DOUBLE CATEGORIES OF OPEN SYSTEMS:
THE COSPAN APPROACH
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AssTrACT. This is an overview of double categories of ‘open systems’: systems that can
interact with their environment. We focus on the variable sharing paradigm, where we
compose open systems by identifying variables. This paradigm is often implemented us-
ing structured or decorated cospans. We explain this approach using three main examples:
open Petri nets, open dynamical systems, and open Petri nets with rates. We compare the
virtues of structured and decorated cospan double categories, and study their common fea-
tures. We show that any symmetric monoidal structured or decorated cospan double cate-
gory comes with maps from two simpler double categories: its ‘exoskeleton’ and its ‘outer
shell’. Finally, we study the concept of ‘hypergraph double category’, a kind of double
category that should subsume structured and decorated cospans in a common framework
for studying open systems in the variable sharing paradigm.
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1. INTRODUCTION

When writing his foundational papers on double categories with Marco Grandis, Robert
Paré never expected that their work would be applied to open systems: that is, systems that
can interact with their environment. Open systems are fundamental to modern technology,
so they have been studied intensively, but still not as much as ‘closed’ systems, where we
neglect the system’s interaction with its environment. Some aspects of open systems have
only recently been formalized. One is the composition of open systems—building larger
systems out of smaller parts. Another is functorial semantics for open systems, where
various kinds of diagrams are used to describe open systems and the maps between them.
It turns out that double categories are well suited to both these purposes!

Diagrams of open systems, such as electrical circuit diagrams, can often be seen as
loose morphisms in some double category D. Maps between diagrams are then 2-cells in
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D. This double category D serves as a syntax. A double functor F from D to some other
double category E then provides a semantics that says what the diagrams ‘mean’. Loose
morphisms in E are typically systems of equations of some kind—algebraic equations,
differential equations, etc.—with certain variables singled out that can interact with the
outside world.

A number of developments were required to enable the double categorical approach to
open physical systems. One key step was Grandis and Paré’s 1999 paper [48] introducing
double categories where composition is strictly associative in one direction (now called the
‘tight’ direction) and weakly associative in the other (now called the ‘loose’ direction). By
now this concept is the default notion of double category—and the only one we use here.

Another important step was the rise of double categories where a tight morphism f: x —
y can be turned into a loose morphism in two ways, its ‘companion’ f;: x + y and its ‘con-
joint’ f*: y 4+ x. While these have their roots in Wood’s ‘proarrow equipments’ [89, 90],
the companion and conjoint have universal properties that Paré and others elegantly stated
in double categorical language [38, 49]. Around 2007, Shulman [82] studied double cat-
egories with companions and conjoints under the name ‘framed bicategories’. In 2010 he
gave them another name: ‘fibrant double categories’ [83], because they are the same as
double categories D where the source and target maps going from the category D; of loose
morphisms and 2-cells to the category Dy of objects and tight morphisms combine to give
a functor D; — Dy X Dy that is a Grothendieck fibration.

A crucial step toward applying these ideas to open systems was the introduction of
topological quantum field theories described as functors. This expanded Lawvere’s idea
of functorial semantics [61] in a radically non-cartesian direction, and it emphasized the
important of compact closed categories, and higher analogues of these, for understanding
physical systems. For reviews of this line of work see [15, 21, 60].

When these ideas came together, it was only a matter of time before double categories
were used to study open systems. But this general idea can be made more precise in
numerous ways. For example, there are various choices of what it means to compose open
systems. In the ‘input-output paradigm’, when we compose two open systems, variables
of one can affect variables of the other while not being directly affected by them. In the
‘variable sharing paradigm’, we instead identify variables of one system with variables of
another.

In recent years Libkind has formalized both these paradigms and begun to unify them
[63], Myers has studied the input-output paradigm using double categories [70], and to-
gether they have formalized the very concept of ‘paradigm’ [64, 71]. To limit the scope of
this paper, we only discuss the variable sharing paradigm, and emphasize the approach to
this paradigm based on cospans. We illustrate this using three examples of open systems:
Petri nets, dynamical systems described by systems of first-order differential equations,
and finally Petri nets with rates. Thus, we omit or only briefly touch upon many other
examples of the variable sharing paradigm, including:

e electrical circuits [7, 10, 12],

e Markov processes [8, 13],

e bond graphs [30, 31],

o signal flow diagrams [11, 23, 31, 44],

e stock-flow diagrams and system structure diagrams [16, 17],
e gene regulatory networks and causal loop diagrams [1, 6, 17],
e thermodynamics [18, 65],

e classical mechanics [22, 65].
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In Section 2 we explain open systems and various ways to formalize them, leading up
the double categorical approach. In Section 3 we introduce two ways to construct double
categories of open systems: structured and decorated cospans. We discuss the relative
merits of these approaches, and raise some questions about the relation between them. In
Section 4 we illustrate structured cospan double categories and maps between them using
the example of open Petri nets. In Section 5 we illustrate decorated cospan categories
using the example of open dynamical systems. We look at some applications to classical
mechanics, and revisit the question of when to use structured and when to use decorated
cospans. In Section 6, we illustrate maps between decorated cospans double categories
using the map sending open Petri nets with rates to open dynamical systems. We also look
at applications of structured and decorated cospans to software for modeling inthe field of
public health.

In Section 7, we conclude with a deeper investigation of the variable sharing paradigm.
We find that some structures important in topological quantum field theory, such as com-
mutative Frobenius monoids, also appear in the variable sharing paradigm. Indeed, in any
symmetric monoidal double category of structured or decorated cospans, every object is
a categorified version of a commutative Frobenius monoid. This fact expresses the laws
obeyed by the operations of bending, splitting and joining wires—where ‘wires’ should be
taken quite generally as routes along which variables can affect one another. In topological
quantum field theory, the same laws appear in the description of spacetime itself [15, 59].

1.1. Conventions. In this paper, we use a sans-serif font like C for categories, boldface
like B for bicategories or 2-categories, and blackboard bold like D for double categories.
For double categories with names having more than one letter, such as Csp(X), only the
first letter is in blackboard bold. In this paper, ‘double category’ means ‘pseudo double cat-
egory’. In a double category ‘tight’ morphisms are drawn vertically and their composition
is strictly associative, while ‘loose’ morphisms are drawn horizontally and their composi-
tion is associative up to coherent isomorphism. We use (C, ®) to stand for a monoidal or
perhaps symmetric monoidal category with ® as its tensor product.

2. OPEN SYSTEMS

An ‘open system’ is a system that we treat as interacting with the outside world—
as opposed to a ‘closed system’, where interactions with the outside world are absent or
at least neglected. To a mathematician this may seem hopelessly vague, but physicists
and engineers have various fairly precise frameworks for discussing ‘systems’ of various
kinds, and in many of these frameworks one can set up a distinction between open and
closed systems. For example, in the realm of electrical circuits, a circuit with ‘terminals’
or ‘ports’ exposed to the outside world is an open system, while one without these is a
closed system.

A striking fact is that so far, more mathematical labor has gone into proving results
about closed systems than open ones. The main reason is that closed systems are easier to
understand. Thus, there is a lot of interesting new territory yet to be explored in the realm
of open systems. I believe category theory can greatly assist this exploration, and that it
will also benefit from new ideas discovered in this exploration. The reason is that category
theory provides many tools for discussing open systems.

We can combine two closed systems by ‘setting them side by side’, letting each do its
own thing, neither influencing nor being influenced by the other. In this situation we can
easily reduce the study of the composite system to the study of each separate part. Open
systems can be composed in more interesting ways, which create interactions between the
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two parts. For example, we can take two electrical circuits and attach the terminals of one
to the terminals of the other, forming a larger circuit. More generally, we can think of
any open system as having one or more ‘interfaces’, through which it can interact with the
outside world, and to compose open systems we attach them along an interface. This is
an idealization, but a useful one. Given this, several ways of formalizing a chosen class of
open systems spring to mind.

One approach is to use a symmetric monoidal category where:

e an object is an ‘interface’,

e a morphism F: x — yis an ‘open system’ with ‘left interface’ x and ‘right inter-
face’ y,

e composing morphisms F: x — y and G: y — zis attaching the left interface of F
to the right interface of G, obtaining an open system G o F': x — z,

e tensoring two morphisms F: x — yand F’: x” — )’ is ‘setting two open systems
side by side’, giving an open system F® F': x@x' - y®y'.

There are many questions that can be raised about this approach. First, why should
an open system have just two interfaces? There is no reason it must. Luckily, this can be
addressed by the fact that we are working in a symmetric monoidal category: two interfaces
x and x’ sitting side by side can be reinterpreted as a single interface x ® x’. Thus, an open
system f with any number of left interfaces xi, ..., x,, and any number of right interfaces
¥1,--.,Yn can be interpreted as a morphism

fix1®®Xp DY Q- - QY.

We can also think of this as having a single left interface x = x; ® - -+ ® x,, and a single
right interface y = y; ® - - - ®@ y,,.

Second, why should there be a distinction between left and right interfaces, and why
can we only compose systems by attaching the left interface of one to the right interface
of the other? Again, we do not need to take this approach. It is natural for systems with a
well-defined ‘input’ and ‘output’—but these are more common among engineered systems
than naturally occuring ones. The language of ‘input’ and ‘output’ suggests that when we
compose open systems f: x — y and g: y — z to create an open system g o f: x — z, the
behavior of f affects g but not conversely. This is a very useful simplifying assumption.
But in the natural world, this assumption is at best an approximation that holds under very
limited circumstances. A widely applicable principle in physics, called the ‘principle of
reciprocity’, says that if one system can affect another, then the second system can also
affect the first.

It is quite interesting to see how engineered systems evade the principle of reciprocity
without actually violating it. This makes for a good puzzle. Flipping a switch can turn on a
light; why is the behavior of the light apparently unable to affect the position of the switch?
The click of the switch as it snaps into position is a clue. The switch not only turns the light
on or off: it also releases energy in the form of sound waves as it settles into a low-energy
state, either ‘on’ or ‘off’. The principle of reciprocity says that we could reverse the whole
scenario and have the behavior of the light and the sound waves in the room control the
switch. However, it is very difficult to focus sound waves on a switch in the necessary way,
so this never happens in practice. A similar story is at work in other physical systems that
appear to have inputs and output.

In any event, we want a formalism that lets us study open systems that have a rigid
distinction between input and output, but also those where the distinction between left and
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right interface is purely conventional. We can study both using symmetric monoidal cate-
gories. When desired, we can eliminate the distinction between input and output in several
ways. One is to work with a symmetric monoidal dagger-category: here any morphism
f:x — y gives a morphism f7: y — x. Another is to work with a compact closed cat-
egory: here every object x has a dual x*, and any morphism f: x — y gives a morphism
f*:y* — x*, as well as a morphism / — x* ® y and a morphism x ® y* — I. Another way
is to do both, and work with a ‘dagger compact category’. All these options, and others,
have been extensively studied [21, 54, 80, 81].

There are further features of the variable-sharing approach to open systems that call for
a more flexible approach based on operads, particularly the operad of undirected wiring
diagrams [84, 91]. Operads easily allow for more composition patterns more general than
the ‘end-to-end’ composition of morphisms in categories. But an even more urgent issue
appears as soon as we consider an example: say, electrical circuits.

For simplicity, consider electrical circuits made using only resistors. We can describe
such a circuit as a finite graph where each edge is labeled by a positive real number called
its ‘resistance’:

(We apologize to electrical engineers for not decorating the edges with symbols indicating
resistors.) We can treat such a circuit as an open system by choosing some nodes to be
inputs and some to be outputs. Even better, for mathematicians at least, is to choose two
finite sets X and Y equipped with maps to the circuit’s set of nodes:

X Y
4.5
3 . Le2
/ \
Lot 12 105
\ .
2.7 '(-——/ 3
2

We can think of this as a morphism from X to Y. We can compose this with a morphism
from Y to Z:

e<i—1e 4

3 o
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and the result is this:

X z
/3'.’_4.5\0 3.1

Lof—so 12 1(D-%-4
\X.( 2/' 92

Nothing profound is going on here: we are simply gluing together two open electrical cir-
cuits to get a new one. But there is something worth noting. This process of gluing is
really a pushout, and pushouts are only defined up to canonical isomorphism. Thus, we
cannot expect composition of open circuits to be strictly associative, only associative up to
isomorphism. Thus, to create a category with this composition, we either need to take iso-
morphism classes of open circuits as morphisms, or choose the pushouts very carefully—a
drastic measure that scarcely bears thinking about.

