but spherical geometry goes back to the ancient Greeks. It's
important in astronomy, because the sky is a sphere!

In spherical geometry, the parallel postulate breaks down.

Spherical trigonometry is more beautiful than plane trigonometry
because the sides of a triangle are also described by angles!

This spherical triangle has 3 angles A, B, C and 3 sides, whose lengths are conveniently described using the angles a, b, c:

https://mathoverflow.net/a/293883/2893


You can see this beautiful symmetry in the 'law of
sines':

sinA
sina =

sinB
sinb =

sinC
sinc

Here A, B, C are the angles of a spherical triangle and a, b, c are the sides, measured as angles. Or the other way around: it's still true if
we switch A, B, C and a, b, c!

Spherical geometry is also beautiful because it contains Euclidean
geometry. Just take the limit where your shape gets very small
compared to
the sphere!

For example, if the sides a, b, c of a spherical triangle become smaller and smaller,

sina
a ,

sina
b ,

sinc
c → 1

so we get the familiar law of sines in Eucliean geometry:

sinA
a =

sinB
b =

sinC
c

The law of cosines in spherical geometry is more complicated:

cosa = cosb cosc + sinb sinc cosA

cosb = cosc cosa + sinc sina cosB

cosc = cosa cosb + sina sinb cosC

But you can use it to prove the law of sines. And you just need to remember one of these 3 equations.

Puzzle. In the limit where a, b, c → 0 show the spherical laws of cosines gives the usual Euclidean rule of cosines.

In 100 AD the Greek mathematician Menelaus of
Alexandria wrote a 3-volume book Sphaerica that laid down
the foundations of
spherical geometry. He proved a theorem with no
planar analogue: two spherical triangles with the same angles are
congruent! And
much more.

Menelaus' book was later translated into Arabic. In the Middle Ages,
astronomers used his results to determine holy days on the
Islamic
calendar. In the 13th century, Nasir al-Din
al-Tusi discovered the law of sines in spherical trigonometry!

Later mathematicians discovered many
other rules in spherical trigonometry. For example, these additional laws:

cosA = − cosB cosC + sinB sinC cosa

cosB = − cosC cosA + sinC sinA cosb

https://en.wikipedia.org/wiki/Law_of_sines#Spherical_case
https://en.wikipedia.org/wiki/Law_of_sines
https://en.wikipedia.org/wiki/Spherical_law_of_cosines
https://en.wikipedia.org/wiki/Spherical_law_of_cosines
https://en.wikipedia.org/wiki/Menelaus_of_Alexandria
https://en.wikipedia.org/wiki/Nasir_al-Din_al-Tusi
https://en.wikipedia.org/wiki/Spherical_trigonometry#Identities


cosC = − cosA cosB + sinA sinB cosc

So in what sense did people only 'invent non-Euclidean geometry' in
the 1800s?

Maybe this: to get the axioms of Euclidean geometry except for the
parallel postulate to apply to spherical geometry, we need to
decree
that opposite points on the sphere count as the same. Then distinct
lines intersect in at most one point!

Or maybe just this: people were so convinced that the axioms of Eucidean geometry described the geometry of the plane that they
wouldn't look to the sky for a nonstandard model of these axioms.

Geometry where we identify opposite points on the sphere is called 'elliptic geometry':

Wikipedia, Elliptic geometry.

Spherical trigonometry is full of fun stuff, and you can learn about
it here:

Wikipedia, Spherical trigonometry.

April 11, 2020

If you read math papers it pays to keep this in mind:

Most mathematicians are not writing for people. They're writing for
God the Mathematician. And they're hoping God will give them a
pat on
the back and say "yes, that's exactly how I think about it".

April 12, 2020

THE GOLDEN AGE OF STEAMPUNK PHYSICS

Back in 1886, you didn't need an enormous particle accelerator to
discover new particles. You could build a gadget like this and see
faint rays emanating from the positively charged metal tip.

They called them 'canal rays'. They also called them 'anode rays',
since a positively charged metal tip is called an 'anode'.

https://en.wikipedia.org/wiki/Elliptic_geometry
https://en.wikipedia.org/wiki/Spherical_trigonometry


We now know these anode rays are atoms that have some electrons
stripped off, also known as 'positively charged ions'. So, they
come
in different kinds!

But back in 1886 when Goldstein discovered them, it wasn't clear
whether canal rays were particles or just 'rays' of some mysterious
sort. 'Cathode rays', now known to be electrons, had already been
discovered in 1876.

X-rays (now known to be energetic photons) came later, in 1895.

Lots of rays! And there were also 'N-rays', now known to be a
mistake.

I love the complicated story of how people studied these various
'rays' and discovered that atoms were electrons orbiting atomic nuclei
made of protons and neutrons... and that light itself is made of
photons.

These were the glory days of physics — the wild west.

To learn more about these stories, I recommend the start of this:

Emilio Segre, From X-Rays to Quarks: Modern Physicists and Their
Discoveries, W. H. Freeman, San Francisco, 1990.

But there should be some fun books or papers that focus on the study of
'rays' from 1869 to 1915. Do you know one? Here's the best
I've found
so far:

Karl Wien, 100 years of ion beams: Willy Wien's canal rays, Brazilian Journal of Physics 29 (1999), 401–414.

This notes that anode rays were also called 'positive light'.

April 13, 2020
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In the late 1800s, when physicists were trying to understand how stable
atoms of different kinds could exist, Tait's experiments with
smoke rings seemed quite exciting. They're quite stable. So people
thought: maybe atoms are vortices in the 'aether' — the
substance
filling all space, whose vibrations were supposed to explain
electromagnetism!

To explain different kinds of atoms, Tait suggested they
were knotted or linked vortex rings. He classified knots to
see if this could
explain the atoms we see. And thus knot theory was
born!

Later Kelvin became fascinated by the theory of vortex atoms. He begain
studying vortex rings, using ideas developed by Helmholtz
starting
around 1858.

Kelvin (= Thomson) argued that vortex rings were a better theory than
the main alternative: atoms as point particles or infinitely rigid
balls. He started calculating the vibrational modes of vortex rings,
hoping they could explain atomic spectra!

For a while, in the late 1800s, you could get a job at a British
university studying vortex atoms. The subject was never very popular
outside Great Britain.



Over time the models became more complex, but they never fit the
behavior of real-world atoms with any precision. Eventually
Kelvin
gave up on vortex atoms... but he didn't admit it publicly until much later.

In an 1896 talk FitzGerald, another expert on vortex atoms, recognized
the problems — but argued that it was "almost impossible" to
falsify
the theory, because it was so flexible.

The theory of vortex atoms was never quite disproved. But
eventually people lost interest in them — thanks in part to rise
of
Maxwell's equations (which led to other theories of atoms), and
later perhaps in part to the discovery of electrons, and "canal rays",
and other clues that would eventually help us unravel the mystery of
atoms.

All the quotes above are from this wonderful article:



Helge Kragh, The Vortex Atom: A Victorian Theory of Everything,
Centaurus 44 (2002), 32–114.

Read it and you'll be transported to a bygone age... with some lessons
for the present, perhaps.

Jim Baggott also recommends this:

Helge Kragh, Higher Speculations: Grand Theories and Failed Revolutions
in Physics, Oxford U. Press, Oxford, 2011.

April 14, 2020

The French mathematicians who went under the pseudonym Nicolas
Bourbaki did a lot of good things - but not so much in the
foundations
of mathematics. Adrian Mathias, a student of John Conway, showed
their definition of "1" would be incredibly long,
written out in full.

One reason is that their definition of the number 1 is complicated in
the first place. Here it is. I don't understand it. Do you?

But worse, they don't take , "there exists", as primitive. Instead they define it—in a truly wretched way.

They use a version of Hilbert's "choice operator". For any formula Φ(x) they define a quantity that's a choice of x making Φ(x) true if
such an choice exists, and just anything otherwise. Then they define xΦ(x) to mean Φ holds for this choice.

This builds the axiom of choice into the definition of  and . Worse, their implementation of this idea leads to huge formulas.

And in the 1970 edition, things got much worse!

https://www.dpmms.cam.ac.uk/~ardm/inefff.pdf
https://www.dpmms.cam.ac.uk/~ardm/inefff.pdf
https://www.dpmms.cam.ac.uk/~ardm/inefff.pdf


You can read Mathias' paper here:

Adrian R. D. Mathias, A term of length 4,523,659,424,929
Synthese 133 (2002), 75–86.

For my own overview, see:

John Baez, Bigness
(Part 1), Azimuth, April 13, 2020.

April 16, 2020

Bourbaki's final perfected definition of the number 1, printed out on
paper, would be 200,000 times as massive as the Milky Way.

At least that's what a calculation by the logician Robert Solovay
showed. But the details of that calculation are lost. So I asked
around.
I asked Robert Solovay, who is retired now, and he said he
would redo the calculation.

I asked on
MathOverflow, and was surprised to find my question harshly
attacked. I was accused of "ranting". Someone said the style
of my
question was "awful".

Maybe they thought I was attacking Bourbaki. That's not my real goal
here. I'm thinking of writing a book about large numbers, so I'm

https://www.dpmms.cam.ac.uk/~ardm/inefff.pdf
https://www.dpmms.cam.ac.uk/~ardm/inefff.pdf
https://johncarlosbaez.wordpress.com/2020/04/13/bigness-part-1/
https://mathoverflow.net/questions/357498/bourbakis-definition-of-the-number-1
https://mathoverflow.net/questions/357498/bourbakis-definition-of-the-number-1


doing
a bit of research.

Admittedly, I added the remark saying Mathias' paper is "polemical"
after Todd Trimble, a moderator at MathOverflow,
recommended doing
some such thing.

Later Solovay said it would be hard to redo his calculation — and if
he did he'd probably get a different answer, because there are
different ways to make the definition precise.

But here's some good news. José Grimm redid the calculation. He did
it twice, and got two different answers, both bigger than
Solovay's. According to these results Bourbaki's definition of "1",
written on paper, may be 400 billion times heavier than the Milky
Way.

I'm now quite convinced that a full proof of 1 + 1 = 2 in Bourbaki's formalism, written on paper, would require more atoms than
available in the observable Universe.

Of course, they weren't aiming for efficiency.

April 17, 2020

Some news:

On
MathOverflow, Alex Nelson reports the results of his own
calculations, which give a result perfectly matching Robert
Solovay's: namely, Bourbaki's 1970 definition of the number 1 requires

2, 409, 875, 496, 393, 137, 472, 149, 767, 527, 877, 436, 912, 979, 508, 338, 752, 092, 897 ≈ 2.4 × 1054

symbols. He writes:

I was able
to reproduce Mathias's [actually Solovay's] results
with some Haskell code with some specific details
about how many
symbols are needed in each term. (As a sanity check, I verified I
recovered the same results term-
by-term when the ordered product was
primitive.)

Size of 1 = 2,409,875,496,393,137,472,149,767,527,877,436,912,979,508,338,752,092,897

Size of term A = 15,756,227

Size of term B = 10,006,221,599,868,316,846

Size of term C = 59,308,566,315

https://mathoverflow.net/a/357558/2893
https://mathoverflow.net/a/357717/2893
https://gist.github.com/pqnelson/184a13964b5560eac73d821309c5c081


Size of term D = 364,936,653,508,895,574,881

Size of term E = 101,217,516,631

One thing worth noting is that, well, this seems dishonest. I mean, there are a lot of double negations which are not
simplified, which bloats the size quite a bit (an additional 1.863 × 1053 symbols or so). I wouldn't be surprised if
there were other simplifications which would cut down the bloat further...not that we'd get anything less than 1050

or so.

If you'd like to check the number of links, I can do that too.

Alex Nelson also computed the length of the expression "1 + 1 = 2", confirming my impression that the proof of this statement
(which would be even longer) couldn't be written on paper in the observable Universe. The statement "1 + 1 = 2" in Bourbaki's
1970 setup uses about 1076 characters, and there seem to be at most 1082 atoms in the observable Universe, allowing only a
million atoms per symbol — and most of them are hydrogen.

