
Categorifying Fundamental Physics
John Baez

Despite the incredible progress over most of the 20th century, and a
continuing flow of new observational discoveries — neutrino oscillations,
dark matter, dark energy, and evidence for inflation — theoretical research in
fundamental physics seems to be in a ‘stuck’ phase. So, now more than ever,
it seems important to re-examine basic assumptions and seek fundamentally
new ideas.

Work along these lines is inherently risky: many different directions must
be explored, since while few will lead to important new insights, it is hard to
know in advance which these will be. For this reason, I have ceased for now
to work on loop quantum gravity, and begun to rethink basic mathematical
structures in physics. The unifying idea behind this multi-pronged project is
‘categorification’, or in simple terms: giving up the naive concept of equality.

While equations play an utterly fundamental role in physics, and this
is unlikely to change, equations between elements of a set often arise as a
shorthand for something deeper: isomorphisms between objects in a cate-
gory. For example, the equation 1 + 2 = 2 + 1 summarizes the isomorphism
between the sets X ∪Y and Y ∪X, where X has 1 elements and Y has 2. In
physics, such isomorphisms are closely related to the passage of time. For
example, we can demonstrate that 1 + 2 = 2 + 1 by switching two sets of
particles:

If we think of this as a physical process, the isomorphism between the initial
set X ∪ Y and the final set Y ∪X consists of the worldlines traced out by
the particles with the passage of time.

In topology, a diagram as above is called a ‘braid’, and a category that
allows isomorphisms of this type is called a ‘braided monoidal category’.
Quite generally, sets with commutative operations (like addition of numbers)
turn out to arise from braided monoidal categories. Indeed, a vast amount
of familiar mathematics is turning out to be just a watered-down version of
categorified mathematics — some already known, but much just beginning
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to be glimpsed.
In applications to physics, the process of categorification tends to go

hand-in-hand with ‘boosting the dimension by 1’. The picture above al-
ready illustrates this: the particles’ worldlines are 1-dimensional, while the
particles themselves are 0-dimensional points. A more impressive example
is how certain commutative algebras yielding 2d topological field theories
can be categorified to give braided monoidal categories, which in turn yield
3d topological field theories [1, 2, 3]. Yet another example, which I have
recently developed with various collaborators, is ‘higher gauge theory’ [4].

Gauge theory has been remarkably successful in describing the interac-
tion of point particles with various forces. But the mathematics of gauge
theory — Lie groups [5], Lie algebras [6], bundles [7] and connections [8]
— can all be categorified. The resulting ‘higher gauge theory’ turns out
to describe the interaction of strings with background fields, including the
somewhat mysterious B field [10]. Here it is the dimension, not of the
ambient spacetime, but of the matter, that is getting boosted: worldlines
become worldsheets. Further categorification clarifies the behavior of higher-
dimensional branes [11].

I have now begun projects with three graduate students to categorify
other ideas from fundamental physics. Christopher Walker is working on the
algebra of quantum theory, Chris Rogers is categorifying classical mechanics
and geometric quantization, and John Huerta is using category-theoretic
methods to study the octonions and exceptional Lie groups and their role
in particle physics.

These students are very talented; what they need most of all is time.
They need time for research, and time to contribute to the online dissemi-
nation of work in progress — via blogging, online lecture notes and videos
— that is a key part of my research style [15]. Sharing our successes and our
mistakes will let the public see how research is done, and let our colleagues
see the work as a whole, including ideas that are left out of the final polished
work.

At a modest expense, the Foundational Questions Institute could free
these students from a portion of their teaching duties and give them more
time to work on these projects.

Why FQXi? Funding for this sort of multi-faceted fundamental research
tends to fall between the cracks, since it sits between mathematics and
physics. My work that touches on computer science has received funding,
as explained in the last section of this narrative. But the physics aspect
does not fit squarely in any established research program: while it touches
on string theory and loop quantum gravity, it is not really either of these.
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On the mathematics side, the NSF has divided mathematics into specialties,
and my work crosses all the boundaries between these. In particular, the
mathematicians at the NSF are loath to fund research that smells of category
theory. So, I am turning to FQXi for help.