Working with isomorphism classes is not good here, because one cannot point to a spe-
cific node or edge in an isomorphism class of graphs: for that, one needs an actual graph.
There is a general lesson here: instead of a category with open systems as morphisms, we
should seek a bicategory—or better yet, a double category!

In fact Courser [27] had been trying to construct symmetric monoidal bicategories of
open systems. But the coherence laws for symmetric monoidal bicategories [50, 67, 85]
are complicated and tiring to check directly. He realized that the easiest approach was to
use a result of Shulman [83]: any fibrant symmetric monoidal double category gives a sym-
metric monoidal bicategory. Later it became clear that double categories are closer to what
we actually want, since in addition to having open systems as loose morphisms between
interfaces, which compose in a weakly associative manner, they have tight morphisms as
maps between interfaces, which compose in a strictly associative manner.

Thus, a better approach to open systems is to use a symmetric monoidal double category
where:

e An object is an ‘interface’.

e A loose morphism F: x + y is an ‘open system’ with ‘input interface’ x and
‘output interface’ y.

e Composing loose morphisms F: x + y and G: y + z is attaching the output
interface of F' to the input interface of G, obtaining an open system Go F: x — z.

e A tight morphism f: x — yis a ‘map between interfaces’.

e Composing tight morphisms is composing maps between interfaces.

o A2-cell

F
X —+>Y

flclg

X —+—>y

is a ‘map between open systems’ from F to G.

e Tensoring two loose morphisms F': x + yand F’: x’ + y’ is ‘setting two open
systems side by side’, giving an open system F® F': x® x" - yQy'.

e Tensoring two tight morphisms is ‘setting two maps of interfaces side by side’.

e Tensoring two 2-cells is ‘setting two maps of open systems side by side’.
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Next we describe two methods of defining such double categories: structured and deco-
rated cospans. It will often be convenient to state theorems in two parts: first one for double
categories, then one for symmetric monoidal double categories. In practice, the symmetric
monoidal version is always the more useful one—but it relies on the simpler version that
ignores the symmetric monoidal structure.

3. STRUCTURED AND DECORATED COSPANS

Experience has shown that many open systems are nicely modeled using cospans [28,
43,77]. A cospan in a category A is a diagram of this form:

N

We call m the apex, a and b the feet, and i and o the legs of the cospan. The apex is
the system itself. The feet are ‘interfaces’ through which the system can interact with the
outside world. The legs say how the interfaces are included in the system. If the category
A has pushouts, we can compose cospans in A: this describes the operation of attaching
two open systems together in series by identifying one interface of the first with one of the
second:

m+p m’

m/v\m
a/ Nb% ’yc.

If A also has coproducts, we can also ‘tensor’ cospans: this describes setting open systems
side by side, in parallel:

m+m
i+%‘ %—0’
a+d b+

However, we often want the system itself to have more structure than its interfaces. We
know of two main ways to do this: structured and decorated cospans.
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3.1. Structured cospans. Given a functor L: A — X, an L-structured cospan is a cospan
in X whose feet come from a pair of objects in A:

N
L(a) L(b).

Very often A is some category of objects with ‘less structure’, like finite sets, while X is
some category of objects with ‘more structure’, like finite graphs, and L: A — X is left
adjoint to some functor R: X — A that forgets the extra structure. Thus we often think of
an L-structured cospan as consisting of a ‘system’ x € X and two ‘interfaces’ a,b € A that
have less structure than the system, mapped into the system via i and o.

When L is left adjoint to some functor R, as often the case, an L-structured cospan is
equivalent to a diagram

R(x)
AR
a b

together with a specific choice of x € X, and this is often a more intuitive way to think
about it. However, the description using L works better technically, since it lets us compose
structured cospans as long as X has pushouts.

Theorem 3.1. Let L: A — X be a functor and let X be a category with pushouts. Then
there is a fibrant double category | Csp, the double category of L-structured cospans, in
which

e an object is an object of A,
e q tight morphism is a morphism of A,
® a loose morphism from a to b is an L-structured cospan

X
SN
L(a) L(D).

e a 2-cell is a map of L-structured cospans, that is, a commutative diagram in X
of the form

L@) —— x <> L)

L(f )l a l lL(g)
: 0/

L) —> ¥ <— Lo,

Composition of tight morphisms is composition in A. Composition of loose morphisms and
2-cells is done using pushouts in X.

Proof. See [7, Thm. 2.3] or [28, Thm. 3.2.1], and [74, Prop. 2.2] for the fibrancy. O

In practice we almost always seem to work with symmetric monoidal double categories
of structured cospans—and in fact, cocartesian ones. Dualizing Aleiferi’s work on carte-
sian double categories [2], we define a cocartesian double category D to be a cocartesian
object in the 2-category of double categories. This implies that the category Dy of objects
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and tight morphisms and the category D; of loose morphisms and 2-cells are categories
with finite coproducts, and the source, target, composition, and identity-assigning maps
preserve these.

Theorem 3.2. Let L: A — X be a functor preserving finite coproducts, where A has finite
coproducts and X has finite colimits. Then Csp naturally has the structure of a cocarte-
sian double category. It also becomes a symmetric monoidal double category, where the
symmetric monoidal structure is defined using finite coproducts in A and X.

Proof. This is a combination of [28, Thm. 3.2.3], [7, Thm. 3.9], [9, Thm. 3.2.1], and [74,
Thm. 2.3]. o

It is worth saying a bit about the hypotheses in Theorem 3.2. They have been pared
down to almost the minimum necessary. In practice L: A — X is often a left adjoint
functor between categories with finite colimits, which is more than enough for the theorem
to apply. However, in one application [6, Thm. 7.6] it seemed necessary to pare down the
hypotheses even more. To get the conclusions of Theorem 3.2, we do not need X to have all
finite colimits. It is enough that it have finite coproducts and have pushouts for diagrams

of this form:
X y

L(a)

since these are the only pushouts required to compose structured cospans.

Finally, a word about history. Structured cospans were first discovered in 2007 by Fi-
adeiro and Schmitt [41]. In 2015 Paré gave a talk about the dual concept, structured spans,
which he called ‘superspans’ [73]. Completely ignorant of these earlier developments,
Courser and the author [7] reinvented structured cospans around 2020, even giving them
the same name that Fiaideiro and Schmitt used. This is an example of how a mathematical
concept can be invented repeatedly, but only catch on when its applications become clear.

3.2. Decorated cospans. Structured cospans handle a large class of cospans where the
apex has more structure than the feet—but apparently not all. As mentioned, structured
cospans assume we fix a category A of ‘interfaces’ and a category X of ‘systems’, together
with a functor L: A — X that gives a standard way to turn an interface into a system. To
get a double category of structured cospans, we need X to have pushouts. But we shall see
examples where the category of systems does not have pushouts.

We can get around this problem using decorated cospans [9, 42]. Here we start with
a category A with finite colimits and a pseudofunctor F: A — Cat. We again think of
objects of A as ‘interfaces’. But now, for each interface m € A, we have a category F(m)
of ways to equip it with extra data making it into a system. We call a choice of this extra
data d € F(m) a decoration of m.

In this approach we define an open system to be an F-decorated cospan: a cospan in A
together with a decoration of its apex. We write an F-decorated cospan in this way:

a/‘m’kb

d e F(m).
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To compose decorated cospans, we need to equip F' with the structure of a lax monoidal
pseudofunctor from (A, +) to (Cat, x). The key ingredient here beyond F itself is the
‘laxator’, which gives for each pair of objects m, m” € A a functor

G - F(m) X F(m') = F(m + m").

Given a composable pair of F-decorated cospans

m
N
a b
we define their composite to be

m+, m’ F(j) (¢m,m/ (d, d/)) € F(m+pm')

m/V\m,
a/ Nb/ Nc.

Here the cospans are composed using a pushout in A, while the decoration is defined using
the laxator and F applied to j: m+m’ — m+,m’, the canonical map from the coproduct to
the pushout. The choice of laxator gives a fair amount of flexibility in how the new cospan
is decorated—but the laxator must obey some laws that guarantee that this prescription
gives a double category [9, App. A.1].

d € F(m) d e F(m")

m/
N
b c

Theorem 3.3. Let A be a category with finite colimits and let F: (A, +) — (Cat, X) be a
lax monoidal pseudofunctor. Then there is a double category FCsp, the double category
of F-decorated cospans, in which

e an object is an object of A,

e qa tight morphism is a morphism of A,

e a loose morphism is an F-decorated cospan

m
/ ’X
a b,

e a 2-cell is a map of F-decorated cospans, that is, a commutative diagram in A of
the form

d € F(m)

a—>mé&——p d e F(m)

@ ——> w2y d eFm)

together with a decoration morphism 7: F(h)(d) — d’' in F(m’),

e composition of tight morphisms and vertical composition of 2-cell is done using
composition in A,

e composition of loose morphisms is done as described above,
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e horizontal composition of 2-cells is done as described in [9, Thm. 2.1].
Proof. See [9, Thm. 2.1]. O

Equipping F' with some more structure, the double category of F-decorated cospans
becomes symmetric monoidal:

Theorem 3.4. Let A be a category with finite colimits and let F: (A,+) — (Cat, X) be a
symmetric lax monoidal pseudofunctor with laxator ¢,p: F(a) X F(b) — F(a + b). Then
the double category FCsp becomes symmetric monoidal, where the tensor product

e of two objects a and b is their coproduct a + b in A,

o of two tight morphisms f: ay = ayand f': a} > ayis f+ f': a1 + @) > a» + &,

in A
e of two loose morphisms (a - m « b,d € F(m)) and (¢’ —» m’ « b',d" € F(n))
s m+m G (d, d') € F(m +m’)
S
a+d b+b

e of two 2-cells @ and B is:

i 01 , Lo ,
ay —> mp &— by alﬁmlT bl
2
fl hl lg ® f/l h'l lgf -
ay —> my &— by ay —> my <— b))
i 02 i; 0;
Ta: F(h)(d))—dy in F(my) 5 F(W)(d})—dy in F(m))
i+ l'/2 01 +0’l

aj +a’1 — S my +m'1 PA— N +b’1

f+f’l h+h’l lg+g’

a2+a§ — s m +m'2 ——— by + D)
i+ i,2 0y + 0,
Tas FUAR )@y, o (1)), s (o) in Fido. )

with decoration morphism 7,gp constructed functorially from T, and g.

Proof. See [9, Thm. 2.2], which also includes the details of how we construct the decora-
tion morphism 7,gg. O

3.3. Structured versus decorated cospans. When should we use structured cospans, and
when should we use decorated cospans? Structured cospans are usually easier to work
with, because they are defined using 1-categorical data: a functor L: A — X with some
properties. Decorated cospans are generally defined using more complicated 2-categorical
data: a lax monoidal pseudofunctor F: A — Cat. Furthermore, decorated cospans can of-
ten be reformulated as structured cospans. These observations favor structured cospans—
and thus, these are more widely used in software [26, 52].

There is an important exception. When the categories F(a) for a € A are all discrete,
we can think of them as sets and treat F' as a lax monoidal functor F: A — Set. Then
2-categorical concepts are not needed, and the theory of decorated cospans simplifies dra-
matically. This in fact was Fong’s original approach to decorated cospans [42, 43]. Further,
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as we shall see, some examples of this sort seem to give decorated cospans that cannot be
reformulated as structured cospans.

When are all the categories F(a) discrete? This happens precisely when the opfibration
U: JF — A is discrete, where [F is defined using the Grothendieck construction. An
object of [F is a pair (a, d) consisting of an object a € A and a decoration d € F(a). The
opfibration U: [F — A forgets the decoration. When U is a discrete opfibration, it means
that for any d € F(a) there is a unique way to equip any morphism #: a — a’ in A with
a decoration morphism F(h)(d) — d’. This is an unusual situation. But we shall see an
important example in Section 5: dynamical systems.

Since structured cospans are usually easier to work with than decorated cospans, another
question naturally arises: when are we forced to use decorated cospans? The dynamical
systems just mentioned appear to be an example. However, there is not yet an airtight
proof.