He writes:

Addendum. The relation "1+1=2" can be computed, and found to have a length of

22, 411, 322, 875, 029, 037, 193, 545, 441, 224, 646, 148, 573, 589, 725, 893, 763, 139, 344, 694, 162, 029, 240, 084, 343, 041

or approximately

2.24113228750290371 × 1076.

This is using the definitions in Bourbaki of cardinal addition a + b using the disjoint sum of the indexed family 
f : Card(2) → {a, b} considered as a graph. It's really convoluted, but the
details can be found in Bourbaki's Theory
of Sets Chapter II sections 3.4, 4.1, and 4.8 as well as Proposition 5 (in chapter III, section 3.3); this all works with
the Kuratowski ordered pair, not a primitive ∙ AB ordered pair.

For what it's worth, computing the size of 1 was nearly
instantaneous, whereas computing the size of "1+1=2" took
about 7
minutes and 30 seconds.

I asked Robert Solovay if he still had the original program he used to
compute the length of Bourbaki's definition of "1" (using
their 1970
definition of ordered pairs). He didn't, but Adrian Mathias did, and
Solovay has allowed me to release it. So, here are
three documents:

calcusol.pdf. This is a document entitled "The
Bourbaki Constant 1". It begins:

This is a private document [for the eyes of RMS and ARDM only] which
extends ARDM's computation of
the length of the Bourbaki rendition of
"The ineffable name of 1" to the case when the Kuratowski ordered
pair
is employed. My plan is to write programs in Allegro Common Lisp to
compute the relevant numbers.

I program using the style of "literate programming" introduced by
Knuth. However the Web and Tangle
introduced by Knuth [which have been
refined to CWEb and CTangle by Levy] are limited to languages
closely
linked to C or Pascal. So I prefer to use a more flexible literate
programming language which permits
fairly arbitrary target
languages. Currently, I use Nuweb which is available on the TEX
archives in the
directory /web/nuweb.

One of the nice things about literate programming is that one can
write programs in the natural psychological
order, but arrange that
the output files have the order needed for the target programming
language. We will
exploit this heavily in what follows.

solfact.txt. This is a short document
including the output of the program described in the previous
document. Here it is, in
its entirety:

From solovay@math.berkeley.edu Wed Nov 11 13:39:46 1998
Date: Tue, 10 Nov 1998 23:43:04 -0800 (PST)
From: "Robert M. Solovay" 
To: amathias@rasputin.uniandes.edu.co
Cc: solovay@math.berkeley.edu
Subject: Results

http://math.ucr.edu/home/baez/mathematical/solovay_bourbaki/calcusol.pdf
http://math.ucr.edu/home/baez/mathematical/solovay_bourbaki/solfact.txt


Adrian,

    Here is the printout of my calculation of the length of the
Bourbaki term for 1. If we do the original definition, I get approx.

4.524 * 10^{12}

    If we use the Kuratowski ordered pair, I get approx.

2.41 * 10^{54}

    This is big, but not nearly as big as the 2 * 10^{73} that you
claim. This is certainly related to the smaller estimate that I have
for the size of the Kuratowski ordered pair.

    I omitted some trivial lines from this printout where I "gave
the wrong commands to the genie".

USER(1): (setq p 0) ;;;[Doing the original Bourbaki definition where
                    ;;; ordered pair is a basic undefined notion.]
0

USER(3): (load "compute.cl")
; Loading ./compute.cl
T
USER(4): J_length
4523659424929
USER(5): (log J_length 10)
12.65549
USER(6): J_links
1179618517981
USER(7): (log J_links 10)
12.071742
USER(8): (setq p 1) ;;; Now use Kuratowski ordered pair

1

USER(10): (load "compute.cl")
; Loading ./compute.cl
T
USER(11): J_length
2409875496393137472149767527877436912979508338752092897
USER(12): (log J_length 10)
54.381996
USER(13): J_links
871880233733949069946182804910912227472430953034182177
USER(14): (log J_links 10)
53.940456

solpair.pdf. This is a short note on some of Bourbaki's definitions including the definition of ordered pair.

April 18, 2020

This is a yellow-bellied three-toed skink.

Near the coast of eastern Australia, it lays eggs. But up in the
mountains, the same species gives birth to live young! Intermediate
populations lay eggs that take only a short time to hatch.

http://math.ucr.edu/home/baez/mathematical/solovay_bourbaki/solpair.pdf


Even more surprisingly, Dr. Camilla Whittington found a yellow-bellied
three-toed skink that lay three eggs and then weeks later, give
birth
to a live baby from the same pregnancy!

(Here, alas, she is holding a different species of skink.)

The yellow-bellied three-toed skink may give us clues about how
and why some animals transitioned from egg-laying (ovipary) to
live
birth (vivipary). I wish I knew more details!

Its Latin name is Saiphos equalis. It's
the only species of its genus.

April 20, 2020

https://www.sydney.edu.au/news-opinion/news/2019/04/03/which-came-first-the-lizard-or-the-egg-three-toed-skink.html
https://www.sydney.edu.au/news-opinion/news/2019/04/03/which-came-first-the-lizard-or-the-egg-three-toed-skink.html
https://en.wikipedia.org/wiki/Saiphos


I predict that next week the price of oil will hit negative infinity,
then start coming down from positive infinity, then take a left turn
and develop a positive imaginary part.

April 24, 2020

Funny how it works. Learning condensed matter physics led me to the
'10-fold way' and 'super division algebras'.

That made me want to learn more about division algebras over fields
other than the real numbers!

Now I'm studying generalizations of the quaternions.

Here's a great little introduction to quaternion algebras:

Thomas R. Shemanske, Perspectives on the Albert-Brauer-Hasse-Noether Theorem for quaternion algebras.

It proves the stuff in the box above.

April 26, 2020

When they have trouble understanding a theorem, ordinary
mathematicians ask: "What's an example of this?"

Category theorists ask: "What's this an example of?"

I'm in that situation myself trying to learn about division algebras
and how they're connected to Galois theory. Gille and Szamuely's
book
Central
Simple Algebras and Galois Cohomology is a great introduction.

But one of the key ideas, 'Galois descent', was explained in a way
that was hard for me to understand.

It was hard because I sensed a beautiful general construction buried
under distracting details. Like a skier buried under an avalanche, I
wanted to dig it out.

I started digging, and soon saw the outlines of the body. We have a field k and a Galois extension K. We have the category of algebras
over k , Alg(k), and the category of algebras over K, Alg(K). There is a functor

F : Alg(k) → Alg(K)

which is a left adjoint.

We fix A Alg(K). We want to classify, up to isomorphism, all a Alg(k) such that F(a) A. This is the problem!

The answer is: the set of isomorphism classes of such a is

H1(Gal(K | k), Aut(A))

file:///D/My%20Website/tenfold.html
https://math.dartmouth.edu/~trs/expository-papers/ABHN.pdf
http://www.math.ens.fr/~benoist/refs/Gille-Szamuely.pdf


This is the first cohomology of the Galois group Gal(K | k) with coefficients in the group Aut(A), on which it acts.

I began abstracting away some of the details. My first attempt is here:

John Baez, Crossed homomorphisms, The n-Category Café,
April 24, 2020.

It felt awkward and clumsy, but I knew I was making progress. I made
a bit more progress in the comments to this article.

But last night, I found Qiaochu Yuan wrote a series of articles
tackling exactly this problem: finding a clean categorical
understanding
of Galois descent! He was tuned into exactly my
wavelength.

This is where the series starts:

Qiaochu Yuan, The
puzzle of Galois descent,
Annoying Precision, November 8, 2015.

The second made the role of the Galois group clear:

Qiaochu Yuan, Group
actions on categories, Annoying Precision, November 9,
2015.

Gal(K | k) doesn't act on any one object of Alg(K), since Galois transformations aren't K-linear. It acts on the whole category Alg(K)!

The third in his series corrects a mistake. The fourth shows that objects of Alg(k) are the same as homotopy fixed
points of the action
of Gal(K | k) on Alg(K):

Qiaochu Yuan, Fixed
points of group actions on categories, Annoying Precision,
November 11, 2015.

I've loved homotopy fixed points of group actions on categories for years!
They're such a nice generalization of the ordinary concept
of 'fixed point'.

With this background, Qiaochu is able to state the problem of Galois
descent in a clear and general way, which handles lots of other
problems besides than the one I've been talking about:

Qiaochu Yuan, Stating
Galois descent, Annoying Precision, November 16, 2015.

Then, finally, he explains how group cohomology gets into the game: why the set of isomorphism classes of a Alg(k) such that 
F(a) Alg(K) is

H1(Gal(K | k), Aut(A))

So I am happy!!! But there's more to understand...

For one, group cohomology has a strong connection to topology. I explained this in the case of H1 in a comment on the
n-Category
Café. Since Galois extensions of fields are
analogous to covering spaces in topology, this should give us extra
insight into Galois
descent!

So I have some more fun thinking to do, despite the enormous boost
provided by Qiaochu Yuan.

By the way, I'm sure some experts in algebraic geometry already have
the categorical/topological perspective I'm seeking. This is not
new
research yet: this is study.

For my May 2020 diary, go here.

© 2020 John Baez 
baez@math.removethis.ucr.andthis.edu

home
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For my April 2020 diary, go here.

Diary — May 2020

John Baez

May 1, 2020

This spring I learned that most of the weeds in our yard are edible —
and delicious. We don't have weeds. We have
salad!

Growing your own arugula: it's not rocket science.

When it rains, which happens only in the winter and spring, we get a
lot of Australian rocket (Sisymbrium erysimoides),
wild lettuce
(Lactuca virosa), sow thistle (Sonchus arvensis),
prickly sow thistle (Sonchus asper) and wild turnip, a kind
of
mustard (Brassica rapa sylvestris).

May 2, 2020

There are three finite-dimensional associative division algebras over
the real numbers: finite-dimensional real vector
spaces equipped with
an associative product where you can divide by anything nonzero!

The reals themselves, R
The complex numbers, C

Processing math: 100%



The quaternions, H

R and H form the Brauer group of the
reals. Let me explain!

You can see this by taking tensor products of R, C, and H. A tensor product of two real vector spaces is a new real
vector space whose dimension is the product of their dimensions. You can make the tensor product of algebras over the
real numbers into another algebra over the reals!

Let's try it. Here are some boring examples:

R R R
R C C
R H H

As you can see, tensoring with R doesn't do anything. So, it will be the identity element of the Brauer group.

But let's do some more interesting examples....

C R C
C C C C
C H C[2]

Here C C is the algebra of pairs of complex numbers, while C[2] is the algebra of 2 × 2 complex matrices!

Note how C 'eats' everything else and makes it complex. It's not in the Brauer group!

H R H
H C C[2]
H H R[4]

When you tensor two copies of the quaternions you get the algebra R[4] of 4Ã—4 real matrices. In short:

real  real = real
real  quaternionic = quaternionic
quaternionic  quaternionic = real

but

complex  real = complex
complex  complex = complex
complex  quaternionic = complex

So when we tensor 'real', 'quaternionic' and 'complex' it's like
multiplying 1, -1 and 0. 0 eats everything, but 1 and -1
form a
group. This is the Brauer group of the real numbers!

In short, the Brauer group of the real numbers has two elements. The
complex numbers is not allowed into this group
because it eats
everything you tensor it with. Turns out that's because it's not just
a division algebra, it's a field: it's
commutative!

You can do this 'Brauer group' game starting with any field. There
are associative division algebras over this field. You
can tensor
them, and figure out a multiplication table. Some will have inverses,
and they're in the Brauer group!

The Brauer group of the rational numbers, Q, is a lot more interesting than the Brauer group of R.

https://en.wikipedia.org/wiki/Brauer_group


Brauer, Hasse and Noether teamed up and figured out the Brauer group of any 'algebraic number field', meaning Q with
some algebraic numbers like √−2 and 3

√7 thrown in.

Here's a really fun way to learn more about this:

Paul Roquette, The Brauer-Hasse-Noether theorem in historical perspective.

It explains the math as well as the history. (The American
mathematician Albert, known for his work on octonions, also
did work
on this theorem.)