Categorifying the Algebra of Quantum Theory

Christopher Walker and I are working on an approach to quantum theory in
which Hilbert spaces are replaced by purely combinatorial structures. The
extensive use of the complex numbers in quantum physics is often taken for
granted. With the research we are undertaking, we hope to show that by
replacing the complex numbers with something more fundamental, we can
see deeper into the algebra used in quantum theory.

Combinatorics naturally explains some of the discreteness seen in quan-
tum mechanics. While this sounds superficially plausible, it actually came
as a great surprise when James Dolan and I found that Joyal’s work on
combinatorics [12] gave a new way to understand the quantum harmonic
oscillator, or more generally quantum field theory. For example, the “cre-
ation” and “annihilation” operators a∗ and a, which physically describe the
process of adding or removing a particle, can be seen as operations that
describe the process of adding or removing an element from a finite set. A
fundamental fact about quantum theory is that these operators fail to com-
mute: aa∗ − a∗a = 1 in units where Planck’s constant is 1. Remarkably,
this fact has a simple combinatorial interpretation: there is one more way to
add an element to a finite set and then remove one, than to remove one and
then add one. Furthermore, this interpretation can be used to categorify the
commutation relation aa∗− a∗a = 1: that is, to see it as the summary of an
isomorphism.

Starting from simple ideas like these, Dolan and I were able to develop
a purely combinatorial theory of Feynman diagrams, which does not refer
to the complex numbers [13]. This work was unable to handle the ‘free’
time evolution of the unperturbed oscillator, which involves complex phases.
However, my student Jeffrey Morton [14] later extended our ideas to give
a full-fledged categorification of perturbed quantum harmonic oscillators,
using finite sets with elements labelled by phases which rotate at a constant
rate. So, for quantum systems of this sort — such as many quantum field
theories — the complex numbers play a more limited role than one would
at first think: all the truly interesting structure is purely combinatorial.

Further work with James Dolan suggests that the combinatorial ap-
proach to quantum mechanics can be extended to give new insights into
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q-deformation [15]. Quantum groups [16] are algebraic structures which ap-
pear in several approaches to fundamental physics, including string theory
[17] and loop quantum gravity [18]. Like groups, they are used to describe
symmetries, but they are not really groups. Instead, they are a type of
algebra whose multiplication depends on a parameter q. However, in the
limit as q → 1 they essentially reduce to groups, so we can think of them
as ‘q-deformed groups’. Along with groups, many other structures can be
q-deformed, including the quantum harmonic oscillator. It is as if a large
portion of physics had a dial attached to it, which lets us adjust the value
of q. At q = 1 we are doing physics as usual, but at other dial settings we
are doing something new.

While q-deformation is a mathematically natural procedure, its true
meaning remains shrouded in mystery, starting with the parameter q. In
the original applications of quantum groups to completely solvable quan-
tum systems, q was a function of Planck’s constant (q = ei~), hence the
name ‘quantum group’. In this context, letting q → 1 meant letting quan-
tum mechanics reduce to classical mechanics. However, in quantum gravity
it is often fruitful to think of q as a function of the cosmological constant
[19, 20]. Then q → 1 means letting the energy density of the vacuum go to
zero. Given the profoundly mysterious nature of quantum gravity and the
the cosmological constant, this is surely worthy of further study.

The goal of this project is to probe more deeply into the meaning of
q-deformation by categorifying quantum groups. My student Aaron Lauda
has already succeeded in categorifying quantum groups in recent work with
Khovanov [21], but Walker and I are taking a different approach, rooted
in the combinatorial ideas sketched above. In this approach, q-deformation
arises naturally when we replace the combinatorics of sets by the combina-
torics of vector spaces over finite fields.

The number system of primary interest in quantum physics is C, the
complex numbers. But there are also number systems with finitely many
elements, called ‘finite fields’. There is one of these with q elements, called
Fq, whenever q is a power of a prime number. Amazingly, combinatorial
formulas involving vector spaces over Fq reduce to analogous formulas in-
volving sets in the q → 1 limit! For example, just as the number of k-element
subsets of an n-element set is counted by the binomial coefficient

(n
k

)
, the

number of k-dimensional subspaces of an n-dimensional vector space over Fq
is counted by a certain ‘q-binomial coefficient’. This reduces to the ordinary
binomial coefficient when we formally take the limit q → 1.