We do know a general result on when decorated cospan double categories are equivalent
to structured cospan double categories [9]. Begin with the data needed to construct a sym-
metric monoidal decorated cospan double category, as in Theorem 3.4. That is, suppose A
has finite colimits and F: (A,+) — (Cat, X) is a symmetric lax monoidal pseudofunctor.
It turns out that F' can naturally be promoted to a pseudofunctor F: A — SymMonCat,
where SymMonCat is the 2-category with

e symmetric monoidal categories as objects,
e strong symmetric monoidal functors as morphisms,
e monoidal natural transformation as 2-morphisms.

Let Rex be the 2-category of with

e categories with chosen finite colimits as objects,
e functors preserving finite colimits as morphisms,
e natural transformations as 2-morphisms.

There is an evident pseudofunctor Rex — SymMonCat. Now suppose that F: A —
SymMonCat factors, as a pseudofunctor, through Rex: this is the key hypothesis. Then
one can show that the opfibration U: [F — A is a right adjoint. From its left adjoint
L: A — [F we can construct a structured cospan double category ; Csp(X) by taking

X = JF.

And in fact, under the hypotheses given, the structured cospan double category ;Csp(X) is
not only equivalent but isomorphic to the decorated cospan double category FCsp.
In short:

Theorem 3.5. Let A be a category with finite colimits and F : (A, +) — (Cat, X) a symmet-
ric lax monoidal pseudofunctor. Suppose the resulting pseudofunctor F: A — SymMonCat
factors through Rex. Then U: [F — A has a left adjoint L. Furthermore, the structured
cospan double category [ Csp is isomorphic as a symmetric monoidal double category, to
the decorated cospan double category FCsp.

Proof. This is [9, Thm. 4.1]. o

This lets us see certain structured cospans as decorated cospans. The converse question
is also interesting: when is a structured cospan double category equivalent to a decorated
cospan double category? We believe this is true under certain conditions that let us pass
from the functor L: A — X to an appropriate pseudofunctor F: A — Cat. For details, see
[9, Sec. 7]. However, the program outlined there has not yet been completed. Thus, we
pose this challenge:
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Challenge 3.6. Find necessary andjor sufficient conditions for a symmetric monoidal dou-
ble category to be equivalent to some decorated cospan double category, and vice versa.

Next we turn from these rather abstruse issues to something simpler: an example of how
we use structured cospans.

4. PETRI NETS

Here is a Petri net:

Ot=n

We can use Petri nets to describe processes where collections of things move between the
yellow circles, called ‘places’, by going through the aqua boxes, called ‘transitions’. Petri
nets are widely used as models of systems in engineering and computer science [47, 76].
One of the simplest examples of the resource sharing paradigm is the theory of open Petri
nets [19], which lets us build Petri nets out of smaller pieces. We can construct a double
category with open Petri nets as loose morphisms using the theory of structured cospans.
There are many possible semantics for open Petri nets, but we shall only describe one,
where ‘tokens’ move from place to place via transitions. This gives an excuse for studying
maps between structured cospan double categories. We also take a look at how to use the
2-cells in double categories of open systems.

While various subtly different definitions are useful [14], here we take a Petri net to be
a pair of finite sets S and T and functions s,¢: T — N[S]. Here S is the set of places, T is
the set of transitions, and N[S] is the underlying set of the free commutative monoid on
S. Thus, elements of N[S] are finite formal sums of species, and each transition goes from
one such formal sum to another. For example, the source of the transition @ above is A+ B,
because this transition has one arrow coming into it from A and one from B. The target of
a is is C, since it has one arrow going out to C. We can summarize all this information by
writing

A+BSC

Similarly, we can write the other transition as

cZ o,

Beware: @ and § are not morphisms in a category! They are just transitions in a Petri net.
But next we shall see how a Petri net can generate a symmetric monoidal category, with
the transitions giving morphisms.

To do this, we define a marking of a Petri net s,¢: T — N[S] to be an element of N[S].
Thus, it assigns to each place a natural number. We think of this as specifying a number
of tokens in each place. We commonly draw these tokens as dots in the yellow circles that
represent places. For example, given this Petri net:

W—E—
(s fe=
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the marking A + 2B would be written as follows:

We change the marking using transitions. For example one token of type A and one of type
B can enter the transition «, and a token of type C can come out, giving this marking:

i

§

Then the token of type C can enter the transition 3, and two of type B can come out, giving

this marking:

It is natural to think of these ways of changing a marking as morphisms in a category where
markings are objects. This is a symmetric monoidal category, but of a very strict sort: the
tensor product commutes on the nose! The reason is that markings form a commutative
monoid, namely the free commutative monoid on the set of places.

A commutative monoidal category is a symmetric monoidal category (C, ®) such that
the associators @,p.: (@ ® b) ® ¢, unitors 4,: I® a — a, p: a® I — a, and even the
symmetry isomorphisms 0,;: a ® b — b ® a are all identity morphisms. Thus, for all
objects a and b and morphisms f and g in C we have

N

a®b=b®aand fRg=gQ f.

We let CMC be the category whose objects are commutative monoidal categories and
whose morphisms are strict symmetric monoidal functors.

Another useful way to think of CMC is as the category of categories internal to the
category of commutative monoids. In this viewpoint, a commutative monoidal category
has a commutative monoid of objects and a commutative monoid of morphisms, and all
the category operations are monoid homomorphisms.

We can formalize the process of turning a Petri net P = (s,7: T — N[S]) into a com-
mutative monoidal category FP as follows. We take the commutative monoid of objects
Ob(F P) to be the free commutative monoid N[S']. Note that element of N[§ ] are markings
of P. We construct the commutative monoid of morphisms Mor(F P) as follows. First we
generate morphisms recursively, starting from the transitions of P:

e for every transition 7 € T we include a morphism 7: s(1) — #(7);

o for any object a we include a morphism 1,: a — a;

o for any morphisms f: a — b and g: @ — b’ we include a morphism denoted
f+g:a+d — b+ D toserve as their tensor product;

e for any morphisms f: a — b and g: b — ¢ we include a morphism go f: a — ¢
to serve as their composite.
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Then we mod out by an equivalence relation that imposes the laws of a commutative
monoidal category, obtaining the commutative monoid Mor(F P). The rest of the category
structure on F'P is straightforward.

We can extend F to a functor from Petri nets to commutative monoidal categories.
Indeed, there is a category Petri where Petri nets are objects and a morphism from the
Petri net s,¢: T — N[S] to the Petri net s/, : T — N[S’] is a pair of functions f: § —
S’,g: T — T’ such that the following diagrams commute:

7 5 NS 7 —5 N[S]
fl lN[g] fl lN[g]
7" —> N[S'] T —> N[S'],

s t

where N[g] acts to map any finite sum ) ; o; with o; € S to }; g(o;). For example, there is

a morphism from this Petri net:

2

o

mapping « and S to y and acting as the identity on the places A, B and C. Then, there is a
functor

to this one:

F: Petri — CMC

sending any Petri net P to the free commutative monoidal category F P that we have already
described. Moreover, this is a left adjoint [66, Thm. 5.1].

We should think of F as a ‘semantics’ for Petri nets, saying what they can ‘mean’. In
this semantics the ‘meaning’ of a Petri net P is the free commutative monoidal category
F P describing how tokens can move around from place to place. Thus we call F the token
semantics.

4.1. Open Petri nets. We now turn to ‘open’ Petri nets, and construct a double category
whose loose morphisms are open Petri nets. This lets us build Petri nets out of smaller
open parts, which allows us to study Petri nets and their semantics compositionally. For
example, here is a picture of an open Petri net from a finite set X to a finite set Y:

X Y

1o ®\ fes
N @(
3o+ ./ <15
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We shall think of it as a loose morphism in a double category and write it as P: X + Y for
short. Given another open Petrinet Q: Y + Z:

4
-\\@()

16
e /®

we can compose them and get an open Petrinet Qo P: X + Z:

IXFH @\ @( z
2o G e
e mTR,

To formalize this, first note that there is a functor R: Petri — FinSet sending any Petri
net to its set of places. This has a left adjoint L: FinSet — Petri sending any finite set
S to the Petri net with S as its set of places and no transitions [19, Lem. 11]. Since both
FinSet and Petri have finite colimits and L preserves them, Theorem 3.2 yields a symmetric
monoidal double category ;Csp in which:

e an object is a finite set,
e a tight morphism is a function,
e aloose morphism is an open Petri net, meaning a cospan in Petri of this form:

7N

L(X) L(Y)

e a2-cell is a map of open Petri nets, meaning a commutative diagram in Petri of
this form:

LX) —— p <% L(Y)

L(f) l @ l l L(g)

LX) —> P’ ¢— L(Y').
l [

To be more descriptive we call this double category Open(Petri).

We can equivalently describe open Petri nets using decorated cospans. There is a sym-
metric lax monoidal pseudofunctor F: (FinSet, +) — (Cat, X) such that for any finite set
S, the category F(S) has:

e objects given by Petri nets whose set of places is S,
e morphisms given by morphisms of Petri nets that are the identity on the set of
places.
By Theorem 3.4 this gives a symmetric monoidal double category FCsp. Using Theo-
rem 3.5 we can show that FCsp is isomorphic, as a symmetric monoidal double category,
to Open(Petri). However, it seems simpler to work with open Petri nets using structured
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cospans. We begin by using them to define a semantics for open Petri nets. This illus-
trates a general method for constructing double functors between structured cospan double
categories.

4.2. The token semantics for open Petri nets. We have described a ‘token semantics’
mapping Petri nets to commutative monoidal categories. Now we would like to go further
and extend this to a semantics for open Petri nets. This should send open Petri nets to ‘open
commutative monoidal categories’.

To define these, we use the left adjoint functor L’ : Set — CMC sending any set X to the
free commutative monoidal category on this set, which has N[X] as its set of objects, and
only identity morphisms. The category CMC is cocomplete [19, Thm. 16]. Thus, all the
machinery is in place to use Theorem 3.2 to define a symmetric monoidal double category
1 Csp where:

e an object is a set,
e a tight morphism is a function,
e aloose morphism is an open commutative monoidal category, that is, a cospan

in CMC of the form
C
VAR

L'(X) L'(),

e a2-cell is a map of open commutative monoidal categories, that is, a commuta-
tive diagram in CMC of the form

I — ¢ < 1)

L'(f) l @ l l L'(g)

Ly - ¢ &,
To be more descriptive we call this double category Open(CMC).
Next, we want to parlay the operational semantics for Petri nets
F: Petri » CMC

into an operational semantics for open Petri nets, which should be a symmetric monoidal
double functor

Open(F): Open(Petri) —» Open(CMC).
To do this, we can use a general method for constructing double functors between struc-
tured cospan double categories:

Theorem 4.1. Suppose we have a square in Cat:

where X and X' have pushouts, F| preserves pushouts and « is a natural isomorphism.
Then there is a double functor F: [Csp — [, Csp such that
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e on objects and tight morphisms, F acts as F,
e [ sends any loose morphism

La) —— x <°— L)
to
Fi()a, Fi(o)ay
L'(Fo(a)) —— Fi1(x) «———— L'(Fo(b))

o F sends any 2-cell

L) —— x <% L)

L(f) l Y l l L(g)

L) —> v < Lo

to

Fi(Day, Fi(o)ay
L' (Fo(a)) ———> F1(x) «——— L'(Fo(b))

L'(Fo(f)) Fi(y) L'(Fo(g))

Fi(i)ay Fi(o)ay

L'(Fo(d)) ——— Fi(x') &——— L'(Fo(0")

Proof. This is [7, Thm. 4.2]. A double functor involves extra structure besides that men-
tioned above, and the theorem describes that extra structure for F. m]

As usual, this result has an enhancement that covers the symmetric monoidal case. This
is most easily stated using Rex, the 2-category of categories with finite colimits introduced
in Section 3.3.

Theorem 4.2. Suppose we have a square in Rex:

L
A—>X
F()J/ U a J/F]
L/
A/ > Xl
Then the double categories | Csp and ,Csp become symmetric monoidal as in Theorem
3.2, and the double functor F: [Csp — 1/ Csp is symmetric monoidal.