It's fun to read the first letter from Noether to Brauer on this
subject in 1927. She is quite dominant! But it makes sense:
Brauer
was younger, and he had sent her his thesis for comments just earlier
that year.

May 4, 2020

There's a category of triangles! Objects are triangles in the plane.
Morphisms are ways of translating, rotating and/or

https://mathi.uni-heidelberg.de/~roquette/brhano.pdf


reflecting the
plane to carry one triangle to another.

Triangles with symmetries — isosceles and equilateral — have
morphisms to themselves.

This category is a 'groupoid': all morphisms have inverses.

In fact it's a 'Lie groupoid': there's a smooth manifold of objects, a
smooth manifold of morphisms, and composition is a
smooth function.
(There's a bit more to the definition, but that's most of it.)

Any Lie groupoid gives a 'differentiable
stack'. I won't define those, but the advantage of working with
stacks is that the
morphisms are more flexible. Only when you move on
up to differentiable stacks are you combining groupoids &
manifolds in
the best way!

Differentiable stacks tend to be good when you've got a space of
things with symmetries — like the space of all
triangles in the plane.
As a thing moves around in this space, its amount of symmetry can
suddenly increase, like when a
scalene triangle become isosceles.

The 'moduli space' — the space of isomorphism classes of
things — will have singularities at the points where those
things have more symmetry. But the differentiable stack will still be
nice there, because you're not modding out by those
symmetries.

Stacks are still scary to most mathematicians. The Stacks Project
aims at becoming a complete reference on stacks as
used in algebraic
geometry:

The Stacks Project.

But differentiable stacks are something you've already met in school,
without knowing it! For a detailed introduction to
stacks, with a lot
about the stack of triangles, try this:

Kai Behrend, Introduction to algebraic stacks, December 17, 2012.

May 7, 2020

https://ncatlab.org/nlab/show/Lie+groupoid
https://ncatlab.org/nlab/show/Lie+groupoid
https://ncatlab.org/nlab/show/differentiable+stack#idea
https://stacks.math.columbia.edu/about
https://www.math.ubc.ca/~behrend/math615A/stacksintro.pdf


Like many scientists I have a grudging admiration for the Star
Trek franchise: grudging because the science is so often
silly,
and could often have been improved easily without spoiling the
stories; admiration because they've created a
hopeful vision of the
future, some fun stories, and some enduringly interesting characters.
In Discovery we heard about
the Logic
Extremists, a dissident faction of Vulcans who wanted to leave the
Federation. But we didn't learn much about
their core beliefs! They
seemed rather similar to the Vulcan
Isolationists, who came about a hundred years later. There
seemed
to be an interesting untold story lurking behind the name.

So, I went to T'Karath and spent a couple of weeks poring through the
historical documents on this movement. Here's a
quick sketch of what
I found.

In the first half of the 22nd century, the central government had
become corrupt, with Romulan operatives infiltrating
the Vulcan High
Command. Some Vulcans, the Syrannites, attempted to reinstate and
develop the original teachings of
the Vulcan philosopher Surak. But
around 2140, another small group decided that Surak had not developed
logic with
sufficient thoroughness. They argued that all deductive
reasoning should be formalized, all inductive reasoning should
be
Bayesian with explicit probabilities on hypotheses, and all
decision-making should maximize utility.

The Pure Logic movement, as they called themselves, moved to Xir'tan
and set up a commune there. They began a
program of formal concept
analysis so that all words would have precise definitions. Before
each meal they bowed,
seemingly in prayer, but actually to optimize
their activities to come. Children were schooled in an even more
disciplined way than usual: less high-tech than the skill domes
of the 2200s, but with an intense focus on logic,
semiotics,
probability, and statistics.

http://www.adamshaftoe.com/logic-extremism-in-star-trek-discovery/
https://memory-alpha.fandom.com/wiki/Vulcan_Isolationist_Movement
https://spockhome.weebly.com/map-of-vulcan-and-vulcan-system.html


Conflicts erupted in 2200 between what we would call
Jaynesian-Bayesians and hardcore subjective Bayesians. The
former
advocated entropy-maximizing priors. The latter argued that no prior
counts as 'right' without further
assumptions, so one can start with
any prior.

As the Pure Logic movement became established, they spread and set up
communes the main continent, especially in
Gol, Xial and Raal. They
started influencing the political establishment, first locally and
then at the federal level.

As this happened, factions with radical positions gradually gained
influence. Especially important were the subjective
Bayesians who
argued that ethics could not be logically derived, so that instead of
maximizing utility, a rational agent
was free to maximize any chosen
quantity. Their motto was remarkably similar to a saying credited to
Hume:

From an "is" one cannot derive an "ought".

Going further, the most extreme subjective Bayesians adopted spreading
the Pure Logic movement as their only goal.
All decisions were
to be evaluated based on how much they furthered the spread of logical
thinking. They took a vow to
this effect, and pressed this
vow on other citizens as a prerequisite for holding office of any
sort. Their opponents
dubbed them "Logic Extremists".

In 2226, in a hard-fought political struggle, these extremists
triumphed and completely pushed the Jaynesian-Bayesians
and moderate
subjective Bayesians out of power. Two years later V'arak took
control: a charismatic leader who asserted
with 100% prior probability
that the Federation was trying to subvert Vulcan culture and stop the
spread of the Pure
Logic movement.

Any attempt to reason with V'arak and his supporters, or compromise
with them, was interpreted as further evidence of
an increasingly
elaborate Federation conspiracy. Most Vulcans repudiated this stance,
and as the Logic Extremists'
public support shrank they turned to terrorism.

The violence came to a head around 2256, when V'latak (shown below)
attempted to assassinate Sarek before the peace
talks on Cancri IV, saying:

My sacrifice will be a rallying cry to those who value logic above all.
Vulcans will soon recognize and withdraw from the failed experiment 

known as the Federation.

https://memory-alpha.fandom.com/wiki/Skill_dome


At this point support for the Logic Extremists rapidly dropped, though
Patar still managed to infiltrate Section 31.

However, the most interesting aspect of the Logic Extremists are their
early theoretical writings — especially those of
Avarak, and Patar's
father Tesov. They were an extremely bold attempt to plan a society
based purely on logic. I hope
they're translated soon.

May 14, 2020

I've been thinking about Morita equivalence.

The basic idea is this: any ring has a category of modules. If two
rings have equivalent categories of modules, they're
'Morita
equivalent'. So we take the attitude: "the main reason to care about
rings is their modules".

Isomorphic rings are Morita equivalent, but the fun part is that
nonisomorphic rings can be Morita equivalent! For
example, the ring of n × n matrices with entries in a ring R is Morita equivalent to R, since a module of this matrix ring
must look like Mn for some module M of R.

Lots of properties of rings are invariant under Morita equivalence.
For example, if two rings are Morita equivalent, and
one of them is
'simple' (has no nontrivial ideals), then so is the other.

But the property of being commutative isn't invariant under Morita
equivalence. Can you see why? (I gave you a hint.)

Here's the cool part. There's a bicategory with rings as objects,
bimodules as morphisms, and bimodule homomorphisms
as 2-morphisms.
There's a nontrivial theorem saying that equivalence in this
bicategory is Morita equivalence!

It takes a while to understand what this means, and prove it.

The point is that given rings R and S, an (R, S)-bimodule can be thought of as a funny sort of 'morphism' from R to S.
We can tensor an (R, S)-bimodule and an (S, T)-bimodule over S and get an (R, T)-bimodule. This is how we compose

https://memory-alpha.fandom.com/wiki/V%27Latak
https://memory-alpha.fandom.com/wiki/Patar
https://en.wikipedia.org/wiki/Morita_equivalence


these funny morphisms.

So, I'm claiming two rings R and S are Morita equivalent iff there's an (R, S)-bimodule M and an (S, R)-bimodule N
such that M SN R as an (R, R)-bimodule, and N RM as an (S, S)-bimodule.

I'm teaching an online 'class' about this on the Category Theory
Community Server.

May 15, 2020

Good news: the price of solar power is dropping very quickly.
This chart by Ramez
Naam shows how it's going.

We are now 50-100 years ahead of the International Energy Agency's
predictions in 2010. It turns out they were
completely clueless.

Naam uses Wrightâ€™s
Law to analyze the data. This rule of thumb says that each
doubling of the total production of
some technology leads to a fixed
percentage decline in its price. Solar prices seem to be dropping
30-40% per doubling!

The world will change dramatically as the price of solar continues to
plunge. We need this!

Read Ramez Naam's blog for more:

https://johncarlosbaez.wordpress.com/2020/03/25/category-theory-community-server/
https://rameznaam.com/2020/05/14/solars-future-is-insanely-cheap-2020/
https://rameznaam.com/2020/05/14/solars-future-is-insanely-cheap-2020/
https://rameznaam.com/2020/05/14/solars-future-is-insanely-cheap-2020/
https://en.wikipedia.org/wiki/Experience_curve_effects


Ramez Naam, Solar's future is insanely cheap (2020).

May 16, 2020

In 3 dimensions a rotating object rotates around an axis. But this
way of thinking about it leaves you unprepared for
what happens in
other dimensions!

You can already see that in 2 dimensions rotations don't happen
'around an axis' - not an axis in the plane, anyway!

The right way to think about rotations in 3d is that they're 'in a
plane'. That is, there's a plane where points on this plane
go round
and round... and the point that stands still is the center of
rotation.

The 'axis' is just a line at right angles to this plane.

Rotations in 2d are also 'in a plane' — but now this plane is
the whole of 2d space.

What about 4d? Now rotations take place in two planes. There are
two 2d planes at right angles, where points go round
and round staying
in these planes, maybe at different speeds!

What about 5d? Again rotations take place in two planes. There are two 2d planes at right angles where points go round
and round... but now there's also a line at right angles to both these planes, where points stay fixed! We're breaking up
the dimensions this way:

5 = 2 + 2 + 1

I hope you get the pattern. In 2n dimensions, there are n 2-dimensional planes at right angles where points go round and
round, staying in these planes... possibly at different rates. In 2n + 1 dimensions that's still true, but there is also a fixed
axis.

For this reason, rotations in even-dimensional spaces are very
different from rotations in odd-dimensional spaces! This
shows up all
over math and physics. For example, the 'Dynkin diagrams'
for rotation groups look very different
depending on whether the
dimension is even or odd.

The situation gets even subtler when we think about 'spinors' — the
gadgets sort of like vectors that describe spin-1/2
particles like the
electron.

The math of spinors depends a lot on the dimension of spacetime, not just mod 2, but mod 8.

Now we've gone from something that's obvious if you think about it
hard to something that's far from obvious. Why
should spinning
particles care about the dimension of space modulo 8? This is
something I've studied over and over
again, learning a bit more each
time.

I wrote a quick intro to how spinors work in different dimensions
here, back when I was first learning how
supersymmetry is connected to
the octonions:

This Week's Finds in Mathematical Physics,
Week 93,
October 27, 1996.

That could be a good place to get started. Maybe too hard... maybe
too sketchy... but short.

Someday I'm gonna write a book about this stuff. Only a book can go
slowly from the most obvious facts to the most
non-obvious, gradually
making more and more things seem 'obvious'.

There's a lot to say about rotations in different dimensions!

May 17, 2020

https://rameznaam.com/2020/05/14/solars-future-is-insanely-cheap-2020/
https://en.wikipedia.org/wiki/Dynkin_diagram
https://en.wikipedia.org/wiki/Spinor
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Dirac took negative-energy electrons seriously. He realized a
missing negative-energy electron would act like a
positively
charged particle with a positive amount of energy: a
'positron'. Then people actually found positrons. (They'd
already
seen them but couldn't believe it.)

Could he be right about taking negative probabilities seriously?

Negative numbers were invented by Venetian bankers. They started
writing numbers in red to symbolize debts — hence
the phrase
"being in the red". Bankers couldnâ€™t get so rich as they do if
negative money didnâ€™t exist.

But can you owe someone a probability?

In 1987 Feynman wrote an essay explaining how negative probabilities
could be used. Read it! He explains things well:

Richard P. Feynman, Negative
probability, in Quantum Implications: Essays in Honour of David
Bohm, eds. F.
David Peat and Basil Hiley, Routledge & Kegan Paul
Ltd, London, 1987, pp. 235–248.