Using ideas of this sort, we have shown that just as the harmonic oscilla-
tor can be understood using the combinatorics of finite sets, the q-deformed
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harmonic oscillator can be understood using the combinatorics of finite-
dimensional vector spaces over Fq. More generally, our work in progress is
revealing that much of the theory of quantum groups admits a combinatorial
interpretation in terms of finite fields, which lets us categorify this theory.
For example, it is known that the usual ‘Jordan–Schwinger’ representation
of the group SU(n) on the Hilbert space of the quantum harmonic oscillator
with n degrees of freedom can be q-deformed [22, 23, 24]; we have already
seen how to categorify a substantial portion of this setup, and we hope to do
more. We are also categorifying representations of other quantum groups,
as well as the theory of Hecke algebras.

Of course, the idea of taking q to be the power of a prime number only
heightens the mystery of its physical significance. To tackle this puzzle we
need to take some of our results, feed them back into the physical applica-
tions of quantum groups, see how much of this physics can be given a purely
combinatorial interpretation — and see what this means.

Categorifying Classical Mechanics and Geometric
Quantization

Chris Rogers and I are categorifying classical mechanics and the quantization
technique known as geometric quantization. Together with my student Alex
Hoffnung, we have already completed some preliminary work which showed,
somewhat to our surprise, that categorifying classical particle mechanics
leads naturally to classical string theory [25]. We anticipate that similarly,
the quantum string will arise naturally from categorifying the quantum par-
ticle. Indeed, there is already plenty of evidence for this [10]. However,
we wish to more firmly link the classical and quantum aspects of this story
using geometric quantization.

Geometric quantization is a procedure for quantizing a classical system
in a purely geometric manner without the coordinate dependence present in
canonical quantization [26]. This procedure involves treating the classical
phase space as a manifold X equipped with a ‘symplectic structure’: that is,
a closed nondegenerate 2-form, usually called ω. Under favorable conditions,
we can construct a U(1) bundle over X with a connection whose curvature
is the symplectic structure. Associated to this U(1) bundle is a complex line
bundle over X, and quantum states are certain special sections of this line
bundle. Singling out the physically acceptable quantum states requires that
the phase space be given some extra structure. Classical observables that
generate symmetries preserving this extra structure can be easily quantized;
others are more problematic. This approach is appealing, since it allows one
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to analyze the ambiguities that arise from quantization in situations where
no special symmetries are present to specify a preferred coordinate system.

What happens when we categorify geometric quantization? Of course,
to answer this we must first know how to categorify classical mechanics! A
strong clue comes from the theory of gerbes [27], which is a a categorified
version of the theory of U(1) bundles. As we just hinted, the curvature
of a connection on a U(1) bundle is a 2-form. Similarly, the curvature
of a connection on a gerbe is a 3-form: we see here the phenomenon of
‘dimension boosting’ so typical of categorification. This suggests that when
we categorify classical mechanics, the usual symplectic structure on phase
space will be replaced by a 3-form — and when we categorify geometric
quantization, the U(1) bundle on phase space will be replaced by a gerbe.

The question now becomes: what sort of physical system has a phase
space equipped with a 3-form instead of the usual 2-form? Amusingly, the
answer to this puzzle goes back to the work of DeDonder [28] and Weyl [29]
in the 1930s, which later gave rise to an interesting subject called ‘multisym-
plectic geometry’ [30, 31, 32]. Recently this has been taken up by Rovelli
[33, 34]. It turns out that associated to any 2-dimensional classical field
theory there is a finite-dimensional ‘extended phase space’ equipped with a
closed nondegenerate 3-form. Such theories include classical bosonic string
theory. So, the ‘dimension boosting’ that occurs when we categorify classical
mechanics is closely related to the obvious dimension boosting that happens
when we move from point particles to strings!