Proof. This is [7, Thm. 4.3]. For a double functor to be symmetric monoidal is not just a
property: it involves extra structure, and the theorem describes this extra structure. O

We can apply these results if we note that the free commutative monoidal category on
the free Petri net on a finite set S is naturally isomorphic to the free commutative monoidal
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category on S, so this square commutes up to some natural isomorphism a:

L
FinSet — Petri

ll Ja lF
Ll
FinSet - CMC

Furthermore this is a square in Rex. We thus obtain a symmetric monoidal double functor
F: ;Csp — 1 Csp, which we call

Open(F): Open(Petri) - Open(CMC).
This double functor is the token semantics for open Petri nets.

4.3. The uses of 2-cells. As mentioned, one rationale for the double category approach to
open systems is that the composition of these systems is associative only up to isomomor-
phism. But there are other advantages to using a double category. For example, the 2-cells
can be used to describe maps from simple open systems to more complicated ones, and
vice versa.

Here is a simple open Petri net which describes how an ionized hydrogen atom H* and
a hydroxyl ion OH™ combine to form water:

@qw

There is an obvious ‘inclusion’ 2-cell from the above Petri net to this larger one:

X Y’

1o

20>

O
M e

Vet

Hydrogen has two stable isotopes, the usual one H and a heavier one called deuterium, D.
In this second Petri net we are including a second reaction involving deuterium, which can
create so-called ‘heavy water’ D,O.

Conversely, there is a 2-cell from the second open Petri net to the first which forgets the
difference between H and D, maps the transitions @ and @’ to @, and maps the sets X’ and
Y’ to X and Y in the obvious way.

This example may be too simple to be interesting to chemists, but it illustrates two key
uses of 2-cells in structured cospan double categories:

e We can include a simpler model of an open system in a more complicated one.
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e We can project a more complicated model of an open system down to a simpler
one.

Both processes are important in modeling. As we continue to change a model of an open
system, either refining it or simplifying it, we should not have to treat each model we build
as a separate, isolated entity. It is better, when possible, to keep track of 2-cells between
them. This lets us treat the history of the modeling process as a formal entity in its own
right.

Furthermore, the category of loose morphisms and 2-cells between them may have pull-
backs. This is true, for example, of Open(Petri). These pullbacks let us build more compli-
cated open systems from simpler ones, in a process that modelers—somewhat confusingly
to mathematicians—call ‘stratification’. To see how pullbacks have been used to stratify
Petri nets in the sphere of public health modeling, see [5].

4.4. Whole-grain Petri nets. There are various alternative notions of Petri net beside the
one we have been using here [14]. While it is a digression, we would be remiss not to
mention Kock’s ‘whole-grain Petri nets’ [60], for two reasons. First, when people imple-
ment open Petri nets using structured cospans in category-based software, they often use
whole-grain Petri nets [4, 5]. Second, while the Petri nets discussed so far present only
free commutative monoidal categories, whole-grain Petri nets have the ability to present
free strict symmetric monoidal categories.

In the Petri nets discussed so far, the arrows between places and transitions have no real
individuality: permuting them has no effect. Thus, instead of drawing a finite set of arrows
from B to 7 or from 7 to C in this picture:

it would be more honest to put a natural number on each arrow, like this:

F=(c)

G

However, in a whole-grain Petri net there really is a finite set / of arrows called input arcs
going from places to transitions, and a finite set O of output arcs going from transitions to
places.

More precisely, a whole-grain Petri net is a diagram of finite sets

S < I > T < o > S.

A morphism of whole-grain Petri nets, sometimes called an etale map, is a diagram

I

\
I4
> s

S < I > T 4 0
L "l
0/

i / N T L
S\ I /T\
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Without the pullback conditions here, there would be a map from this whole-grain Petri

net:

e

Just as there is a left adjoint functor

F: Petri » CMC,

B=(c)

to this one:

there is a left adjoint
Fug: wgPetri — SSMC

from the category wgPetri of whole-grain Petri nets and etale maps to the category of strict
symmetric monoidal categories and strict symmetric monoidal functors. Just as the functor
F gives rise to a symmetric monoidal double functor

Open(F): Open(Petri) — Open(CMC),
the functor Fyg4 gives a symmetric monoidal double functor
Open(Fyg): Open(Petriyg) — Open(CMCyyg).
Moreover, there is a square of symmetric monoidal double functors, commuting up to
isomorphism:

. Open(F)
Open(Petriyg) ——— Open(SSMC)

Open(H) \[ Open(G)
Open(Fyg)

Open(Petri) —— > Open(CMC)

where Open(G) comes from a left adjoint functor G : Petriyg — Petri, and Open(H) comes
from a left adjoint H: SSMC — CMC. For details, see [14, Sec. 9].

5. DYNAMICAL SYSTEMS

Next we consider a double category of open dynamical systems, defined using decorated
cospans. There are many kinds of dynamical system, but we shall discuss only one, as an
example: a vector field v on R", which we can treat as simply a function v: R" — R”". This
determines a first-order ordinary differential equation

d
75O = v(x(®) 6]

which describes how a point x(f) € R" depends on time ¢ € R. Higher-order ordinary dif-
ferential equations can be put into first-order form by including extra variables. In physics
we commonly treat R” as the set of states of some system, and use a differential equation
as above to describe how states evolve in time.
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More conceptually, we can replace R” with RS where S is any finite set, whose elements
we call variables. To each variable a € S we associate a real-valued function of time, say
[a]: R — R. The function x: R — RS contains the information in all these functions. We
can drop the brackets and use the same notation for the variables and their corresponding
functions, but for expository purposes we wish to clarify the distinction between them.

To make this idea precise we should single out some class of vector fields: for example
continuous, smooth, etc. There is a lot of flexibility here. If we restrict to smooth bounded
vector fields, the differential equation will have a unique solution for all times for any
initial data x(0), and this solution x(¢) will be a smooth function of time. However, in
our applications to Petri nets in Section 4, we need smooth vector fields that may not be
bounded. For the sake of specificity, we shall use these. Beware: in this case, while the
differential equation is guaranteed to have a smooth solution ‘locally in time’ for any initial
condition x(0), the solution may shoot off to infinity and become undefined after a while.

With these decisions made, for any finite set S we define

D(S) = {v: RS — R5| v is smooth}.
We define a dynamical system to be a finite set S together with an element of D(S). We

then define an open dynamical system to be a cospan of finite sets where the apex, say S,
is decorated by an element of D(S):

X/‘S’XY

How can we compose open dynamical systems? Let us look at an example. Consider
this open dynamical system:

{a, b}
VAN
{a} {b}

v ED(S)

v € D(RIbh

where for simplicity the functions i and o map each variable to the like-named variable.
The dynamical system here specifies the differential equations

d|

= by

d[b] @
DL~ v m)

where [a], [p]: R — R are the functions associated to the variable names a, b € X.
Suppose we compose the above open dynamical system with the following one:

w € DR

{b,c}
7 X
{b} {c}



DOUBLE CATEGORIES OF OPEN SYSTEMS: THE COSPAN APPROACH 23

which describes the differential equations

dlb

DL~ e

o 3)
UL = v ien

Since we compose cospans by taking pushouts, the composite will be of the form

{a,b,c

} u € D(Rlabchy
7N
{a} {c}

where u is some vector field.

What should u be? We want to combine Equations (2) and (3) somehow, identifying
the variable b in the first set of equations with the like-named variable in the second set—
not because they happen to have the same name, but because those variables get identified
when taking the pushout. Since we have two different equations describing d[b]/dt, we
need to reconcile these somehow. We do what a physicist would do, and add the right-
hand sides of these equations:

dla)

L = vdal b

dlb

_([h] = w((al, [b]) + w(IB1, [c]) )
d[c]

= wblled

Since [b] is changing for two different reasons, we sum those effects. This is a nontrivial
decision on our part, and we could decide to do something else. But this choice is surpris-
ingly effective. For example, in classical mechanics, when an object is affected by several
forces, the rate of change of its velocity is the sum of the rates of change you would predict
from each force individually. In chemistry, when molecules of a certain sort are getting
created by several reactions simultaneously, the rate at which their number changes is the
sum of the rates of change due to the various individual reactions. We shall see examples
of both kinds.
From Equation (4) we can read off the vector field u:

u(lal, [b], [c]) = (va(lal, [B]), vi(lal, [b]) + ws([D], [c]), we([B], [c])).

But how do we formalize this method of composing open dynamical systems in general,
not just in this one example? We can use theory of decorated cospans.

First, we need some generalities. Given any function f: S — S’ between finite sets, we
define the pullback f*: RS" — RS to be the linear map given by

T W) = y(f(s))

for all ¥ € RY’, s € S. This defines a contravariant functor from FinSet to FinVectg, the
category of finite-dimensional real vector spaces and linear maps. We define the pushfor-
ward f,: RS — RS by
FXOCOETD S0
{seS:f(s)=5"}
for all ¥ € RS, s € S. This defines a covariant functor from FinSet to FinVectg.
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Then, we can show there is a symmetric lax monoidal functor D: FinSet — Set such
that:

e D maps any finite set S to
D(S) = {v: RS — R¥| v is smooth},

e D maps any function f: S — S’ between finite sets to the function D(f): D(S) —
D(S’) given by
D(f)(v) = fiovo f
forall v e D(S),
o the laxator ds 5. : D(S) X D(S") = D(S + S’) is given by

Os.5:(v,V)=i,ovoi'+i oV oi,

wherei: S - S +S"andi’: §" — § + §’ are the inclusions into the coproduct.
o the unitor is the unique map 6: 1 — D(0), since there is only one vector field on
the empty set.

For details, see [20, Sec. 6]. The laxator is chosen to create the summing effect we saw in
our earlier example.
Since every set gives a discrete category with that set of objects, we can reinterpret D as

a symmetric lax monoidal functor D: (FinSet, +) — (Cat, X). Since a functor to Cat is a
special case of a pseudofunctor, we can use Theorem 3.4 and obtain a symmetric monoidal
double category DCsp of open dynamical systems. In this double category

e an object is a finite set,

e a tight morphism is a function,

e aloose morphism from a finite set X to a finite set Y is an open dynamical system

S veD(S)
VA
X Y
e a2-cell is a commuting diagram
X ———>8§——vy ve D)
f h g
l'/ 0/
X’ S’ Y’ ve DS

in FinSet such that D(h)(v) = V'.

5.1. The open dynamical system equation. We have seen how open dynamical systems
can be composed. But we have not fully lived up to one of our claims: that we can use
double categories to study systems that interact with their environment. We have seen how
an open dynamical system

veDS)

X/‘S’XY
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determines a differential equation

d
d_tx(t) = v(x()).

However, this is a so-called ‘autonomous’ differential equation, in which the state of the
system at any time completely determines its future state, without the intrusion of any
influences from the outside world. So far, the open dynamical system interacts with other
systems only after we compose them as loose morphisms in DCsp. We now generalize to a
formalism where the outside world, not modeled by any particular dynamical system, can
affect an open dynamical system through its interfaces.

For example, return to this open dynamical system:

{a,b}
7N
{a} {b}.

Suppose we add terms to its differential equation, Equation (2), as follows:

u € D(RI4)

d

% = w(lal, [b]) + £

d[b] )
i up([al, [b]) + g(0)

Now the equation is no longer autonomous, because f and g are arbitrary functions of time.
They represent additional ‘external influences’.

More generally, let 7: R — R¥ and O: R — RY be arbitrary smooth functions of time.
We can compose these with the pushforward maps i,: R¥ — RS and 0.: RY — RS to
add extra terms to our autonomous differential equation, Equation (1), and obtain the open
dynamical system equation

dx(t)
dt

The minus sign is just a matter of convention. It breaks the symmetry between left and
right interfaces, so it may be considered undesirable. We could leave it out altogether.
However, we shall soon turn to some examples where the variables represent ‘stocks’ or
‘concentrations’—Iloosely, amounts of stuff—which change in time due to ‘flows’. Then it
is common to adopt a convention where flows from left to right are given a positive sign,
while flows in the other direction are given a negative sign. In this situation it is reasonable
to call / the inflow and O the outflow.