The idea is that negative probabilities are only allowed in intermediate steps of a calculation, not the final results.

A nice example is the heat equation. It describes how the probability
of finding a particle somewhere in a box spreads
out in Brownian
motion. We can solve it using Fourier series. The individual terms
in the Fourier series can give
negative probabilities!

Another example is the 'half-coin'. Say you make a bet where you get $1
if a coin comes up heads and $0 if it comes up
tails. Say you want
this bet to be the same as making two bets involving two separate
'half-coins'. You can do it with
negative probabilities!
Details here:

John Baez, Negative probabilities, Azimuth, July 19, 2013.

http://cds.cern.ch/record/154856/files/pre-27827.pdf
https://johncarlosbaez.wordpress.com/2013/07/19/negative-probabilities/


When I wrote the above stuff on Twitter, Nassim Taleb responded:

We use negative probabilities in quant finance since probability is
just a KERNEL inside an integral, rarely
a "real thing" outside of
binary payoffs. So long as no arbitrage is satisfied. Only thing
that matters is (by
scaling) âˆ«densities=1. Similar to negative prices
in oil.

To visualize the intricacy, see my comments #RWRI on negative prices
via arbitrage/squeezes.

I guess it's not surprising that that financiers are already using
negative probabilities, given that bankers first invented
negative
numbers!

May 20, 2020

Physicists have just seen 'Pauli crystals'! They're formed when a
group of atoms, trapped in a potential well, repel each
other only by
the Pauli exclusion principle — the rule saying that two fermions
can't be in the same state. They are very
fragile and tiny.

https://twitter.com/nntaleb/status/1262065488290623489


For noninteracting fermions in the plane, trapped in a harmonic
oscillator potential, you get nice Pauli crystals with 1, 3,
6, 10,
15, ... atoms. These act like 'closed shells' in chemistry. These
numbers show up because they're the triangular
numbers 1, 1+2, 1+2+3,
1+2+3+4, etc.

Seeing a Pauli crystal is hard! You need to image all the atoms at
once, and they keep wiggling around due to quantum
fluctuations, so
you have to take repeated images to get a good picture... and you have
to keep rotating these images to
get them to line up.

A team of physicists trapped lithium-6 atoms in a laser beam to create
Pauli crystals. These atoms have 3 protons, 3
neutrons and 3
electrons; since the total 9 is odd they are fermions.

The experiment looks really cool!



Here's the paper on Pauli crystals:

Marvin Holten, Luca Bayha, Keerthan Subramanian, Carl Heintze, Philipp M. Preiss and Selim Jochim,
Observation of Pauli crystals.

It showed up in the 'quantum gases' section of the arXiv, which alas
I'll never have a paper in. And here's a nice popular
article:

Bob Yirka, Team in Germany observes Pauli crystals for the first time, May 19, 2020.

May 28, 2020

I'm finally ready to think about Isbell duality.

'Dualities' are important because they show you two different-looking
things are secretly two views of the same thing —
or at least closely
linked.

I'll sketch the idea of Isbell duality; you can see if you're ready for it. 

Let C be a category. Let Cop be its opposite category. Let Set be the category of sets.

Let [Cop, Set] be the category of all functors from Cop to Set. Such functors are called presheaves on C, and the
Yoneda embedding is a functor

y : C → [Cop, Set].

Let [C, Set]op be the opposite of the category of all functors from C to Set. These are less famous; they're called
copresheaves. There's
a co-Yoneda embedding

z : C → [C, Set]op.

The category of presheaves [Cop, Set] is the free category with all colimits on C. It also has all limits, but its universal
property is that any functor C → D where D has all colimits extends uniquely to a functor [Cop, Set] → D that
preserves colimits.

Dually, the category of copresheaves [C, Set]op is the free category with all limits on C. It also has all colimits, but its

https://arxiv.org/abs/2005.03929
https://phys.org/news/2020-05-team-germany-pauli-crystals.html
https://ncatlab.org/nlab/show/Isbell+duality


universal property is that any functor C → D where D has all limits extends uniquely to a functor [C, Set]opâ † ′D that
preserves limits.

Now the fun starts. Take the co-Yoneda embedding

z : C → [C, Set]op.

Since [C, Set]op has all colimits, this functor extends uniquely to a functor

[Cop, Set] → [C, Set]op.

that preserves colimits.

Dually, take the Yoneda embedding

y : C → [Cop, Set].

Since [Cop, Set] has all limits, this functor extends uniquely to a functor

[C, Set]op → [Cop, Set]

that preserves limits.

So now we have functors sending presheaves to copresheaves:

[Cop, Set] → [C, Set]op

and copresheaves to presheaves:

[C, Set]op → [Cop, Set]

Isbell duality says these are adjoint functors!

Isbell duality seems to be the "mother of all dualities"... but I
haven't stated it in its most general form.

Yesterday in the ACT@UCR seminar that I'm
running, Simon Willerton explained how the Legendre transform arises
from Isbell duality! Great talk!

file:///D/My%20Website/ACT@UCR/


Simon Willerton also showed how Dedekind's construction of the real
line using cuts — and many other things! —
come from the general
form of Isbell duality.

Here you can see his slides, his paper, and a blog article he wrote on
this stuff:

The Legendre transform: a category
theoretic perspective, Azimuth, May 27, 2020.

May 30, 2020

In 1946, Gödel wanted to become a U.S. citizen. He took his friend
Einstein along.

Unfortunately Gödel had spent time studying the U.S. constitution and
claimed to have found an "inner contradiction"
that made it possible
for someone to become a dictator in a completely legal way. Einstein
had tried to persuade him to
just shut up about it... but then
everything went awry.

Throughout the whole thing Einstein was joking around as usual.

The story appears in a letter — fragments of which are shown
above — written by Oskar Morgenstern, who also
accompanied
Gödel to his citizenship hearing. This letter was lost for a
while, but now you can read it here:

Jeffrey Kegler, Kurt Gödel: a contradiction in the U.S. constitution?

In the end Gödel got his citizenship and became best friends with
Einstein. They were often seen walking around
together.

https://johncarlosbaez.wordpress.com/2020/05/26/the-legendre-transform-a-category-theoretic-perspective/
https://jeffreykegler.github.io/personal/morgenstern.html


Gödel learned general relativity and found a solution of
Einstein's equations that has closed timelike loops: in this
universe
your future is your past. It's called the Gödel
universe.

For my June 2020 diary, go here.

© 2020 John Baez 
baez@math.removethis.ucr.andthis.edu
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These are paramilitary troops surrounding the Lincoln Memorial in
Washington D.C. during protests of George Floyd's
murder. In explaining
this strategy Defense Secretary Esper said to U.S. governors:

“We need to dominate the battle space.”

Lincoln had a different opinion:

“Those who deny freedom to others, deserve it not for
themselves.”

June 6, 2020

Here's a wonderful illusion by Akiyoshi Kitaoka: the black
hole appears to expand, though it does not.

https://twitter.com/AkiyoshiKitaoka


This heart seems to shift, especially if you move your head a little:

https://twitter.com/AkiyoshiKitaoka/status/1264568591053017088


June 8, 2020

Whoops! You fools can't do anything right!

https://twitter.com/AkiyoshiKitaoka/status/1269186795943559170


Better.

The second one came from here:

Glen Wright, FX Coudert, Martin Bentley, Sylvain Deville and Graham Steel, This Study is Intentionally Left
Blank - a systematic literature review of blank pages in academic publishing.

June 10, 2020

Here Quanta explains 'group representations', where you map elements of
a group to matrices, so that group
multiplication becomes matrix multiplication:

Kevin Hartnett,
The 'useless' perspective that transformed mathematics, Quanta, June 9, 2020.

Let's dig into the history! Did the group theorist Burnside really
think group representations were useless?

In 1897 William Burnside wrote the first book in English on finite
groups. In the preface, he explained that "in the
present state of
our knowledge" there weren't theorems about groups that could best be
proved by representing them as
linear transformations (matrices).
He wrote:

Cayley's dictum that "a group is defined by means of the laws of
combination of its symbols" would imply
that, in dealing with the
theory of groups, no more concrete mode of representation should be
used than is
absolutely necessary. It may then be asked why, in a book
that professes to leave all applications to one
side, a considerable
space is devoted to substitution groups [permutation groups], but
other particular
modes of representation, such as groups of linear
transformations, are not even referred to. My answer to
this question
is that while, in the present state of our knowledge, many results in
the pure theory are arrived
at most readily by dealing with properties
of substitution groups, it would be difficult to find a result that
could most directly be obtained by the consideration of groups of
linear transformations.

So, Burnside didn't actually say group representations were useless!
His book was a "pure" study of finite groups, which
"professes to
leave all applications to one side".

But months after this book was published, he discovered the work of
Georg Frobenius. Frobenius was a master of group
representations!
Burnside started using them in his own work on finite groups, and by
the time he wrote the second
edition of his book in 1911, he'd changed
his tune completely:

Very considerable advances in the theory of groups of finite order
have been made since the appearance of
the first edition of this
book. In particular the theory of groups of linear substitutions has
been the subject of
numerous and important investigations by several
writers; and the reason given in the original preface for

https://figshare.com/articles/This_Study_is_Intentionally_Left_Blank_A_systematic_literature_review_of_blank_pages_in_academic_publishing/1230110
https://figshare.com/articles/This_Study_is_Intentionally_Left_Blank_A_systematic_literature_review_of_blank_pages_in_academic_publishing/1230110
https://www.quantamagazine.org/the-useless-perspective-that-transformed-mathematics-20200609/


omitting any
account of it no longer holds good. In fact it is now more true to say
that for further advances
in the abstract theory one must look largely
to the representation of a group as a group of linear
transformations.

Are there results about finite groups that we only know how to prove
using their representations on vector spaces? Yes!
For example, the
'odd order theorem'. A group is 'solvable' if — roughly —
it's built from abelian pieces. The odd order
theorem says that group
with an odd number of elements is solvable!

But be careful:

In 1904 Burnside showed that every group of order paqb is solvable if p and q are prime. To do it he used group
representations. But then, in 1972, Helmut Bender found a proof that avoids linear algebra!

It's an interesting challenge to state precisely how group
representations help us understand finite groups. For more on
this,
read my imaginary dialog between Burnside and Frobenius in 'week252'. Skip past the stuff about astronomy
(if
you can).

June 12, 2020

Ralf Wüsthofen
claims he has a simple one-page proof of Goldbach's conjecture which
"immediately leads to a proof of
the inconsistency of arithmetic."

June 14, 2020

file:///D/My%20Website/week252.html
https://vixra.org/abs/2004.0683


A classical bit is 0 or 1, but if we allow probabilities we can get
anything in between. A qubit takes values on the unit
sphere, but if
we allow probabilistic 'mixed states' we can get anything in a 3-dimensional
ball.

Then there's 'real quantum mechanics', where we use real numbers instead
of complex numbers. This gives a 2d disk of
mixed states.

All these are examples of 'generalized probabilistic theories' — a
broad class of theories that people study to better
understand what
makes quantum mechanics and classical probability theory so special.

These theories use the math of convex sets.

A generalized probabilistic theory describes a system with a convex set of 'states'. If x and y are states, so is 
px + (1 − p)y where 0 ≤ p ≤ 1 is any probability. This is the result of preparing the system in the state x with
probability p and the state y with probability 1 − p.

In ordinary complex quantum mechanics, the states of a qubit form a
3-dimensional ball. States on the surface are 'pure
states': they're
not convex combinations of other states. States in the interior are
'mixed'.

In the center is the state of maximum entropy.

https://www.quantumfoundations.org/reconstruction-of-quantum-mechanics.html
https://en.wikipedia.org/wiki/Generalized_probabilistic_theory
https://en.wikipedia.org/wiki/Convex_set


The pure states of a qubit form a sphere. Physicists call it the
'Bloch sphere ', but mathematicians call it the 'Riemann
sphere' or CP1. There are many ways to think about this, and I love them all. One way: take the complex numbers
together with a 'point at infinity'.