To see this in a bit more detail, it is instructive to first recall some details
from the theory of classical point particles. In this theory we may start with
the space of possible positions of the point particle, the configuration space
M . Then, the phase space of the particle, that is the space of possible
positions and momenta, is the cotangent bundle of M , denoted T ∗M . This
comes equipped with a symplectic structure ω. Observables are smooth
real-valued functions on X. Every such observable H gives rise to a vector
field vector field vH on T ∗M such that

dH(u) = ω(vH , u)

for every vector field v. In particular, if H is the Hamiltonian of our particle,
the flow generated by vH is the solution to Hamilton’s equations of motion.
The ‘Poisson bracket’ of observables G and H says how fast G changes if
we use H as our Hamiltonian: it is given by {H,G} = vH(G). The Poisson
bracket is the classical analogue of the commutator bracket in quantum
mechanics. In particular, it makes the observables into a Lie algebra.
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Following the multisymplectic approach to field theory, we can boost the
dimension of everything in this familiar story. Starting from any manifold M
called the ‘extended configuration space’, we can create an ‘extended phase
space’ X equipped with a nondegenerate closed 3-form ω. This time X is
not the cotangent bundle of M , but rather its second exterior power: X =
Λ2(T ∗M). Similarly, we take as observables, not functions on X, but certain
1-forms on X which we call ‘Hamiltonian’. A 1-form H is Hamiltonian if
there exists a vector field vH on X such that

dH(u, u′) = ω(vH , u, u
′)

for all vector fields u and u′. We write this formula merely so the reader can
see the close analogy to the ordinary classical mechanics, recalled above.

Carrying this analogy further, we can define the Poisson bracket {H,G}
of Hamiltonian 1-forms, and show that this describes the rate of change of
G when we use H as the Hamiltonian. But at this point, we observe a
novel phenomenon. The Poisson bracket does not make the Hamiltonian
1-forms into a Lie algebra, because the bracket operation fails to be anti-
symmetric: {H,G} 6= −{G,H}. Luckily, the Hamiltonian 1-forms turned
out to be part of a larger structure: a category equipped with a Lie bracket
which is antisymmetric up to isomorphism. Such a thing is called a ‘Lie
2-algebra’ [6, 35]. So, we have categorified classical mechanics, replacing the
Lie algebra of observables by a Lie 2-algebra!

But what do these new ideas mean for physics? We can illustrate them
with the example of a classical bosonic string. The dynamics of such a string
can be neatly described in terms of our setup if we take the extended con-
figuration space M to be the cartesian product of the string worldsheet and
the target space. In particular, the components of the energy-momentum
tensor for the string are objects in the Lie 2-algebra of observables: that is,
Hamiltonian 1-forms. These generate the expected dynamics of the string.
However, a category has not only objects but also morphisms! A morphism
between Hamiltonian 1-forms turns out to be a kind of ‘gauge symmetry
between observables’: that is, a way of changing observables that does not
affect the dynamics they generate.

This work, which we are still writing up [25], suggests that the multi-
symplectic approach to the classical mechanics of strings really amounts to
a categorification of traditional mechanics of point particles. We hope that
ultimately categorified classical mechanics will go beyond traditional string
theory, but for now this example makes an excellent test case. Therefore
we plan to continue this project by categorifying the theory of geometric
quantization and applying it to the bosonic string.
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This presents significant challenges. However, there are more clues to
guide us. For example, we expect that just as geometric quantization gives
rise to a Hilbert space of quantum states, the categorified version will give
rise to a categorified version of a Hilbert space, called a ‘2-Hilbert space’ [36].
This might seem like a wild guess were there not already evidence for it in
the work of Freed [37]. The role of gerbes is also already familiar in string
theory, and particularly well-understood in the case of the Wess–Zumino–
Witten model [38]. So, I believe that categorifying geometric quantization
is a goal within reach, which will shed new light on fundamental physics.

GUTs, Octonions, and Exceptional Lie Groups

John Huerta and I are studying the octonions and exceptional Lie groups and
their role in fundamental physics: especially grand unified theories (GUTs)
and superstring theory, but also non-mainstream theories such as those of
Dixon [39] and Lisi [40]. Categorification is not involved in this aspect of
the project, but categories are. To briefly recall:

• Grand unified theories (GUTs) are theories of physics that seek to
unify all fundamental forces except gravity [41]. They involve enlarging
the gauge group of the Standard Model, and therefore make heavy use
of group representation theory. The simplest of these are the SU(5)
theory and the SO(10) theory, both named after the gauge groups used
in these theories. Both predict proton decay at a rate later found to be
unacceptably high, but both — and especially the latter — do a nice
job of fitting a single generation of fermions into a neat pattern. A
less ‘unified’ but also interesting theory is the SU(2)× SU(2)× SU(4)
theory due to Pati and Salam, which treats lepton number on an equal
footing with the three colors of quark, and has left-right symmetry.
Many others have been considered as well.