= v(x() + i.(I(1) — 0.(0() (6)

5.2. Classical mechanics. Let us see this formalism at work in classical mechanics. Sup-
pose we have two particles on the line, connected to each other by a spring. We can describe
them as a dynamical system with four variables, since each particle’s state is described by
one position variable g; and one momentum variable p;:

q1,P1 q2, P2
S{III0088000000000000000000 @

Suppose the ith particle has mass m; € R and the spring has spring constant k. The first
particle feels a force k(g, — ¢;) pulling it toward the second, while the second feels a force
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k(g1 — g2) pulling it toward the first. Since momentum is mass times velocity and force is
the time derivative of momentum, we have

d
d_tql(t) = pi(@®/m
d
d—Pl(t) = k(g2 — q1(®)
t
d (7
EQz(l) = p(t)/my
d
Epz(l) = k(qi(®) — q2(1)

Now we are acting like physicists and not distinguishing the variables g;, p; from the func-
tions [¢;]: R = R, [p;]: R — R they name. If we let

x(1) = (q1(0), p1(D), g2(1), p2(1)) € R

we can write Equation (7) more tersely as

d
7O = v(x()

where
v(q1, p1, g2, p2) = (p1/mi, k(g2 — q1), p2/m, k(g1 — q2)).

We can also treat this system as an open dynamical system, for example by decreeing
that the first particle is the left interface and the second is the right interface:

{q1. p1, 92, P2} v € D(R\91:P1:02:P2)
7N
{q1,p1) {q2, P2} -

What does the open dynamical system equation, Equation (6), look like in this case? For
simplicity suppose we take

1(n) = (0, F1 (1)), 0(1) = (0, F(0)).

Then the open dynamical system equation becomes

d

0 = pi1/my

d

P = k(g2 — q1) + F1()
d

7 = p2/my

d

i k(g1 — q2) — F2(0).

This system of equations describes two rocks connected by a spring where the first is
pushed to the right by an external force F(f) and the second is pushed to the left by an
external force F,(¢). If the sign convention here feels unnatural, the reader is free to get
rid of the minus sign in Equation (6), but we will try to justify the sign in the next two
sections.
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Exercise 5.1. Describe a system of three particles connected by springs:

q1, P1 q2, P2 q3, P3
LD DDA D DD DR

as an open dynamical system. To do this, compute the composite of two open dynamical
systems of the kind just described, regarded as loose morphisms in DCsp:

veDS) weD(T)
{q1, P1, 92, p2} {92, p2,q3, p3}

P

{q1. p1} {q2, p2} {g3. p3}.

Exercise 5.2. Figure out the open dynamical system equation for the system in Exercise
5.1, assuming the first particle feels an external force F(t) pushing to the left, while the
third feels an external force F5(t) pushing to the right. In this example the second particle
is not part of an interface, so it feels no external force.

The reader may wonder whether such an elaborate formalism is required to study three
rocks connected by two springs. It is not. What the formalism does is to make explicit
the physicist’s intuitive understanding of how to take two systems of differential equations,
each describing a physical system, and combine them to describe a larger system built from
those two parts. This should be useful both for mathematicians wishing to prove theorems
about composites of open systems, and also people who want to automate the process of
modeling composite systems.

The examples just discussed can be vastly generalized. For systems of finitely many
particles moving in R” and interacting by arbitrary forces, this is straightforward. It is
more challenging to generalize the framework to handle open Lagrangian systems where
the configuration space is a manifold, open Hamiltonian systems where the phase space is a
symplectic manifold , and port-Hamiltonian systems where the phase space is a Dirac man-
ifold. Much work has been done on these issues [11, 22, 30, 31, 65], but many interesting
open questions remain.

5.3. Black-boxing. Next let us take an open dynamical system and extract from it the
relations between externally observable quantities that holds whenever the system is in a
‘steady state’: a state where nothing is changing. The process of extracting this relation
is an example of what we call ‘black-boxing’, since it discards information that cannot be
seen at the interfaces. We shall see that it defines a double functor

m: DCsp — Rel

from the double category of open dynamical systems to the double category of relations.
The functoriality of black-boxing implies that we can compose two open dynamical sys-
tems and then black-box them, or black-box each one and compose the resulting relations:
either way, the final answer is the same.

Consider an open dynamical system F': X + Y given by the decorated cospan

X/‘S’XY

veDS)
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If we take its open dynamical system equation, Equation (6), and fix x, / and O to be
constant in time, we can treat them as vectors x € RS, I € RX, O € RY. Then the equation
reduces to

v(x) +i.(I) —0.(0) = 0.

Thus, we define a steady state with inflows / € RX and outflows O € RY to be a vector
x € RS for which the above equation holds. We define the black-boxing of our open
dynamical system to be the set

B(F) CR* x R¥ xRY xRY

consisting of all 4-tuples (i*(x),1,0*(x), O) where x € RS is a steady state with inflows
I € R¥ and outflows O € RY:

m(F) = {(i"(x),1,0°(x),0)| x € RS, I € R¥, O € R, v(x) +iu(]) = 0,(0) = 0}.  (9)

The idea is that black-boxing an open dynamical system records its ‘externally observable
steady state behavior’.
In the example from Section 5.2, with two particles connected by a spring, we get

n(F) = {((g1,0), (0. k(g1 — 42), (92, 0), (0, k(g1 — 42)) | 91,42 € R}..

This says that in steady state, the particles can be at rest in any position, with equal and
opposite forces acting on them, chosen precisely to counteract the force of the spring.
Of course this example is somewhat degenerate because every variable for the system is
‘exposed’, that is, also a variable for an interface. A more typical example would involve
three particles connected by springs, with the first particle being the left interface and the
second being the right interface:

q1, P1 q2, P2 q3, D3
S{III00000000 ei0000008000 e

Exercise 5.3. Black-box the composite system of Exercise 5.1, using the open dynamical
system equation obtained in Exercise 5.2.

Now let us return to the general theory. Given an open dynamical system F with left
interface X and right interface Y, we can think of m(F) as a relation from RX x RX to
RY x RY. There is a double category Rel where:

e an object is a set,
e a tight morphism from X to Y is a function f: X — 7,
e aloose morphism from X to Y is arelation R: X + Y, meaning a subset R C XXY,
e a2-cellis a square
R,
X —+— 1
Ry
X —+— 1

obeying (f X g)R; € Ry,
e composition of tight morphisms is composition of functions,
e composition of loose morphisms is the usual composition of relations,
e vertical and horizontal composition of 2-cells is done in the only way possible.
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The last item deserves some explanation. We say a double category is degenerate if given
any frame—that is, any collection of objects, vertical 1-morphisms and horizontal 1-cells
as follows:

M
X —+— "

there exists at most one 2-cell

M
X —+— 1

fl Ja lg
N
X +— 1

filling this frame. In a degenerate double category, like Rel, there is no choice in how to
define the vertical or horizontal composite of 2-cells once composition of loose and tight
morphisms is fixed. Thus we do not need to check the laws governing composition of
2-cells: we need merely check that the composites exist, which is easy to do in the case of
Rel.

In this language, black-boxing maps any loose morphism in DCsp, namely an open
dynamical system F: X + Y, to a loose morphism in Rel, namely

B(F): R*xRY » RY xR'.

This immediately leads to the question of whether black-boxing extends to a functor from
DCsp to Rel. We shall see it does.

Furthermore, the double category Rel is symmetric monoidal in a natural way, where
the tensor product of objects and tight morphisms is given by the cartesian product in
Set, while the tensor product of loose morphisms (i.e. relations) is given by the cartesian
product of their underlying subsets. We can now state the main theorem about black-
boxing:

Theorem 5.4. There is a symmetric monoidal double functor m: DCsp — Rel sending

e any finite set X to the vector space RX x RX,

e any function f: X — Y to the pushforward f,: R* xR¥ —» RY xRY,

e any open dynamical system F: X + Y to its black-boxing Wm(F) as defined in
Equation (9),

o any 2-cell to the only 2-cell with the appropriate frame.

Proof. A closely related theorem was proved at the level of categories in [20, Thm. 23].
It was shown that isomorphic open dynamical systems F: X + Y have the same black-
boxing m(F), and there is a symmetric monoidal functor from DCsp to Rel sending any
isomorphism class of open dynamical systems F: X + Y to m(F). (In fact it was shown
that this functor maps F to a relation of a special kind, called a ‘semialgebraic’ relation,
but this is irrelevant here.) At the level of double categories, this theorem implies that m
preserves composition of horizontal morphisms on the nose. Clearly it preserves compo-
sition of vertical morphisms. Since Rel is a degenerate double category there is at most
one choice of where B can send any 2-cell, and the symmetric monoidality of the double
functor m follows easily from the corresponding result at the level of categories. O
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The functoriality is the most interesting step in proving the above theorem. One needs
to check that when two open dynamical systems are composed, one can compose their
steady states to form a steady state of the composite system when the outflow of the first
steady state equals the inflow of the second.

5.4. Structured versus decorated cospans, revisited. Before moving on, let us briefly
return to a technical issue raised in Section 3.3. We used decorated cospans to define a
double category of open dynamical systems, DCsp. Can we define an equivalent double
category using structured cospans?

It seems not, but at present the main evidence comes from [9, Thm. 4.1]. This result says
we could define such a structured cospan double category if the natural lift of D: FinSet —
Cat to a pseudofunctor D: FinSet — SymMonCat factored through Rex. It also says that
in this case, the opfibration U: [D — FinSet would be a right adjoint. However, U is not
a right adjoint. After all, this would imply that for every S € FinSet the comma category
S | U has an initial object. But this is not true. Because the empty set is initial in FinSet,
the comma category 0 | U is just [D. This contains an object (0, vg), where vy is the only
possible vector field on R?, namely, the zero vector field. The only object in [D with any
morphisms to (0, vy) is (0, vp) itself, so no other object can be initial. However (0, vp) is
not initial either, because it has no morphisms to an object (S, v) unless v is the zero vector
field on RS,

While this argument is impressively technical, its conclusions are quite weak. It does
not imply that no structured cospan double category is equivalent to DCsp. It merely says
that one particular strategy for constructing such a structured cospan double category fails.

Challenge 5.5. Find conditions implying that a decorated cospan double category is not
equivalent to any structured cospan double category.

Luckily, there is a practical workaround in this case: a structured cospan category of
‘linearly parametrized” dynamical systems [1, Sec. 3.1]. Here instead of equipping a finite
set S with a fixed vector field v € D(S), we equip it with a parametrized family of vector
fields—or more precisely a finite set P and a linear map v: R” — D(S). We call S the set
of variables and P the set of parameters. This captures the fact that in physics and other
subjects, the vector fields describing time evolution often depend linearly on some P-tuple
of real numbers called ‘parameters’ or ‘coupling constants’.

There is a category ParaDynam for which:

e an object is a linearly parametrized dynamical system: a pair of finite sets S
and P and a linear map v: R — D(S);

e a morphism from (S, P,v) to (S’, P’,V’) is a pair of functions f: S — S’,q: P —
P’ making this square commute:

RP —> D(S)

Q*J/ J/f*o—of*

R —> D(S")

The category ParaDynam has finite colimits [1, Prop. 3.5], and the forgetful functor
U: ParaDynam — FinSet sending any linearly parametrized dynamical system to its set
of variables has a left adjoint L sending any finite set to the linearly parametrized dynam-
ical system with the empty set of parameters. Thus, we can construct a structured cospan
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double category of open linearly parametrized dynamical systems and show that it is sym-
metric monoidal [1, Prop. 3.9].

6. PETRI NETS WITH RATES

Even if we fix a class of dynamical systems, there are typically many choices of syntax
for describing these systems. This is certainly true of the dynamical systems we have just
discussed: systems of first-order ordinary differential equations. We explain one syntax
here, namely ‘Petri nets with rates’. These are used in chemistry, population biology,
epidemiology and other fields [5, 35, 51, 58, 88]. Here we describe a double category of
open Petri nets with rates, and a double functor from this to our double category of open
dynamical systems, DCsp. The easiest way to understand all this starts with chemistry.

6.1. Chemistry. Chemists sometimes use Petri nets where the places represent ‘chemi-
cal species’: different kinds of molecules, elements and ions. Then transitions represent
chemical reactions. For example, we can describe the formation of water from hydrogen
and oxygen molecules

2H; + O, — 2H,0

——
[ —

The transition in aqua here describes a reaction where two molecules of hydrogen and one
of oxygen become two molecules of water. We could use the token semantics described
in Section 4 to model how individual molecules react in this way. For example, there is a
morphism in the category F P from the marking

using this Petri net P:

Vi

to the marking

RV
|

However, chemists often deal with vast numbers of molecules in solution. Instead of count-
ing molecules individually they count them in ‘moles’: a mole is about 6 - 10>* molecules.
Then the ‘concentration’ of a given species, measured in moles per liter, is treated ap-
proximately as a smoothly varying real-valued function of time, and we want differential
equations describing how these concentrations change. For this chemists commonly use a
recipe called the ‘law of mass action’.
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It is easiest to explain this with an example. For the Petri net above, the law of mass
action gives these differential equations:

d

d—t[Hz] = =2r; [H2]*[Oy]
d ¢} = H,]? [0
d_t[ 2l = - [Hx]7[0O:]
d H,0] = 2r [H:]?[O
d_t[ 201 = 2r [Hp]7 [Oy].