What if we use real numbers instead? In 'real quantum mechanics', the pure states of a 'real qubit' form a circle, also
called RP1. It's the circle containing the real numbers in the above picture, like 0, 1, − 1, along with the point at infinity.

The mixed states of the real qubit form the 2d disk bounded by this circle.

Any 'formally
real Jordan algebra' gives a generalized probabilistic theory. For example: the Jordan algebra of 2 × 2
self-adjoint complex matrices gives the theory of a qubit.

But you could use self-adjoint 2 × 2 real matrices instead, and get the real qubit!

For more, try my gentle introduction to formally real Jordan algebras
and their connection to projective geometry and
quantum mechanics:

Octonionic
projective geometry.

Now I'm writing a paper on Jordan algebras and Noether's theorem,
thinking about these things a bit more deeply and
learning a lot.

June 18, 2020

https://en.wikipedia.org/wiki/Bloch_sphere
https://en.wikipedia.org/wiki/Jordan_algebra#Formally_real_Jordan_algebras
http://math.ucr.edu/home/baez/octonions/node8.html


When you dissolve more and more sodium in ammonia, it changes from
blue to bronze. And it starts conducting
electricity just like a
metal! Electrons and pairs of electrons called 'dielectrons' start
moving freely through the solution.

I love condensed matter physics! I hadn't even known dielectrons were
a thing: normally electrons repel. But in a
sodium-ammonia solution,
electrons pair up with opposite spins. Here's a new simulation of a
dielectron, lasting 2.75
picoseconds:

The wavefunction of a loose electron in ammonia is smeared out over
~12 ammonia molecules, much bigger than one in
water, which spreads
out over ~5 water molecules.

This allows the formation of dielectrons, which are slightly bigger still.

As you add more sodium to ammonia, you get more of these loose
electrons and dielectrons, and gradually a 'conduction

https://science.sciencemag.org/content/368/6495/1086


band' arises —
meaning that if they have the right momentum, these particles can move
freely for long distances, like
electrons in a metal!

I read about this in a new paper:

Tillmann Buttersack, Philip E. Mason, Ryan S. McMullen,
H. Christian Schewe, Tomas Martinek, Krystof
Brezina1, Martin Crhan1,
Axel Gomez, Dennis Hein, Garlef Wartner, Robert Seidel,
Hebatallah Ali, Stephan
Thürmer, Ondrej Marsalek, Bernd
Winter, Stephen E. Bradforth and Pavel Jungwirth, Photoelectron spectra of
alkali metal–ammonia microjets: from blue electrolyte to bronze metal, Science 368 (2020), 1086–1091.

June 21, 2020

Can we understand evil using evolutionary biology, or perhaps game theory?

Psychologists have latched onto 3 personality traits, the 'dark
triad', and tried to measure how much they are genetically
inherited.

How are these traits defined?

https://science.sciencemag.org/content/368/6495/1086
https://science.sciencemag.org/content/368/6495/1086


Narcissism involves grandiosity, pride, and egotism.
Machiavellianism involves coldness, cynicism, and manipulation and
exploitation of others.
Psychopathy involves impulsivity, thrill-seeking, lack of remorse,
and aggressiveness.

But they have much in common. People with any of these traits tend to
be callous, manipulative, dishonest and
disagreeable.

They also tend to be less compassionate, agreeable, empathetic,
satisfied with their lives — and less likely to believe
they and
other people are good.

Psychologists have tried to determine how much these traits are
genetically inherited, by comparing identical vs.
fraternal twins.
(If a trait has a genetic component, it should be shared more often
by identical twins than fraternal twins,
even if these twins are raised
the same way.)

Roughly speaking: psychopathy is 65% inherited, narcissism 60%, but
Machiavellianism just 30%. (Technicaly, these
are h2
figures.)

So, some have tried to develop evolutionary explanations of the dark
triad traits, and why they persist despite their
disadvantages.
(Sub-clinical and clinical psychopaths form about 1% and 0.2% of the
population, respectively; I know
no estimates for the others.)

One theory is these traits are connected to a 'fast life strategy'
with an emphasis on mating over parenting. People with
these traits
tend to have more sexual partners, but are less likely to form stable
relationships. They tend to dress more
attractively. They are also
more likely to commit rape:

Peter K. Jonason, Mary Girgis and Josephine Milne-Holme, The exploitive mating strategy of the dark triad traits:
tests of rape-enabling attitudes, Archives of Sexual Behavior 46 (2017), 697–706.

Dark triad traits are also advantageous in certain situations, called
'dark niches'. Narcissists are known to do well in job
interviews and
first dates. Machiavellianism works well in politics and finance.
Psychopathy works well in street gangs.

https://en.wikipedia.org/wiki/Dark_triad#Origins
https://en.wikipedia.org/wiki/Dark_triad#Origins
https://en.wikipedia.org/wiki/Dark_triad#Origins
https://www.researchgate.net/profile/Peter_Jonason/publication/312870006_The_Exploitive_Mating_Strategy_of_the_Dark_Triad_Traits_Tests_of_Rape-Enabling_Attitudes/links/5c89f0fca6fdcc38175277dc/The-Exploitive-Mating-Strategy-of-the-Dark-Triad-Traits-Tests-of-Rape-Enabling-Attitudes.pdf
https://www.researchgate.net/profile/Peter_Jonason/publication/312870006_The_Exploitive_Mating_Strategy_of_the_Dark_Triad_Traits_Tests_of_Rape-Enabling_Attitudes/links/5c89f0fca6fdcc38175277dc/The-Exploitive-Mating-Strategy-of-the-Dark-Triad-Traits-Tests-of-Rape-Enabling-Attitudes.pdf


Recently a fourth trait has been considered: 'everyday sadism'. For
example, those bullies and internet trolls who enjoy
making people
suffer.

Separating out evil into distinct traits is a challenging job!

But to fight evil, we must understand it!

Here's an easy way to learn more:

Delroy Paulhus, Toward a taxonomy of dark personalities, Current Directions in Psychological Science 23
(2014),
421–426.

Also:

Wikipedia, Dark triad.

June 22, 2020

https://tinyurl.com/taxdark
https://tinyurl.com/taxdark
https://tinyurl.com/taxdark
https://en.wikipedia.org/wiki/Dark_triad


This is the Bridge of Immortals, in Huangshan, in southern Anhui
province. Like a hard theorem in mathematics that
bridges two
fields of mathematics, the view from the top is your reward for the
difficult climb.



June 24, 2020

A Lie
algebra is one of the more scary gadgets one meets as one first starts learning algebra, because the Jacobi identity
looks unfamiliar. But it's secretly the product rule:

[x, [y, z]] = [[x, y], z] + [y, [x, z]]

is like

D(fg) = D(f)g + fD(g)

The easiest way to get a Lie algebra is to take square matrices, with the usual matrix multiplication, and define

[x, y] = xy − yx

Then it's obvious that [x, x] = 0, and the Jacobi identity follows from this 'product rule'

[x, yz] = [x, y]z + y[x, z]

https://en.wikipedia.org/wiki/Lie_algebra


which is easy to check.

The inventors of quantum mechanics noticed that you can treat functions as infinite-sized square matrices, and then the
derivative Df of a function f can be written

Df = [∂, f] = ∂f − f∂

for some matrix ∂, so the usual product rule follows from the product rule for matrices.

So, there's a Lie algebra where functions and the matrix ∂ coexist, and these days it's called the 'Heisenberg
algebra'.
Basically it turns a bunch of calculus into the algebra
of infinite square matrices!

There's an infinite amount to say about this, but I want to talk about
something else. There are also gadgets with
trilinear
operations: operations that need 3 inputs, that are linear in each
input. These are a bit scary at first, since the
most familiar
operations in math just take 2 inputs.

An example is a 'Lie triple system'.

Any Lie algebra gives a Lie triple system if we define [u, v, w] = [[u, v], w] The first rule in the definition of Lie triple
system then follows from the antisymmetry of the Lie bracket, [u, v] = − [u, v]. The second rule is just the Jacobi
identity in disguise. And the third, most complicated rule says each operation [u, v, − ] acts like 'differentiation', since it
obeys a product rule similar to

D(wxy) = D(w)xy + wD(x)y + wxD(y)

Namely:

[u, v, [w, x, y]] = [[u, v, w], x, y] + [w, [u, v, x], y] + [w, x, [u, v, y]]

It's not so hard to remember if you keep this in mind.

But the really interesting Lie triple systems come from Z/2-graded Lie algebras. These are Lie algebras split into an
'even part' g0 and an "odd part" g1 with

[g0, g0] g0

[g0, g1] g1

[g1, g0] g1

[g1, g1] g0

Think "even plus even is even", etc.

In case you know about Lie superalgebras: Z/2-graded Lie algebras are not those! They're just plain old Lie algebras

https://en.wikipedia.org/wiki/Heisenberg_group#Lie_algebra_2
https://en.wikipedia.org/wiki/Triple_system


chopped into an even and odd part obeying the rules above.

These rules imply the bracket of three odd things is odd:

[[g1, g1], g1] g1

So, if we take a Z/2-graded Lie algebra and only keep the odd part g0, it becomes a Lie triple system if we define

[x, y, z] = [[x, y], z]

All this becomes a lot more exciting when you see how Z/2-graded Lie algebras show up in geometry.

If you take a Lie
group, its tangent space at the identity is a Lie algebra. But
more generally, the tangent space at any
point of a 'symmetric space'
is a Lie triple system.

For example, the tangent space at any point of a sphere is a Lie
triple system!

There's a Lie group SO(n) of rotations in n dimensions. Its tangent space at the identity is a Lie algebra called so(n).

SO(n) /SO(n − 1) is an n-sphere, which is a symmetric space.

so(n) /so(n − 1) is the tangent space of the n-sphere at the north pole, which is a Lie triple system!

In other words, we can make so(n) into a Z/2-graded Lie algebra by splitting it into two parts:

even part: the infinitesimal rotations so(n − 1) that fix some point on the n-sphere
odd part: the tangent space of that point on the n-sphere, which looks like so(n) /so(n − 1) Rn.

The odd part is a Lie triple system!

June 25, 2020

https://en.wikipedia.org/wiki/Lie_group
https://en.wikipedia.org/wiki/Symmetric_space


In 2018, three white dwarf stars were seen zipping across the Milky
Way at over 1000 kilometers per second —
thousands of times faster
than a speeding bullet, fast enough to escape the galaxy. It was one of
several clues that we
were wrong about what causes many supernovae.

Type II supernovae happen when a big star collapses. But type Ia
supernovae happen when a white dwarf explodes for
some reason. We
thought most of did this when they stole gas from a red giant
companion. But no!

It now seems most type Ia supernovae happen when two white dwarfs
spiral into each other and nearly collide. This is
called — get ready
for it! — a "dynamically driven double-degenerate double detonation".

Astronomers estimate about half a billion white dwarf binaries have
merged in the Milky Way since its formation! If
one-sixth of these
mergers led to a type Ia supernova, there would be one supernova every
200 years — which is what
we see.

And if type Ia supernovae work differently than we thought, that
affects our understanding of the expansion of the
Universe, since
they're used as a 'standard candle' to measure the distance of faraway
galaxies. Maybe we've got some
things a bit wrong.

https://www.sciencemag.org/news/2020/06/galaxy-s-brightest-explosions-go-nuclear-unexpected-trigger-pairs-dead-stars


For more, read this:

Daniel Clery, The galaxy’s brightest explosions go nuclear with an unexpected trigger: pairs of dead stars,
Science, June 4, 2020.

June 26, 2020

Mathematicians sometimes disagree about arbitrary conventions, like
whether 0 is a natural number.

Luckily we have ways of settling these disputes.

June 27, 2020

https://www.sciencemag.org/news/2020/06/galaxy-s-brightest-explosions-go-nuclear-unexpected-trigger-pairs-dead-stars


Tired of nothing burgers? Try Keith Peterson's new nothing burger burger!
It's twice as satisfying, and still vegetarian.

Or if that's not enough for you, try the nothing burger and nothing
burger burger burger.

No matter how hungry you are, ZFC has a burger for you.