• The octonions are a number system discovered by John Graves in
1843 shortly after his friend Hamilton discovered the quaternions [42].
They are the largest of the four ‘normed division algebras’, which are
number systems satisfying the rule |ab| = |a||b|. The most familiar
normed division algebras are the 1-dimensional real numbers (R) and
the 2-dimensional complex numbers (C), but the quaternions (H) are a
4-dimensional normed division algebra in which the commutative law
fails (ab 6= ba), and the octonions (O) are an 8-dimensional normed
division algebra in which the associative law also fails (a(bc) 6= (ab)c).
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The real significance of the octonions remains mysterious. However,
their existence explains why superstring theory lives in 10 dimensions!
A certain relation between spinors and vectors is required to write
down a classical superstring theory; this relation can only happen
when the space of directions perpendicular to the string worldsheet
forms a normed division algebra [43, 44]. So, classical superstring
theories exist only in spacetimes of dimensions

1 + 2 = 3, 2 + 2 = 4, 4 + 2 = 6, and 8 + 2 = 10.

Of these, it appears only the 10-dimensional one admits a consistent
quantization.

The octonions also show up in other theories of physics. For example,
Dixon [39] has proposed an extension of the Standard Model based
on all four normed division algebras combined into a single algebra
R⊗C⊗H⊗O. While this theory has problematic features, it shows that
the curious collection of forces and particles in the Standard Model
follow certain patterns related to normed division algebras.

• The exceptional Lie groups were first discovered in the late 1800s
when Killing and Cartan classified the so-called ‘simple’ Lie groups
— the ones now used in truly unified GUTs. Almost all the simple Lie
groups fit into nice families, but there were five exceptions, now called
F4,G2,E6,E7 and E8.

They remain very puzzling, especially the largest of them, E8, which
has not yet been exhibited as the symmetry group of anything less
complicated than itself. However, all five exceptional Lie groups can
be constructed using the octonions. Furthermore, these groups show
up in theories of physics including certain supergravity theories [45]
and heterotic string theory [46]. Recently Lisi [40] proposed a theory
based on E8, which ignited a storm of controversy. While there are
serious problems with his theory, it takes advantage of some intriguing
patterns relating exceptional Lie groups to the forces and particles of
the Standard Model.

In short, there is a tangled web of obscure clues hinting at some possible
role for the octonions and exceptional Lie groups in fundamental physics.
However, the clues seem to point in different directions. Furthermore, none
of the physical theories mentioned has made predictions confirmed by ex-
periment, and all suffer internal problems. So, the direction forward is not
clear.
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Luckily, there is no shortage of patterns that might shed some light on
the situation. For example, John Huerta and I have already worked out how
the SU(5), SO(10) and SU(2)×SU(2)×SU(4) GUTs fit together in a single
story. The relevant facts are all in the physics literature, but not vividly
spelled out.

Namely: SO(10) is the group of rotations of 10-dimensional space. The
fermions in one generation of the Standard Model form the spinor repre-
sentation of this rotation group (or actually its double cover). If we look
at the subgroup of SO(10) preserving a complex inner product and volume
form on 10-dimensional space, we get SU(5). If we look at the subgroup
preserving a splitting of 10-dimensional space into 4+6 dimensions, we get
SU(2)× SU(2)× SU(4).

This is very suggestive. First of all, not only these GUTs but also su-
perstring theory makes use of 10-dimensional space, its splitting into 4+6
dimensions, and the subgroup of SO(10) preserving a complex inner prod-
uct and volume form [47]. In fact, this subgroup plays a key role in the
definition of a ‘Calabi–Yau manifold’.

Secondly, Dixon’s theory based on R ⊗ C ⊗ H ⊗ O is also set in 10-
dimensional space, and also makes use of a splitting of 10 dimensions into
4+6. Indeed, while superstring theory and Dixon’s theory are drastically
different, the octonions enter in a similar way — and in both, the splitting
of 10 dimensions into 4+6 can be seen as arising from how the complex
numbers sit inside the octonions.