Here [H>]: R — R is the concentration of hydrogen molecules as a function of time, and
similarly for [O;] and [H,O]. The constant r; € [0, c0) is the ‘rate constant’ of this par-
ticular reaction, which depends on various environmental conditions. All the time deriva-
tives are proportional to [H21? [O5], because this chemical reaction takes two hydrogen
molecules and one oxygen molecule as inputs. We should imagine molecules randomly
moving around; then the probability that two H, molecules and one O, molecules are in
the same very small region of space is approximately proportional to [H,]? [O,]. The time
derivative of [H;] is also proportional to —2, because 2 hydrogen molecules get destroyed
in this reaction. Similarly, %[02] is proportional to —1 because 1 oxygen molecule gets
destroyed, and %[HZO] is proportional to 1 because one water molecule gets created.

Generalizing from this example, we can state the law of mass action precisely as fol-
lows. We start with a Petri net with rates, meaning a Petri net s,¢: T — N[S] together
with a function r: T — [0, c0) assigning to each transition 7 € T a nonnegative real num-
ber r(7) called its rate constant. In chemistry the elements of S are called species rather
than places.

From our Petri net with rates, we get a differential equation

d
d—tx(t) = v(x(1))

called the rate equation describing the evolution of a function x: R — RS. This function
specifies the concentration of each species as a function of time. The vector field v on RS
is given by law of mass action:

v(x) = )" r(T) (1(7) = s(r)x (10)

Tel

where x € RS. The notation here requires some explanation. We think of #(r), s(t) € N[S]
as vectors in RS. Their difference #(1) — s(1) says, for each species, the number of tokens
of that species created by the transition 7 minus the number destroyed. Finally, we define

20 = [

ieS

Here for any i € S we write x; € R for the ith component of x € RS, i.e., the concentration
of the ith species. Similarly, we write s(7); for the ith component of s(7) € RS.
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Exercise 6.1. Here is a Petri net with rates:

=
7Z.

Transitions are labeled with their rate constants. The transition with rate constant r;
represents the oxidation of hydrogen to form water as before, while the transition with
rate constant r, represents the decomposition of hydrogen peroxide. Use the law of mass
action to derive the following differential equations:

d

E[HZ] = —2r;[H2]*[Oy]

d 2 2

E[OZ] = —r [Hz] [O2] + 1, [Hy O]

d H,0,] = -2r,[H,0,]?

E[ 2002] = -2r[Hx0]

d 2 2
E[Hzo] = 2r [H2]7[O2] + 21, [H2O,]°.

6.2. Open Petri nets with rates. Now we consider open Petri nets with rates, and explain
a semantics mapping them to open dynamical systems. The first step is to define a category
of Petri nets with rates. Then we use decorated cospans to construct a double category of
open Petri nets with rates. Then we use a general recipe for constructing maps between
decorated cospan categories. Readers uninterested in Petri nets with rates may still be
interested in this general recipe, Theorem 6.2, since it is the decorated cospan analogue of
Theorems 4.1 and 4.2 for structured cospans.

The first step is simple enough. There is a category whose objects are Petri nets with
rates, where a morphism from

[0,09) +—— T ==} N[S]
to
[0, 00) «L— T ;; N[S']
is a morphism of the underlying Petri nets whose map g: T — T’ obeys

ri') = Z r(t)
{reT:g(1)=1"}

for all 7 € T’. For example, if S = {A, B} there is a morphism in F(§) from this Petri net

with rates:
a0
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@O—E
ifandonly if r3 = r; + ry.

Next, to construct a double category of open Petri nets with rates, we note that there is
a symmetric lax monoidal pseudofunctor

F: (FinSet, +) — (Cat, x)

to this one:

such that for any finite set S':

e an object of F(§) is a Petri nets with rates whose set of places is S,
e a morphism is a morphism of Petri nets with rates that is the identity on the set of
places.

By Theorem 3.4, F gives a symmetric monoidal double category FCsp, which we call
the double category of open Petri nets with rates. In this double category

e an object is a finite set,

e a tight morphism is a function,

e a loose morphism from a finite set X to a finite set ¥ is an open Petri net with
rates, meaning a cospan of finite sets

X5ty
decorated with a Petri net with rates
[0,00) +—— T ==} NIS],
e a2-cell is a map of cospans of finite sets

X552y

il e

X —> 8 Y.
l o

together with a morphism of decorations, namely a morphism of Petri nets with
rates from

[Qaﬂeié—T:j%in]
to
[0, 00) " T —=¢ N[S"]

where the map from S to S’ is a.

Now we are ready to define a semantics mapping open Petri nets to open dynamical
systems. Recall that in Section 5 we used decorated cospans to construct a symmetric
monoidal double category DCsp of open dynamical systems. This was built using a sym-
metric lax monoidal pseudofunctor

D: (FinSet, +) — (Cat, x)
that maps any finite set S to the discrete category on the set

{v: RS - Rsl v is smooth}.



DOUBLE CATEGORIES OF OPEN SYSTEMS: THE COSPAN APPROACH 35

Our desired semantics should be a symmetric monoidal double functor
: FCsp — DCsp

sending any open Petri net with rates to an open dynamical system. This was already
defined at the level of categories in [20, Sec. 7], where it was called ‘gray-boxing’, since
it obscures some but not all of the details of an open Petri net. To boost this result to
the double category level, we use the following general recipe for defining maps between
decorated cospan double categories.

Theorem 6.2. Given categories A and A’ with finite colimits, lax monoidal pseudofunc-
tors F: (A, +) — (Cat,x) and F’': (N',+) — (Cat, X), a finite colimit preserving functor
H: A — A’, a lax monoidal pseudofunctor E : (Cat, xX) — (Cat, X) and a monoidal natu-
ral transformation 6 as in the following diagram:

F
A — Cat
H ue E
A T Cat

we obtain a double functor ®: FCsp — F’'Csp. If F,F’ and E are symmetric, then
®: FCsp — F’'Csp is a symmetric monoidal double functor.

Proof. This is [9, Thm. 2.5], which provides the details of how ® is defined. O

Let us take the square in this theorem to be
. F
FinSet ——> Cat
1 le 1

D
FinSet ——> Cat.

Here 6 is a monoidal natural transformation given as follows. For any finite set S, 65 : F(S) —
D(S) maps any Petri net with rates

[0, 00) ¢ T :j;N[S]

to a smooth vector field on RS, say v. This vector field is defined using the law of mass
action, as explained in Section 6.1. Namely, for any x € RS, we set

v(x) = ) r(@) (1) = s(r)x

el

¥O = 1_[ ;@

ieS
and we think of #(7), s(r) € N[S] as vectors in RS. That 6 is monoidal follows from [20,
Thm. 18]. Thus, it defines a symmetric monoidal double functor = : FCsp — DCsp.

where
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One of the simplest consequences of this result is that we can get an open dynamical
system equation from an open Petri net with rates, following the ideas in Section 5.1. For
example, consider this open Petri net with rates:

1ot

(v
s
M

gives this open dynamical system equation

d
E[H+] = —r[H'][OH™] + I,(n)
%[OH‘] = —r[H'][OH ] + L()
d
71201 = r[H']1[OH™] - O5().

6.3. Applications. One might hope that open Petri nets with rates would help mathemat-
ical chemists prove new theorems. So far, things have worked out quite differently. Their
main application so far has been to software for epidemiology!

Shortly after the formulation of structured cospans, the world was hit with a pandemic.
At this time Fairbanks and Patterson were developing Catlab [26], a framework for applied
and computational category theory, written in the Julia language. Fairbanks had already
implemented decorated cospans in Catlab—but in 2020, Patterson wrote the first version
of structured cospans in this framework, specifically so that Fairbanks and Halter could
implement open (whole-grain) Petri nets with rates. Soon the team applied these to recre-
ate part of the UK’s main COVID model [75]. There is by now a well-developed software
package to build and manipulate open Petri nets in Catlab, called AlgebraicPetri [4]. This
works together with a package for open dynamical systems developed by Libkind, called
AlgebraicDynamics [3]. AlgebraicDynamics is able to use either the variable sharing par-
adigm or the input-output paradigm.

All this work attracted the attention of Osgood and Li, computational epidemiologists
who helped run COVID modeling in Canada. These experts pointed out that in public
health modeling, ‘stock and flow models’ are more widely used than Petri nets with rates.
They are similar to Petri nets with rates, but more general in some ways and less so in
others. On the one hand, stock and flow models only allow transitions with either:

e one species as input and one as output (e.g. the transition of a patient from one
state to another),

e one species as input and none as output (e.g. death), or

e 1o species as input and one as output (e.g birth).

On the other hand, they can describe dynamics more general than given by the law of mass
action, and this is crucial in epidemiology.

Working with the Catlab team, Osgood and Li developed a software package called
StockFlow to handle open stock and flow models [17, 86]. Osgood’s student Redekopp
also developed a user-friendly web-based front end for StockFlow, called ModelCollab
[16, 68]. For expository papers explaining all this software in more detail, see [16, 62].

This software has the following advantages over traditional software:
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o Compositionality. Rather than merely a piece of code, each model is a crisply
defined mathematical structure designed from the start to be easily combined with
other models: for example, a structured or decorated cospan. This lets models of
specific subsystems be constructed individually by different domain experts, and
then composed to form larger models, supporting ongoing collaboration between
these parties.

o Functorial semantics. There is a clear distinction between a model and a spe-
cific way of extracting information from this model. This is achieved by treating
different ways of extracting information from models as different functors.

e Ease of stratification. One can ‘stratify’ models—that is, create more detailed
models by subdividing stocks in an existing model—without rewriting the whole
model from scratch by hand. This is achieved using pullbacks.

So far, the software mentioned above does not make explict the double categorical na-
ture of structured or decorated cospans, though it is implicit. Patterson is working on a
new software platform, CatColab [25], based on ‘double categorical doctrines’. However,
this use of double categories is different from working with double categories of open sys-
tems. On the other hand, the UK agency ARIA is running a project for safeguarded Al
which may develop software using Libkind and Myers’ work on double categories of open
systems [63, 64, 71]. We say a bit about their work in Section 7.3.

Eventually people may prove theorems about the dynamics of open Petri nets with rates,
but this has not happened yet. One reason is that few have tried. Another is that while there
are many interesting theorems in mathematical chemisty [39, 40, 55], and challenging
problems such as the Global Attractor Conjecture [32], the Persistence Conjecture and the
Permanence Conjecture [34], few involve Petri nets. Far more involve ‘reaction networks’.

Petri nets and reaction networks are often considered equivalent formalisms. For exam-

| : (®)
®_E“C’ ®

corresponds to this reaction network:
A«—B+C—2D+E.

The reaction network is a graph where each edge corresponds to a transition of the Petri
net, while each vertex corresponds to a so-called ‘complex’: a sum of species that is the
source or target of some transition. However, we compose open Petri nets by identifying
species, while individual species are not a visible part of a reaction network. This leaves
us with two challenges:

Challenge 6.3. Prove theorems about the qualitative dynamics of open Petri nets with
rates, perhaps building on existing results about Petri nets with rates, for example as in
[33, 35], where they are called ‘directed species-reaction graphs’.

Challenge 6.4. Develop a framework for open reaction networks suitable for generalizing
existing results on reaction networks and invariants such as the ‘deficiency’ of a reaction
network [39, 40].
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7. THE VARIABLE SHARING PARADIGM

As mentioned in Section 1, there are several paradigms for open systems. Here we are
solely focused on the ‘variable sharing paradigm’, where we compose open systems by
gluing them together, or identifying variables. While we have tried to explain how struc-
tured and decorated cospans let us work within this paradigm, we have not yet analyzed
which features are distinctive of this paradigm. We turn to this question now.