June 28, 2020

https://twitter.com/KeithEPeterson_/status/1276967993088413696
https://twitter.com/KeithEPeterson_/status/1276967993088413696


Jordan algebras are fascinating to me — but annoying. The usual
definition uses the 'Jordan identity', which looks
completely random.
With help from David Madore, I found an equivalent definition that says
more about what's good
about Jordan algebras.

While they're weird, Jordan algebras come from physics. Jordan
invented his algebras to study quantum mechanics.

In quantum mechanics, self-adjoint n × n complex matrices are 'observables'. The product of observables is not an
observable but

x y = (xy + yx) /2

is, and this gives a Jordan algebra.

There's also a Jordan algebra of self-adjoint n × n real matrices, which works the same way. And there's also a Jordan
algebra of self-adjoint n × n quaternionic matrices! So, we can compare real and quaternionic quantum mechanics to
ordinary complex quantum mechanics using Jordan algebras.

Working with Wigner and von Neumann, Jordan discovered a weirder fact. Self-adjoint n × n octonionic matrices form
a Jordan algebra... but only for n ≤ 3.

The Jordan algebra of self-adjoint 2 × 2 octonionic matrices is 10-dimensional and connected to superstring theory.

The Jordan algebra of self-adjoint 3 × 3 octonionic matrices is 27-dimensional. It's called the 'Albert algebra' or
'exceptional Jordan algebra'. Its connection to physics, if any, remains quite obscure. I've been puzzling over this for
years.

But in math, the exceptional Jordan algebra is great! Let me tell you
just one reason why.

There's a systematic way to get three Lie algebras from a Jordan algebra:
a little one, a medium-sized one and a big one.
See the intro here
for details:

Jakov Palmkvist, A
generalization of the Kantor–Koecher–Tits construction.

If you apply this construction to the Jordan algebra of 2 × 2 self-adjoint complex matrices, you get the Lie algebras of
these three groups:

1. the group of rotations in 3d space
2. the Lorentz group of 4d Minkowski spacetime
3. the group of conformal transformations of 4d Minkowski spacetime.

https://arxiv.org/abs/1308.3761


Applying the same construction to the Jordan algebra of 2 × 2 self-adjoint octonionic matrices, you get the Lie algebras
of these groups:

the group of rotations in 9d space
the Lorentz group of 10d Minkowski spacetime
the group of conformal transformations of 10d Minkowski spacetime.

Then for the really exciting case: applying this construction to the Jordan algebra of 3 × 3 self-adjoint octonionic
matrices, you get the Lie algebras of these groups:

the exceptional group F4
the exceptional group E6
the exceptional group E7.

There are five exceptional simple Lie groups, and here we get three.
(More precisely we get certain real forms of these
groups.)

Where is this going? Nobody knows yet. Jordan started by trying to
understand and generalize quantum mechanics. But
his algebras are
also connected to the geometry of spacetime, and generalizations of
that!

These mathematical ideas springing from physics could be clues leading
us to better theories. Or, they could be leading
us to dead
ends. By now, I doubt I'll ever know.

The world offers us many mysteries; only a few will be solved during
our lifetime.

To avoid frustration with cosmic questions I spend most of my time
trying to solve little puzzles, like:

How exactly do Jordan algebras generalize quantum mechanics? What
makes complex quantum mechanics 'better' than
the real or quaternionic
versions? Etc.

Tomorrow I'll have a new paper on the arXiv:

Getting to the bottom of Noether's theorem.

It wound up being largely about Jordan algebras! It has very little
new math — but it has a new physical interpretation
of some of
this math, which leads to some new insights and also new questions.

Meanwhile COVID-19 continues to spiral out of control in many US states:

For my July 2020 diary, go here.

© 2020 John Baez 
baez@math.removethis.ucr.andthis.edu

home

file:///D/My%20Website/noether_theorem.pdf
file:///D/My%20Website/noether_theorem.pdf
file:///D/My%20Website/README.html




For my June 2020 diary, go here.

Diary — July 2020

John Baez

July 1, 2020

In this wonderful illusion by Akiyoshi Kitaoka the black
hole appears to expand, though it does not.

This heart seems to shift, especially if you move your head a little:

Processing math: 73%

https://twitter.com/AkiyoshiKitaoka/status/1264568591053017088
https://twitter.com/AkiyoshiKitaoka


July 2, 2020

I just learned a shocking theorem!

A bounded operator N on a Hilbert space is normal iff NN = N N. Putnam's theorem says that if M and N are
normal and

MT = TN

for some bounded operator T, then

M T = TN

It's shocking because it's all just equations but you can't prove it just by fiddling around with equations. Rosenblum gave
a nice proof. First note that MT = TN implies

MnT = TNn

for all n. Then use power series to show

ecMT = TecN

for all complex c, so

cM −cN

https://twitter.com/AkiyoshiKitaoka/status/1269186795943559170
https://en.wikipedia.org/wiki/Fuglede%27s_theorem#Putnam's_generalization


e Te = T ( † )

Then the magic starts. Let

F(z) = ezM Te− zN

for complex z. If we can show this is constant we're done, since differentiating with respect to z and setting z = 0 gives

M T − TN = 0

which shows M T = TN .

But how can we show it's constant?

Well, 'obviously' we use Liouville's theorem: a bounded analytic
function is constant. This is true even for analytic
functions taking
values in the space of bounded linear operators!

Now

F(z) = ezM Te− zN

is clearly analytic — but why is it bounded as a function of z?

We fiendishly note that

F(z) = ezM Te− zN

= ezM e− z MTez Ne− zN

since e− z MTez N = T by ( † ). We then get

F(z) = ezM− ( zM ) Tez N− ( z N )

since M commutes with M  and N commutes with N .

But zM − (zM)  and z N − (z N)  are skew-adjoint: that is, minus their own adjoint. So when you exponentiate
them you get unitary operators, which have norm 1! So

‖F(z)‖ ≤ ‖T‖

so F(z) is bounded analytic and we're done.



July 3, 2020

In the Standard Model, the symmetry group of the forces other than gravity is SU(3) × SU(2) × U(1): SU(3) for the
strong force and SU(2) × U(1) for weak and electromagnetic forces combined.

Why this group? Can we derive it from beautiful math?

Yes! But I don't know if it helps.

First, the true symmetry group is not SU(3) × SU(2) × U(1), it's S(U(3) × U(2)): the group of 5 × 5 unitary matrices
with determinant 1 that are block diagonal with a 3 × 3 block and a 2 × 2 block.

This group is SU(3) × SU(2) × U(1) mod a certain Z6 subgroup, and it explains why quarks have charges 2/3 and −1/3
. For details, try Section 5 here:

John Baez and John Huerta, The algebra of grand unified theories, Bull. Amer. Math. Soc. 47 (2010), 483–552.

So how can we get S(U(3) × U(2)) to fall out of beautiful pure math?

Take the Jordan algebra of 3 × 3 self-adjoint octonionic matrices. Take the group of automorphisms that preserve a copy
of the 2 × 2 self-adjoint complex matrices sitting inside it. It's S(U(3) × U(2)).

This is intriguing because we know the Jordan algebras that can describe observables in finite quantum systems. They
come in 4 infinite families, the most famous being the n × n self-adjoint complex matrices.

Then there's one exception: 3 × 3 self-adjoint octonionic matrices! This is called the 'exceptional Jordan algebra'.

The 2 × 2 self-adjoint complex matrices are observables for a 'qubit'. They sit inside the 3 × 3 self-adjoint octonionic
matrices in many ways. The symmetries of this larger Jordan algebra that map the smaller one to itself are the
symmetries of the Standard Model!

This was discovered by Michel Dubois-Violette and Ivan Todorov in
2018, and I explained it here:

Exceptional
quantum geometry and the Standard Model, August 27, 2018.

But it's a long way from an observation like this to a theory of
particle physics! It could even be a red herring. We don't
know.
It's frustrating.

Here's a new paper that tries to go further:

Latham Boyle, The
Standard Model, the exceptional Jordan algebra, and triality.

It's not the answer to all our questions... but I'm glad to see
someone gnawing on this bone.

July 4, 2020

https://arxiv.org/abs/0904.1556
https://golem.ph.utexas.edu/category/2018/08/exceptional_quantum_geometry_a.html
https://arxiv.org/abs/2006.16265


This is a fun article:

Sam Sweet,
A dangerous and evil piano piece, The New Yorker,
September 9, 2013.

Here are some excerpts that give the flavor:

Though Erik Satieâ€™s "Vexations" (1893) consisted of only a half sheet
of notation, its recital had
previously been deemed impossible, as the
French composer had suggested at the top of his original
manuscript
that the motif be repeated eight hundred and forty times.

Even before repetition, the piano line is unnerving: mild but
menacing, exquisite but skewed, modest but
exacting. Above the music,
Satie included an author's note, as much a warning as direction: â€œIt
would be
advisable to prepare oneself beforehand...."

The American composer John Cage was the first to insist that staging
"Vexations" was not only possible but
essential. No one knew what
exactly would occur, which is part of what enticed Cage, who had a
lust for
unknown outcomes.

The performance commenced at 6 P.M. that Monday and continued to the
following dayâ€™s lunch hour.
To complete the full eight hundred and
forty repetitions of "Vexations" took eighteen hours and forty
minutes.

The New York Times sent its own relay team of critics to cover the
event in its entirety... In the aftermath,
some onlookers were
bemused; others were agitated. Cage was elated. "I had changed and the
world had
changed," he later said.

In the years that followed its début, "Vexations" outgrew its
status as a curiosity. It became a rite of
passage. As performances
flourished, its legend intensified... Recitals were part endurance
trial, part vision
quest.

Even after hundreds of repetitions, players are forced to sight-read
from the beginning, as if learning for the
first time. Witnesses have
reported a similar effect. Listeners that subject themselves to the
unnerving
melody for several hours still find themselves incapable of
humming it.

Those who sit for all eight hundred and forty repetitions tend to
agree on a common sequence of reactive
stages: fascination morphs into
agitation, which gradually morphs into all-encompassing agony. But
listeners who withstand that phase enter a state of deep tranquility.

An Australian pianist named Peter Evans abandoned a 1970 solo
performance after five hundred and
ninety-five repetitions because he
claimed he was being overtaken by evil thoughts and noticed strange
creatures emerging from the sheet music.

Igor Levit did a live-streamed performance of "Vexations"; a small
portion is here:

https://www.newyorker.com/culture/culture-desk/a-dangerous-and-evil-piano-piece


July 5, 2020

Roughly speaking, Tarski proved that truth within a system of math
can't be defined within that system. Why not? If it
could, you could
create a statement in that system that means "this statement isn't
true".

But there are some loopholes you should know about.

For one, you can define truth within some system of math using a more
powerful system. Tarski actually constructed an
infinite hierarchy of
systems, each more powerful than the ones before, where truth in each
system could be defined in
all the more powerful ones!

But you can also do this: within Peano arithmetic, you can define truth for sentences that have at most n quantifiers!

Sorta like: "Nobody can give you all the money you might ask for, but for any n someone can give you up to n dollars."

This shocked me at first. Michael Weiss explained it to me on his blog.

Michael Weiss, Non-standard models of arithmetic 13, Diagonal Argument, September 22, 2019.

Skip down to where I say "let me think about this a while as I catch
my breath."

https://diagonalargument.com/2019/09/22/non-standard-models-of-arithmetic-7/


The reason there's no paradox is that when you try to build the
sentence that says "this sentence is false", it has one more
quantifier. But Michael explains how you can define truth for sentences with at most n quantifiers. It's an inductive
construction, based on ideas of Tarski's. For more on his ideas, go here:

Stanford Encyclopedia of Philosophy,
Tarski's
truth definitions.

I think the moral is that while you can define mathematical truth
in stages, you can never finish.

July 11, 2020

A 'Riemannian
manifold' is, roughly speaking, a space in which we can measure
lengths and angles. The most
symmetrical of these are called 'symmetric
spaces'. In 2 dimensions there are 3 kinds, but in higher
dimensions there are
more.

An 'isometry' of a Riemannian manifold M is a one-one and onto function f : M → M that preserves distances (and thus,
it turns out, angles). Isometries form a group. You should think of this as the group of symmetries of M.