We believe these facts are puzzling and insufficiently recognized. Techni-
cal details aside, they imply that superficially different approaches to extend-
ing the Standard Model secretly rely on the same mathematical structures.
So, in our first paper on this subject, we plan to clarify this phenomenon
— and, just as importantly, explain what we find in the simplest possible
terms, so more physicists and mathematicians can ponder it [48].

In future work, we want to describe the octonions and exceptional Lie
groups using the work of Cvitanovic [49]. This work, rooted in category
theory, describes the identities satisfied by group representations using dia-
grams called spin networks, avoiding tedious index manipulations. We hope
this technology can help us find a better explanation of how the groups F4,
E6, E7 and E8 are built from the rotation groups in dimensions

1 + 8 = 9, 2 + 8 = 10, 4 + 8 = 12, and 8 + 8 = 16

together with the spinor representations of these groups [42]. In each case
the construction is fairly simple, but checking that it actually works cur-
rently requires some brute-force computations involving Fierz identities.
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Cvitanovic’s diagrammatic approach to Fierz identities may simplify the
calculation and ultimately lead us to a more conceptual construction of
these four exceptional Lie groups. The case of E6 is interesting because it
is built from SO(10) and its spinor representation — precisely the key in-
gredients in the SO(10) GUT! The case of E8 is also interesting, since this
construction, building it from SO(16) and its spinor representation, is the
simplest known for this most mysterious of Lie groups [46].

Categorifying the Theory of Computation

This final project, involving my students Alex Hoffnung and Mike Stay, is not
part of the current grant proposal, because I have been able to obtain funding
for it from the NSF program on ‘Quantum Information and Revolutionary
Computing’. I mention it briefly here just to round out the overall picture
of what my students are doing.

Hoffnung, Stay and I are investigating the relationship between quantum
and classical computation. The goal is to more deeply understand how
classical and quantum processes create, delete, and transfer information. A
key ingredent in our approach is to exploit the analogy between physical
processes and processes of computation — an analogy that can be made
precise with the help of category theory.

As the first step of this project, Mike Stay and I spelled out this anal-
ogy in great detail [50]. Categories have already been succesfully applied
to computer science in a long line of work that goes back to the work of
Lambek [51, 52]. A category has objects and also morphisms going between
objects. In applications to computer science, the objects often represent
data types, while the morphisms represent programs taking data of a given
type as input, and returning data of some other type as output. The data
types turn out to be analogous to types of particles, while the programs are
analogous to Feynman diagrams with a given collection of particles coming
in and another collection going out. While the analogy is already strong
for ordinary ‘classical’ computation, it is even stronger for quantum com-
putation. Abramsky, Coecke [53] and others have recently taken advantage
of this to develop a diagrammatic notation for quantum programs. In the
other direction, I have argued that this analogy renders some of the famously
puzzling features of quantum mechanics less mysterious [54].

The next step of this project is to categorify what has been done so far.
The reason is that so far, in the above applications of category theory to
computer science, two programs are considered equal if they are related by a
sequence of steps of computation. So, a program that first computes 2+1 and
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then prints out 3 is counted as equal to one that simply prints out 3. This
is clearly inadequate for describing the actual process of computation. It
would be better to say there is a morphism between these programs, namely
actual step of computation.

However, recall that in the applications of category theory to computer
science that we have been discussing, objects correspond to data types and
morphisms correspond to programs. So, when we start thinking about steps
of computation as morphisms between programs, we are contemplating —
like it or not — some sort of structure that has morphisms between mor-
phisms.

Luckily, such structures have been intensively studied for decades: they
are called 2-categories [55]. Indeed, categorification is like a crank one can
turn over and over: if we take the concept of set and turn this crank once,
we get the concept of category, but if we turn the crank a second time, we
get the concept of 2-category!

So, it is actually very natural to take the existing applications of cat-
egory theory to computer science, and replace the categories everywhere
by 2-categories, to better understand the process of computation. This is
what we are doing. Currently Stay is focusing classical computation, which
requires work on ‘cartesian closed 2-categories’, while Hoffnung plans to
tackle quantum computation, which requires ‘symmetric monoidal closed 2-
categories’. The classical case has already been studied a bit by Seely [56]
and Hilken [57], but the quantum case seems to be wide open.
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