When he first discovered decorated cospans, Fong was studying electrical circuits [12,
42, 43]. He noticed that electrical circuits can be composed in very flexible ways. A
circuit can have any number of wires coming out of it, with no fundamental distinction
between inputs and outputs. We can compose circuits by arbitrarily connecting their wires.
Furthermore:

e We can take two wires coming out of a circuit and join them, getting a new circuit
with one fewer wire coming out.

o

e We can add an extra wire to a circuit that doesn’t actually connect with anything,
getting a new circuit with one more wire coming out.

o—

e We can take any wire coming out of a circuit and split it, getting a new circuit with
one more wire coming out.

e We can take a wire coming out of a circuit and cap it off, getting a new circuit with
one fewer wire coming out.

These constructions obey all the rules of a ‘special commutative Frobenius monoid’,

meaning the associative law:

the left and right unit laws:

the commutative law:
>XO—=Dr

where >X denotes two wires crossing over each other, together with the ‘Frobenius equa-

S

and finally the ‘special’ law:

—O—=——



DOUBLE CATEGORIES OF OPEN SYSTEMS: THE COSPAN APPROACH 39

By composing some of these operations we can create a ‘cup’ and a ‘cap’:

DS =D CeeC

These allow us to bend wires around. Moreover, thanks to the Frobenius monoid laws, the
cap and cup obey the so-called ‘zigzag identities’:

— —
— - N
_ N

Fong noticed that all these are general features of decorated cospan categories. Every
object in a decorated cospan category is a special commutative Frobenius monoid internal
to that category, in a canonical way. Furthermore, all these Frobenius structures fit together
to make the category into a ‘hypergraph category’—a concept which, while apparently
quite complicated, had already proved its importance by independently being discovered
by multiple authors in different contexts [24, 46, 69, 57, 79].

Definition 7.1. A hypergraph category is a symmetric monoidal category (C,®) where
each object a € C is equipped with a multiplication y,: a® a — a, unit n,: I — a,
comultiplication 6,: a — a ® a, and counit €,: a — I, obeying the laws of a special
commutative Frobenius monoid and satisfying

Hagh = (Ha® pp)(1a ® 0pa ® 1p)
Tagb = Ta®@Mp

6a®b = (1 ® Tba ® 1)(6a ® 617)
€oh = € 0€

where 0,,: a®b — b ® a is the symmetry, as well as
m=1l=«
where I is the unit for the tensor product.

Later, Fong and Spivak gave a slick equivalent definition of hypergraph category using
operads built from categories of cospans [45]. However, since they were working with cat-
egories rather than double categories, we can only apply their work to a double category D
by forming the category D whose morphisms are isomorphism classes of loose morphisms
in D. To get around this, we shall try to recapitulate some of their work using double cat-
egories. In the end this suggests two possible concepts of ‘hypergraph double category’:
one that categorifies their definition, and another that categorifies Definition 7.1.

More precisely, in Section 7.1 we show that any symmetric monoidal structured or dec-
orated cospan double category D has a kind of ‘exoskeleton’ where the loose morphisms
are trivially structured or decorated cospans. These can be seen as cospans in Dy, the cat-
egory of objects and tight morphisms of D. In Section 7.2, we show that this exoskeleton
Csp(Dyp) in turn has an ‘outer shell’ where the loose morphisms are cospans built up using
only the objects of Dy and the operations present in any category with finite colimits. More
precisely this outer shell is Csp(Dy), where Dy is the free category with finite colimits on
the objects of D. We show there are symmetric monoidal double functors

Csp(Dy) ER Csp(D) - D.

In Section 7.3 we use the outer shell to motivate Libkind and Myers’ definition of hyper-
graph double category [64, Ex. 8.11], which categorifies Fock and Spivak’s slick definition
of hypergraph category. In Section 7.4 we show that any object in a symmetric monoidal
structured or decorated cospan double category is a categorified version of a commutative
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Frobenius monoid. This suggests a route to categorifying the old definition of hypergraph
category, Definition 7.1.

7.1. The exoskeleton. One common feature of decorated and structured cospans is a cer-
tain relationship between ‘interfaces’ and ‘open systems’. Namely, in both formalisms,
any cospan of interfaces can be seen as a degenerate case of an open system. For example,
a typical open Petri net might look like this:

X Y

@—(5), |

1 e e 3

2,/2 <\

N—{al—(0)

But sometimes an open Petri net has no transitions:

X Y

ON
@
et <\~. 4

©

A Petri net with no transitions amounts to the same thing as a cospan of finite sets:

X M Y

Bed]
A \\-3
It
—/// \
c

1 o]

2 o

In this example finite sets are playing the role of ‘interfaces’, while open Petri nets are
our ‘open systems’. So, we are seeing that a cospan of interfaces is a degenerate open
system. The only significant use of this degenerate open system is to glue other open
systems together, by composition. But as we shall see, this is quite important.

We can formalize this fact as follows. First, since structured and decorated cospan cate-
gories behave so similarly, let us lump them together in the following ungainly definition:

Definition 7.2. We define D to be a double category of structured/decorated cospans if
it is either
(1) the double category (Csp of structured cospans arising from a functor L: A — X
meeting the hypotheses of Theorem 3.1, or
(2) the double category FCsp of decorated cospans arising from a lax monoidal
pseudofunctor F: (A, +) — (Cat, X) meeting the hypotheses of Theorem 3.3.

In either of these cases, we say D is a symmetric monoidal double category of struc-
tured/decorated cospans if

(1) the hypotheses of Theorem 3.2 hold, so D = [Csp is symmetric monoidal, or
(2) the hypotheses of Theorem 3.4 hold, so D = FCsp is symmetric monoidal.

Second, let us note a fact about cospan double categories:
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Lemma 7.3. For any category A with pushouts there is a double category Csp(A) in which:

e objects are objects of A,

e tight morphisms are morphisms in A, composed in the same way,
e loose morphisms are cospans in A, composed via pushouts,

o 2-cells are maps of spans in A, composed via pushouts.

When A has finite colimits, Csp(A) naturally has the structure of a cocartesian double
category, and thus becomes symmetric monoidal using finite coproducts in A.

Proof. This is a special case of Theorems 3.1 and 3.2, taking L: A — X to be the identity
functor, but most of these facts were known earlier [72, 82]. O

Third, for any double category D, define its tight category Dy to be its category of
objects and tight morphisms. When D is a structured/decorated double category, cospans
in Dy are what we are calling cospans of interfaces.

With these preliminaries out of the way, we can formalize the idea that a cospan of
interfaces is a degenerate sort of open system:

Theorem 7.4. Let D be a double category of structured/decorated cospans. Then there is
a double functor

t: Csp(Dy) — D,
unique up to isomorphism, that restricts to the identity functor on Dy. If D is symmetric

monoidal, then ¢ can be given the structure of a symmetric monoidal double functor.

Proof. We divide the proof into the three lemmas, which occupy the rest of this section.
Lemma 7.5 proves existence for structured cospans, Lemma 7.6 proves existence for dec-
orated cospans, and Lemma 7.7 proves uniqueness up to isomorphism in both cases. O

Lemma 7.5. Let L: A — X be a functor, X a category with pushouts, and ;Csp the double
category of L-structured cospans. Then there is a double functor 1. Csp(A) — Csp such
that

e L acts as the identity on objects and tight morphisms,
e v acts as L on loose morphisms and 2-cells: it maps any loose morphism

i o
a——> m<éc—p
in Csp(A) to the structured cospan

L() L(o)
L(a) L(m) L(b),

and it maps any 2-cell

Q
3
S
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in Csp(A) to the map of structured cospans

L(i) L(o)
L(a) L(m) L(b)

L(f) L(e) L(g)
L@ L(o")
L@y ——> L(m’) «—— L(b").

If A and X also have finite coproducts and L preserves them, then ¢: Csp(A) — Csp can
be given the structure of a symmetric monoidal double functor.

Proof. This follows from Theorems 4.1 and 4.2 on maps between structured cospan cate-
gories, applied to this square in Rex:

1
—
1 U1
F
—

> >
XT:D

In the decorated cospan case we use the fact that given a lax monoidal pseudofunctor
F: (A, +) — (Cat, X), any object m € A has a blandest possible decoration, the empty
decoration v,, € F(m). This is the object of F(im) given by the composite

%o F()
1 — F(0) —— F(m)

where ¢ is the unitor for the monoidal structure on F and ! is the unique morphism from
0 to m. The empty decoration is functorial: in fact, to any morphism a: m — m’ in A
we can assign a decoration morphism F(a)(v,,) — v,y which is simply the identity, since
F@)(vm) = v

Lemma 7.6. Let A be a category with finite colimits, F: (A, +) — (Cat, X) a lax monoidal
pseudofunctor, and FCsp the double category of F-decorated cospans. Then there is a
double functor i: Csp(A) — FCsp such that

® L acts as the identity on objects and tight morphisms,
e ( equips any loose morphism with the empty decoration, and any 2-cell with the
identity morphism of decorations: it maps any loose morphism

a % m HO b
in Csp(A) to the decorated cospan

a%méb Vi € F(m)
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and it maps any 2-cell

in Csp(A) to the map of decorated cospans

a%m;b Vi € F(m)

el

ad ——m ——Vb v € F(m'")

with the decoration morphism F(a)(v,,) — v,y given by the identity.

If F is a symmetric lax monoidal pseudofunctor, then ¢: Csp(A) — FCsp can be given the
structure of a symmetric monoidal double functor.

Proof. This follows from Theorem 6.2. O

To prove the uniqueness up to isomorphism in Theorem 7.4, we can use a nice charac-
terization of Csp(A) due to Dawson, Paré and Pronk [38]. This says roughly that for any
category A with pushouts, Csp(A) is the free fibrant double category having A as its tight
category.

To state this result more precisely, recall that a lax double functor between double cat-
egories, say F: C — D, is like an ordinary (i.e., pseudo) double functor except that the
laxator F(f) o F(g) = F(f o g) and unitor 1 = F(1) for composition of loose morphisms
are not required to be invertible. A lax double functor is normal if its unitor is invert-
ible. Among the lax double functors, the normal ones are precisely those that preserve
companions and conjoints [38, Prop. 3.8].

Lemma 7.7. Let A be a category with pushouts and D a fibrant double category. Then
composing with the inclusion A — Csp(A) gives an equivalence between the category of
normal lax double functors

Csp(A) » D
and the category of functors
A— Do.
Proof. This is [38, Thm. 3.15], dualized to apply to cospans. O

Using this lemma and setting A = Dy, we see that under the hypotheses of Theorem 7.4,
the double functor ¢: Csp(Dy) — D is characterized uniquely up to isomorphism by the
property that it restricts to the identity on Dy. This completes the proof of Theorem 7.4.

The perceptive reader will notice that most of this proof could have been quickly dis-
patched using Lemma 7.7. However, this lemma does not cover the symmetric monoidal
aspects, and our statement of Theorem 7.4 does not claim any uniqueness for the symmetric
monoidal structure of ¢. It may be possible to adapt the lemma to deal with this.

Challenge 7.8. Prove a result similar to Lemma 7.7 that applies when A has finite colimits,
characterizing Csp(A) as a symmetric monoidal double category in terms of a left universal
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property. For example, perhaps Csp(A) is the free fibrant symmetric monoidal category
having A as its tight category.

However, we wanted to give explicit descriptions of the double functor ¢: Csp(Dy) — D
for structured and decorated cospan categories, to make it crystal clear how cospans of
interfaces can be seen as open systems in either of these formalisms.

7.2. The outer shell. We have shown that any symmetric monoidal structured/decorated
cospan category D has a kind of ‘exoskeleton’ involving only cospans of interfaces, namely
the double category Csp(Dy). However, we can trim this down further by replacing Dy with
the free category with finite colimits on the set of objects of Dy. This gives what could be
called the ‘outer shell” of D: the double category containing only those cospans that can
be defined using the objects of D and finite colimits. Examples include the following:

SN NG N T

a+a a+a

Here a is any object of D, ! is the unique morphism from the initial object, and V is the
codiagonal. If we draw these four cospans as string diagrams:

we see they echo the four basic wiring patterns listed at the start of Section 7. This is
no coincidence. Fong and Spivak [45] discovered that these wiring patterns, and the laws
governing them, arise whenever one considers cospans in a category with finite colimits.
To study such cospans in their purest form, they introduced cospans in the free category
with finite colimits on an arbitrary set. However, they only studied the category of such
cospans. Here we study the double category of such cospans.