For M to be very symmetrical, we want this group to be big.

The group of isometries of a Riemannian manifold is a manifold in its
own right! So it has a dimension.

For example the isometry group of the plane, sphere or hyperbolic
plane is 3-dimensional. This is biggest possible for
the isometry
group of a 2d Riemannian manifold!

For an n-dimensional Riemannian manifold, how big can the dimension of its isometry group be? It turns out the
maximum is n(n + 1)/2. And this happens in just 3 cases:

n-dimensional Euclidean space,
the n-dimensional sphere, and
n-dimensional hyperbolic space.

So, whatever definition of 'highly symmetrical Riemannian manifold' we
choose, these 3 cases deserve to be included.
(And maybe others if we allow disconnected manifolds, or non-simply connected ones — but
we usually don't, in this
game.)

Another great bunch of examples come from 'Lie groups': manifolds
that are also groups, such that multiplication is a
smooth map.

The best Lie groups are the 'compact' ones.
These can be made into Riemannian manifolds in such a way that both
left
and right multiplication by any element is an isometry!

https://plato.stanford.edu/entries/tarski-truth/
https://en.wikipedia.org/wiki/Riemannian_manifold
https://en.wikipedia.org/wiki/Symmetric_space
https://en.wikipedia.org/wiki/Isometry
https://en.wikipedia.org/wiki/Lie_group
https://en.wikipedia.org/wiki/Compact_space


We can completely classify compact Lie groups, and study them endlessly.

So, any decent definition of 'symmetric space' should include Euclidean spaces, spheres, hyperbolic spaces and compact
Lie groups — like the rotation groups SO(n), or the unitary groups U(n). And there's a very nice definition that includes
all these — and more!

A Riemannian manifold M is a symmetric space if it's connected and for each point x there's an isometry f : M → M
called "reflection through x" that maps x to itself and reverses the direction of any tangent vector at x:

f(x) = x

and

dfx = − 1

For example, take Euclidean space. For any point x, reflection through x maps each point x + v to x − v. So it maps x to
itself, and reverses directions!

To understand symmetric spaces better, it's good to draw or mentally visualize 'reflection around x' for a sphere.

We can completely classify compact symmetric spaces — and
spend the rest of our lives happily studying them. Besides
the
compact Lie groups, there are 7 infinite families and 12 exceptions,
which are all connected to the octonions:

Wikipedia, Symmetric space: classification result.

Symmetric spaces are great if you like geometry, because here's an
almost equivalent definition: they are the
Riemannian manifolds whose
curvature tensor is preserved by parallel translation!

(Some fine print is required for a complete match of definitions.)

Symmetric space are also great if you like algebra! Just as Lie groups can be studied using Lie algebras, symmetric
spaces can be studied using 'Z/2-graded Lie algebras', or equivalently 'Lie triple systems'. I explained that approach here
on June
24th.

Even better, the 7 + 3 = 10 infinite series of compact symmetric spaces (the seven I mentioned plus the three infinite
series of compact Lie groups) are fundamental in condensed matter physics! They appear in the something called the
'10-fold way', which classifies states of matter:

The tenfold way.

So, our search for the most symmetrical spaces leads us to a
meeting-ground of algebra and geometry that generalizes
the theory of
Lie groups and Lie algebras and has surprising applications to
physics! What more could you want?

Oh yeah, you might want to learn this stuff.

Wikipedia is good if you have the math background for it:

Wikipedia, Symmetric
space.

These notes are nice, and they have lots of examples:

J.-H. Eschenburg, Lecture
notes on symmetric spaces.

Then try Sigurdur Helgason's Differential Geometry, Lie Groups and
Symmetric Spaces — I learned Lie groups from
him, and this
book of his, when I was a grad student at MIT.

https://en.wikipedia.org/wiki/Symmetric_space#Classification_result
http://math.ucr.edu/home/baez/diary/june_2020.html#june_24
file:///D/My%20Website/tenfold.html
https://en.wikipedia.org/wiki/Symmetric_space
http://myweb.rz.uni-augsburg.de/~eschenbu/symspace.pdf


Finally, to really sink into the glorious details of symmetric spaces,
I recommend Arthur Besse's Einstein Manifolds.
Besse is a
relative of the famous Nicolas Bourbaki. His book has lots of great
tables. It's lots of fun to browse!

July 12, 2020

A topos is a universe in which you can do mathematics, with its own
internal logic, which may differ from classical
logic.

On the category theory mailing list, Vaughan Pratt once doubted that
anyone could really think using this internal logic,
calling
this locker-room boasting.

Steve Vickers replied as follows:

Here's my very quick intro to topos theory:

Topos
theory in a nutshell.

Here's the full exchange between Pratt and Vickers, which adds useful
detail:

Learning to love topos theory.

July 14, 2020

Duality is a big theme in mathematics. Triality is more exotic. Any
vector space has a dual. But a triality can happen
only in certain
special dimensions!

http://math.ucr.edu/home/baez/topos.html
https://golem.ph.utexas.edu/category/2008/03/learning_to_love_topos_theory.html


For example, take all three vector spaces to be C, the complex numbers, and define t(v1, v2, v3) = Re(v1v2v3). This is a
triality!

The same trick works if we start with the real numbers, the
quaternions, or the octonions.

But wait! The octonions aren't associative! So what do I mean by Re(v1v2v3) then? Well, luckily

Re((v1v2)v3) = Re(v1(v2v3))

even when v1, v2, v3 are octonions. The proof that finite-dimensional trialities can happen only in dimensions 1,2,4 or 8
is quite deep. It's easy to show any triality gives a 'division algebra', and I explain that here:

Spinors and
trialities.

But then we need to use a hard topological theorem! It's pretty easy to show that if there's an n-dimensional division
algebra, the (n − 1)-sphere is 'parallelizable': we can find n − 1 continuous vector fields on this sphere that are linearly
independent at each point.

In 1958, Kervaire, Milnor and Bott showed this only happens when n = 1, 2, 4, or 8.

So, trialities are rare. But once you have one, you can do lots of stuff.

Even better, the 'magic square' lets you take two trialities and build a Lie algebra. If you take them both to be the
octonions, you get E8.

Details here:

The magic
square.

http://math.ucr.edu/home/baez/octonions/node7.html
http://math.ucr.edu/home/baez/octonions/node16.html


And what's better than two trialities? Well, duh — three!!!

Starting from three trialities — but not just any three —
you can build a theory of supergravity. This gives the 'magic
pyramid
of supergravities':

For more, read this:

A. Anastasiou, L. Borsten, M. J. Duff, L. J. Hughes and S. Nagy,
A magic pyramid of
supergravities.

I don't understand the magic pyramid of supergravities yet, but I'm
hoping to learn about it from Mia Hughes' thesis:

Mia Hughes, Octonions and
supergravity, Ph.D. Thesis, Imperial College London, 2016.

She explains everything in a systematic way that I really dig.

July 15, 2020

Catriona Shearer creates great geometry puzzles. Here's one:

Five congruent rectangles. Whatâ€™s the angle? 

We can solve this in two ways. First, the rectangles must be twice as long as they are wide, so if we chop the mystery
angle into two parts as below, we see it's

arctan2 + arctan3.

https://arxiv.org/abs/1312.6523
https://spiral.imperial.ac.uk/handle/10044/1/34938
https://twitter.com/Cshearer41/status/1283303940361158656


But Vincent Pantaloni chopped the mystery angle into two parts a different way, which makes it clear the angle is

π
2 +

π
4 =

3π
4 .

Equating these results, we get

arctan2 + arctan3 =
3π
4 .

But arctan(1) = π /4, so we get

arctan1 + arctan2 + arctan3 = π.

This is nice because arctan2 and arctan3 aren't rational multiples of π; they're sort of complicated. For example

arctan2 =
π
2 −

∞

∑
n=0

( − 1)n

22n+1(2n + 1)
.

Someone pointed out another way to show that

arctan1 + arctan2 + arctan3 = π.

It follows straightaway from

(1 + i)(1 + 2i)(1 + 3i) = − 10

since angles in the complex plane add when we multiply complex numbers, and −10 is at an angle π  from the positive x
axis.

July 16, 2020



Take a sphere and set it on the plane. You can match up almost every
point on the sphere with one on the plane, by
drawing lines through
the north pole.

There's just one exception: the north pole itself! So, the sphere is
like a plane with one extra point added.

The interesting thing about this trick is that angles on the plane
equal angles on the sphere!

So if you use this trick to draw a map of the Earth, distances get
messed up but angles are preserved at each point.
Antarctica would
stretch on forever:



Some useful jargon: an angle-preserving mapping is called 'conformal'.

Mathematicians often call the plane 'the complex numbers', where a point (x, y) is written as the number x + iy. Then
the sphere is called the 'Riemann sphere': the complex numbers plus one extra point, called ∞. It lets us think of infinity
as a number!

And here's a wonderful thing: any differentiable function from the
complex numbers to the complex numbers preserves
angles — except where
its derivative is zero. So it's a conformal mapping!

The Riemann sphere is not some abstract thing, either. It's the sky! More precisely, if you're in outer space and can look
in every direction, the 'celestial sphere' you see is the Riemann sphere.



Now suppose you're moving near the speed of light. Thanks to special
relativity effects, the constellations will look
warped. But all
the angles will be the same. Your view will be changed by a
conformal transformation of the Riemann
sphere!

A math book may summarize all this as follows:

SO0(3, 1) PSL(2, C).

In other words: the group of Lorentz transformations is isomorphic to the group of conformal transformations of the
Riemann sphere!

So: when reading math, it's often your job to bring it to life.

July 18, 2020

There's a lot of depressing news these days. Pictures of animals help
me stay happy. Here are some of my faves.
First:
an insanely cute Cuban flower bat, Phyllonycteris poeyi, photographed by Merlin Tuttle.

https://en.wikipedia.org/wiki/Cuban_flower_bat
https://en.wikipedia.org/wiki/Cuban_flower_bat


Second: a devilishly handsome Dracula parrot, Psittrichas
fulgidus, photographed by Ondrej Prosicky. It lives in New
Guinea. It subsists almost entirely on figs. It's also called
Pesquet's parrot.

Third: the aptly named 'elegant sea snake', Hydrophis
elegans.

It's elegant, but it's poisonous.

https://en.wikipedia.org/wiki/Pesquet%27s_parrot
https://en.wikipedia.org/wiki/Hydrophis_elegans


Fourth, a kitten of a Canada lynx, Lynx canadensis.

July 20, 2020

https://en.wikipedia.org/wiki/Canada_lynx


The beauty of quaternion multiplication is that it combines all ways of multiplying scalars and vectors in a single
package, with a concept of absolute value that obeys | ab | = | a | | b | .

Last week I realized that octonion multiplication works almost the
same way — but with complex scalars and vectors!

An octonion combines a complex number (or 'scalar') and a complex vector in a single package. You multiply them like
quaternions, but with some complex conjugation sprinkled in. We need that to get | ab | = | a | | b |  for octonions.

I figured out this formula for octonion multiplication when trying to explain the connection between octonions and the
group SU(3), which governs the strong nuclear force. You can see details here:

Octonions and the Standard Model (part 1).

The octonions are to SU(3) as the quaternions are to SO(3)! The ordinary dot and cross product are invariant under
rotations, SO(3), so the automorphism group of the quaternions is SO(3). For octonions we use complex vectors, and
dot and cross products adjusted to be invariant under SU(3), so the group of octonion automorphisms fixing i is SU(3).

July 22, 2020

https://golem.ph.utexas.edu/category/2020/07/octonions_and_the_standard_mod.html


In geometry and topology dimensions 0-4 tend to hog the limelight because each one is so radically different than the
ones before, and so much amazing stuff happens in these 'low dimensions'. I don't know enough about dimensions 5-7,
but... the even part Cliff0(n) of the Clifford algebra generated by n anticommuting square roots of −1 follows a cute
pattern for n =5,6,7:

Cliff0(5) = H[2]   (2×2 quaternionic matrices)
Cliff0(6) = C[4]   (4×4 complex matrices)
Cliff0(7) = R[8]   (8×8 real matrices)

See it? The dimension of Cliff0(n + 1) is always twice that of Cliff0(n). But for n = 5,6,7 this happens by making
square matrices that are twice as big — so, with 4 times as many entries — having entries in a division algebra whose
dimension is half as big:

H[2], C[4], R[8].

The obvious representations of these matrix algebras are called 'real spinor representations'. So:

in 5d space, real spinors are elements of H2

in 6d space, they're elements of C4

in 7d space, they're elements of R8

Notice: R8, C4, and H2 are very similar things!

Real spinors in dimensions 5,6,7 form an 8-dimensional real vector space with extra structure — and more structure as
the
dimension goes down:

In 7d it's just a real vector space.
In 6d it's a complex vector space.
In 5d it's a 'quaternionic vector space'.

This has nice spinoffs! The double cover of the rotation group SO(n) is called the 'spin group' Spin(n).
We can show:

Spin(6) = SU(4) consists of 4×4 unitary complex matrices with determinant 1.
Spin(5) = Sp(2) consists of 2×2 unitary quaternionic matrices.

All this sets up a lot cross-talk between geometry and topology in
dimensions 5, 6, 7... and, yes, 8, where the octonions
become
important! 'Calabi-Yau manifolds' are part of this story.

I explain this in a lot more detail in week195 of This
Week's Finds:

https://en.wikipedia.org/wiki/Spin_group
http://math.ucr.edu/home/baez/week195.html


July 25, 2020

The 3-sphere S3 can be seen as R3 plus a point at infinity. But here London Tsai shows the 'Hopf fibration': S3 as a
bundle of circles over the 2-sphere. Each point in S3 lies on one circle. The set of all these circles forms a 2-sphere.

S3 is an S1 bundle over S2.

But the 3-sphere S3 is also a group! It's called SU(2): the group of 2 × 2 unitary matrices with determinant 1.

So we can see the group SU(2) as an S1 bundle over S2. But in fact we can build many groups from spheres.

Let's try SU(3). This acts on the unit sphere in C3. C3 is 6-dimensional as a real space, so this sphere has dimension one
5



less: it's S . Take your favorite point in here; each element of SU(3) maps it to some other point. Using this we can see 
SU(3) is a bundle over S5.

Many elements of SU(3) map your favorite point in S5 to the same other point. What are they like? They form a copy of
SU(2), the subgroup of SU(3) that leaves some unit vector in C3 fixed.

So SU(3) is an SU(2) bundle over S5.

But SU(2) is itself a sphere, S3. So SU(3) is an S3 bundle over S5.

In other words, you can slice SU(3) into a bunch of 3-spheres, one for each point on the 5-sphere. It's kind of like a
higher-dimensional version of the Hopf fibration shown above.

How about SU(4), the 4 × 4 unitary matrices with determinant 1? We can copy everything we just did: this group acts
on C4 so it acts on the unit sphere in there, which is S7. The elements mapping your favorite point to some other form a
copy of SU(3).

So, SU(4) is an SU(3) bundle over S7.

Note: we've seen that SU(4) is an SU(3) bundle over S7, while SU(3) is an S3 bundle over S5.

So SU(4) is a S3 bundle over an S5 bundle over S7.

Maybe you see the pattern now. We can build the groups SU(n) as 'iterated sphere bundles'.

For example, SU(5) is an S3 bundle over an S5 bundle over an S7 bundle over S9.

As a check, you can compute the dimension of SU(5) in some other way and show that yes, indeed

dim(SU(5)) = 3 + 5 + 7 + 9

Even better, the group U(5) of all unitary 5 × 5 matrices is an S1 bundle over an S^3 bundle over an S^5 bundle over an
S^7 bundle over S^9. The S^1 here comes from the choice of determinant.

So: \dim(U(5)) = 1 + 3 + 5 + 7 + 9 = 5^2 and this pattern works in general.

It's easy to see that the sum of the first n odd numbers is n^2. But we've found a subtler incarnation of the same fact!
We've built \mathrm{U}(n) out of the first n odd-dimensional spheres, as an iterated bundle.



image by Vincent Pantaloni

Puzzle. Can you describe \mathrm{O}(n), the group of orthogonal n \times n matrices, as an iterated sphere bundle in a
similar way?

July 26, 2020

The matter you see is made of up and down quarks, electrons... and
then there are electron neutrinos, hard to see. These
are the 'first
generation' of quarks and leptons.

There are three generations, each with 2 quarks and 2 leptons. Why
this pattern?

Short answer: nobody knows.

https://www.geogebra.org/m/d4xqqgds
https://www.geogebra.org/m/d4xqqgds


But we know some stuff.

To get a consistent theory of physics, we need 'anomaly cancellation'.
If one generation had just one quark, or a lepton
with the wrong
charge — and everything else the same — the laws of
physics wouldn't work!

Some 'grand unified theories' fit the observed pattern of quarks and leptons quite beautifully. For example, in the
\mathrm{Spin}(10) theory all the quarks and leptons in each generation, and their antiparticles, fit into a neat package:
an 'irreducible representation' of this group. This theory forces there to be a quark of electric charge +2/3, a quark of
charge -1/3, a lepton of charge 0 and a lepton of charge -1 in each generation — which is exactly what we see!

But this theory predicts that protons decay, which we haven't seen (yet?).

A more quirky line of attack, much less well developed, uses octonions. The octonions contain lots of square roots of -1.
If you pick one and call it i, the octonions start looking like a quark and a lepton! But only as far as the strong force is
concerned.

The strong force has symmetry group \mathrm{SU}(3). Each quark comes in three 'colors': red, green and blue. This is
just a colorful way of saying the quark's quantum states, as far as the strong force is concerned, transform according to
the usual representation of \mathrm{SU}(3) on \mathbb{C}^3.

Each lepton, on the other hand, is 'white'. It doesn't feel the strong force at all. As far as the strong force is concerned, its
quantum states transform according to the trivial representation of \mathrm{SU}(3) on \mathbb{C}.

What does all this have to do with octonions?

Choosing a square root of -1 in the octonions and calling it i makes them into a complex vector space. The group of
symmetries of the octonions that preserve i is \mathrm{SU}(3). As a representation of SU(3), the octonions are
\mathbb{C} \oplus \mathbb{C}^3. Just right for a quark and a lepton!

This is not a theory of physics; this is just a small mathematical
observation. It could be a clue. It could also be a
coincidence.
But it's kind of cute.

To give a clear proof of this fact, I came up with a new construction
of the octonions using complex numbers:

Octonions and the Standard Model (part 2).

Then I used that here to get the job done:

Octonions and the Standard Model (part 3)

So, read those if you're curious about this stuff!

July 28, 2020

https://golem.ph.utexas.edu/category/2020/07/octonions_and_the_standard_mod_1.html
https://golem.ph.utexas.edu/category/2020/07/octonions_and_the_standard_mod_2.html


A permutation \sigma \colon \{1,\dots,n\} \to \{1,...,n\} is alternating if \sigma(1) < \sigma(2) > \sigma(3) < \sigma(4)
> \cdots The number of alternating permutations of \{1,\dots,n\} is called the nth zigzag number, A_n. For example, the
picture above shows A_5 = 16.

The nth zigzag number equals the nth coefficient of the Taylor series of \sec x or \tan x, depending on whether n is even
or odd. This remarkable fact is called André's theorem.
You can see one proof here.

Since \sec x is an even function while \tan x is odd, we can summarize André's theorem by saying \sum_{n = 0}^\infty
\frac{A_n}{n!} x^n = \sec x + \tan x

Nice! Trig meets zig.

But here's the weird thing. Take an alternating permutation of \{1,\dots,n\} and count the triples i < j < k with \sigma(i)
< \sigma(j) < \sigma(k). The maximum possible value of this count is 0 when n<4, but then it goes like this: 2, 4, 12, 20,
38, 56, 88, \dots Can you spot these numbers in the periodic table?

Yes! These numbers, starting with 4, equal the number of electrons in
the alkali earth elements: beryllium, magnesium,
calcium, strontium,
barium, radium,....

Coincidence? No! I don't understand it yet, but it's explained in
the new issue of the Notices of the American

https://en.wikipedia.org/wiki/Alternating_permutation
https://en.wikipedia.org/wiki/Alternating_permutation#Andr%C3%A9's_theorem


Mathematical Society
— which like any good professional notices, are free to all:

Lara Pudwell, From permutation patterns to the periodic table, Notices of the American Mathematical Society 67
(2020), 994–1001.

July 30, 2020

One job of mathematicians is to shield the rest of the human race from
insanity by discovering paradoxes and figuring
out how to deal with
them before anyone else even notices.

July 31, 2020

One of the great things about category theory is how it "eats its own
tail". Concepts become so general they subsume
themselves!

Let me explain with an example: every Grothendieck topos is equivalent
to a category of sheaves on itself.

What do all these words mean?

The story starts with complex analysis. Liouville's
theorem says every bounded analytic function on the whole complex
plane is constant. It follows that every analytic function defined on
the whole Riemann sphere is constant.

https://ams.org/journals/notices/202007/rnoti-p994.pdf
https://en.wikipedia.org/wiki/Liouville%27s_theorem_(complex_analysis)


The interesting analytic functions on the Riemann sphere are
just partially defined: for example, they may have poles at
certain
points. So we need a rigorous formalism to work with partially
defined functions.

That's one reason we need sheaves.

There's a 'sheaf' of analytic functions on the Riemann sphere. Call it \mathcal{O}. For any open subset U of the sphere,
\mathcal{O}(U) is the set of all analytic functions defined on U.

Note if V \subseteq U we can restrict analytic functions from U to V, so we get a map \mathcal{O}(U) \to \mathcal{O}
(V).

Even better, we can tell if a function is analytic on an open set U by looking to see if it's analytic on a bunch of open
subsets U_i that cover U. This says that being analytic is a 'local' property.

Technically: if we have a open set U covered by open subsets U_i and analytic functions f_i on the sets U_i that agree
when restricted to their intersections U_i \cap U_j, there's a unique analytic function on all of U that restricts to each of
these f_i. This is a mouthful, but this is the sheaf
condition: the key idea in the definition of a sheaf.

If you understand this example — the sheaf of analytic functions
on the Riemann sphere — you can understand the
definition of a sheaf
on a topological space.

Roughly: for a topological space X, a 'sheaf' S gives you a set S(U) for any open U \subseteq X. There's a 'restriction'
map S(U) \to S(V) whenever V \subseteq U is a smaller open set. And a couple of conditions hold — most notably the
sheaf condition!

So, sheaves give a rigorous way to study partially defined functions
— and more interesting partially defined things —
on a
topological space. They let us work 'locally' with these entities.

All this was known by the late 1950s. Then Grothendieck came along....

https://en.wikipedia.org/wiki/Sheaf_(mathematics)


He noticed the open sets of a topological space are the objects of a
category. And he showed you could define sheaves
on other categories,
too!

But to do this you need to choose a 'coverage' (or 'Grothendieck
topology') for your category, which says what it means
for a bunch
of objects to cover another object.

A category with a coverage is called a 'site'. He figured out how to
define sheaves on any site. This lets you do
math
locally... but where the concept of 'location' is no
longer an open set, but an object in a category!

The category of all sheaves on a site is called a 'Grothendieck
topos'. An example would be the category of all sheaves
on the
Riemann sphere. Or even simpler: the category of all sheaves on a
point! This is just the category of sets.

Grothendieck invented this stuff to help prove some conjectures in
algebraic geometry. But Grothendieck topoi took on
a life of their
own — and in fact, they 'eat their own tail', like the mythical ouroboros.

Notice that categories are showing up in two ways so far:

A site is a category with a coverage.
A Grothendieck topos is also a category: the category of all sheaves on a site.

So any category theorist worth their salt will wonder: could you make
a Grothendieck topos into a site?

And the answer is yes! Any Grothendieck topos T has a god-given coverage making it into a site... and the category of
sheaves on this site is equivalent to T itself.

So it's equivalent to the category of sheaves on itself!

For details go here:

nLab, Canonical
topology.

For my August 2020 diary, go here.

© 2020 John Baez 
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