The free category with finite colimits on one object is FinSet. More generally, for any
finite set X, the free category with finite colimits on X is FinSet*. But this fails when X
is infinite. Instead, we need to use the category of finite sets equipped with a map to X,
which we denote as FinSet | X, even though X itself need not be finite.

Lemma 7.9. The free category with finite colimits on a set X is FinSet | X. More precisely,
suppose A is a category with finite colimits. Then any function sending elements of X to
objects of A extends to a finite-colimit-preserving functor from FinSet | X to A. Moreover,
any two such extensions are naturally isomorphic in a unique way.

Proof. We use a general result [56, Thm. 5.35] about the free category with colimits of
a given sort on a small category C, and specialize this to the case where C = Disc(X),
the discrete category on X. This general result finds the desired free category inside the

presheaf category C=Set®. In particular, it says that the free category with finite colimits
on C is the full subcategory of C whose objects are finite colimits of representables. In the
case C = Disc(X), this full subcategory is equivalent to FinSet | X. O

Now, suppose A is a small category with finite colimits. Let
A = FinSet | Ob(A)

where Ob(A) is the set of objects of A. By Lemma 7.9, A is the free category with colimits
on the objects of A. There is a natural inclusion Ob(A) < Ob(A), and thus an essentially
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unique functor
nA—A

sending objects of A to themselves and preserving finite colimits. As one would expect, &
induces a symmetric monoidal double functor

j: Csp(A) — Csp(A).

Indeed, this is a special case of Theorem 4.2.
We can summarize the story so far as follows. Let D be a small symmetric monoidal
structured/decorated cospan category. Then there are symmetric monoidal double functors

Csp(Dy) EA Csp(D) - D.

We call Csp(D) the ‘exoskeleton’ of D, and Csp(Do) the ‘outer shell’. Loose morphisms
in the exoskeleton are cospans in the tight subcategory of D, while loose morphisms in the
outer shell are cospans that can be defined using only the objects of D and general features
of categories with finite colimits. In a sense, we obtain the outer shell by stripping the
exoskeleton of most of its personality, which comes from its morphisms.

We expect that this story can be carried through for a larger class of double categories,
with structured and decorated cospans being just examples. Libkind and Myers’ work on
variable sharing theories suggests a way to generalize. We turn to this next.

7.3. Hypergraph double categories. We have just seen that any symmetric monoidal
structured/decorated cospan double category comes equipped with maps from two simpler
double categories: its exoskeleton and its outer shell. In Section 7.4 we dig into the rich
structure that still remains in the outer shell. Libkind and Myers take a complementary
approach, developing a general framework to unify structured and decorated cospans, and
also study open systems in the input-output paradigm [64, 71]. Here we introduce their
line of thinking with the example of structured cospans.

In Section 1 we asked why an open system should have just two interfaces, and an-
swered that this was just a matter of convenience. Libkind and Myers go further and
consider open systems with just one interface. Suppose D is a symmetric monoidal struc-
tured cospan category. It turns out that we can recover all of D from cospans with trivial

left interface:
X
/‘ y
0

together with certain operations we can do on these: namely, tensoring them and compos-
ing them on the right with cospans coming from the outer shell.
First, we can take an arbitrary structured cospan

N

L(a) L(b)

L(b)
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and ‘fold’ it to get a structured cospan with trivial left interface:

e

L(a+b).

Here (i, 0) is the copairing of i and 0 composed with the isomorphism L(a+b) = L(a)+L(b).
Next, suppose we want to compose two structured cospans:

SN N
L(a) L) L) L(c)

using only their folded versions:

y
SN e

La+b) 0 L(b + o).

To do this we first tensor their folded versions, getting this:

xX+y

/ \l o) +(i’,0") (12)

La+b+b+c).
We then compose this with the following cospan:

La+b+c)

SN

Lla+b+b+c) L(a+c¢)

whose left leg is built using the codiagonal V: b+b — b, and whose right leg is built using
the unique map !: 0 — b.
One can show that the result of composing cospans (12) and (13) is

X +Lb) Y

SN

L(a + ¢).

This is the folded version of the cospan

X+Lwb) Yy

2

L(a) L(c)

that is the composite of the cospans in Equation (11). To prove this, we do a computation
showing that i’ and o can also be defined using the pushout diagram that defines the
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desired composite:
X+Lwp) Yy

x/\y
7N N

L(a) L(b) L(c)

In short, composing structured cospans in folded form requires only tensoring them and
then composing the result with the cospan in Equation (13). But this cospan comes from
the outer shell. To see this, note that if we take the following cospan in the outer shell Dj:

a+b+c
1+V+l/ \+!+1
a+b+b+c a+c

and map it into D using the double functor discussed in Section 7.2:

Csp(Dy) > Csp(D) 5 D,

we get the cospan in (13). The double functor j converts formal colimits to colimits in the
tight category of D; then ¢ applies L to everything, as in Lemma 7.5.

To generalize this sort of observation, Libkind and Myers define a ‘symmetric monoidal
loose right module’ of a symmetric monoidal double category [64, Sec. 4]. Structured
cospans with trivial left interface, and maps between these, should form a symmetric
monoidal loose right module of the outer shell of D. The argument above suggests that
the whole symmetric monoidal double category D can be recovered from this module. The
same is probably also true for decorated cospans. However, I have not seen proofs of these
claims.

Challenge 7.10. Read Libkind and Myers [64] and show that if D is a symmetric monoidal
stuctured/decorated cospan double category, then loose morphisms with trivial left inter-
face, and maps between these, give a symmetric monoidal loose right module of the outer
shell Csp(Dg). Then show that D can be recovered from this symmetric monoidal loose
right module.

If the first part of this challenge can be met, every symmetric monoidal structured or
decorated cospan double category wll be a ‘hypergraph double category’ according to the
following definition, which categorifies Fong and Spivak’s definition of hypergraph cate-
gory [45].

Tentative Definition 7.11. A hypergraph double category is a symmetric monoidal loose
right module of any symmetric monoidal double category of the form Csp(X), where X is
the free category with finite colimits on some set.

In [64, Ex. 8.11], Libkind and Myers proposed a seemingly more general definition
of hypergraph double category, allowing X to be the free category with colimits on any
small category. But this may be equivalent, since we can always replace X with X, the
free category with finite colimits on the set of objects of X, and—presumably—turn a
symmetric monoidal loose right module of Csp(X) into one of Csp(X), using the symmetric
monoidal double functor

j: Csp(A) — Csp(A).
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7.4. Frobenius structures. Since any structured or decorated cospan double category
comes equipped with a map from a cospan double category, some features of ordinary
cospans are automatically inherited by structured and decorated cospans. For example,
when D is a symmetric monoidal structured/decorated cospan double category, every ob-
ject a € D is equipped with loose morphisms

> — ~C -
p:a+a-+a n:0+a d:aba+a €e:a+ 0

that obey the laws of a special commutative Frobenius monoid up to isomorphism. Thus,
the object comes with chosen invertible 2-cells

and their left-right reflected versions, and these 2-cells obey a bevy of coherence laws. All
these coherence laws arise from an analysis of cospan double categories.

Before delving into this, let us begin with some generalities. First, any double category
D has a loose bicategory, denoted D, in which:

e objects are objects of D,

e morphisms are loose morphisms of D,

2-morphisms are 2-cells of D for which the source and target tight morphisms are
identities,

composition of morphisms is given by composition of loose morphisms in D,
vertical and horizontal composition of 2-morphisms are given by tight and loose
composition of 2-cells in D, respectively.

Second, any bicategory D has a decategorification, a category D in which:

e objects are objects of D,
e morphisms are isomorphism classes of morphisms of D.

Hansen and Shulman have shown that if D is a fibrant symmetric monoidal double cate-
gory, D naturally becomes a symmetric monoidal bicategory [53, 83]. It then follows easily
that D becomes a symmetric monoidal category.

Now let A be a category with finite colimits. Merely by virtue of A having finite co-
products, every object a € A becomes a commutative monoid internal to (A, +). The unit
for this monoid is the unique morphism !: 0 — a in A, while the multiplication is the
codiagonal V: a — a + a. These morphisms give cospans in A

SN N
0 a a+a a

that we call the unit 7: 0 + a and multiplication y1: a + a + a, respectively. In terms of
string diagrams, these look like ‘adding an extra wire that doesn’t connect with anything’
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and ‘joining wires’, respectively:

— >
n:0+a Hia+a-+a

Since ! and V obey the commutative monoid laws, but pushouts are defined only up to iso-
morphism, we expect that u and 7 obey the commutative monoid laws only up to coherent
isomorphism. They should thus make a into a ‘symmetric pseudomonoid’, a concept that
can be defined in any symmetric monoidal bicategory [36, Def. 17].

Because A has finite colimits, we can form the symmetric monoidal double category
Csp(A) as in Lemma 7.3. Since this is fibrant, Hansen and Shulman’s work implies that the
loose bicategory Csp(A) is symmetric monoidal. The loose morphisms i and 7 live in this
symmetric monoidal bicategory. And indeed, they make a into a symmetric pseudomonoid
in Csp(A). In more detail:

Theorem 7.12. Let A be a category with finite colimits, and let a € A. The cospans
n:0 + aand u: a + a + a defined as above make a into symmetric pseudomonoid in
Csp(A). In more detail:

e The multiplication u obeys the associative law up to an isomorphism of cospans,
the associator «: u(u + 1,) = u(l, + p).

>0 2D

This associator can be chosen to obey the pentagon identity.
e The unit n obeys the left and right unit laws up to isomorphisms called the left
unitor A: u(y + 1,) = 1, and right unitor p: u(1, +n) = 1,.

o D5

Together with the associator, these can be chosen to obey the triangle identity.
o The multiplication u obeys the commutative law up to an isomorphism called the
symmetry o : us = u, where s: a + a + a + a is the symmetry in Csp(A).

o

XO—= >
Together with the associator, this can be chosen to obey the hexagon identities.

Proof Sketch. The associator, unitors and symmetry can all be defined using the universal
property of pushouts, and the uniqueness clause in this universal property implies that the
pentagon, triangle and hexagon diagrams commute. O

To fit this into a larger context, note that what we have done here is to turn two tight
morphisms ! and V in Csp(A) into their companions, 77 and y. The process of turning tight
morphisms into their companions can be shown to define a symmetric monoidal pseudo-
functor

comp: A — Csp(A).
Thus it sends commutative monoids in A to symmetric pseudomonoids in Csp(A) [36,
Prop. 16].
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Similarly, if we take the conjoints of !: 0 — a and V: a — a + a we obtain cospans

2 A

a+a

which we call the comultiplication 6: a + a + a and counit €: ¢ + 0. In terms of string
diagrams, these look like ‘splitting a wire’” and ‘capping off a wire’:

> =
pia+a-+a n:0+a
Since taking conjoints is a symmetric monoidal pseudofunctor
conj: A® — Csp(A)

it sends a, which is a commutative comonoid in (AP, +), to a symmetric pseudocomonoid
in Csp(A), with § as comultiplication and € as counit.

How, and why, do the pseudomonoid and pseudocomonoid structures on any object
a € Csp(A) interact? They do so because the multiplication u: a + a + a followed by the
counit €: a + 0 gives an important cospan called the cup:

7N

a+a 0

which we can draw as this string diagram:

>,

Uia+a+ 0.

Similarly, we can define the cap to be the unit ¢: O + a followed by the comultiplication
0:apa+a

N

a+a

which we can draw as follows:

-

N:0+a+a

In terms of electrical circuits, these give the ability to bend wires. Mathematically they
make a into its own dual in Csp(A).

For any object a € Csp(A), the cap and cup obey the usual zigzag identities up to
isomorphisms that in turn obey coherence laws called the swallowtail equations [85, Cor.
5.8]. But in fact, as long as the zigzag identities hold up to isomorphism, the isomorphisms
can always be tweaked to make them obey the swallowtail equations [78, Thm. 2.7]. Thus,
in general, we can define a Frobenius pseudomonoid in a monoidal bicategory to be a
pseudomonoid for which the cap and cup obey the zigzag identities up to isomorphism.
For an equivalent alternative definition, see [87].
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A symmetric Frobenius pseudomonoid is one whose underlying pseudomonoid is sym-
metric. One can show this implies that its underlying pseudocomonoid is also symmetric
in a dual sense, involving an isomorphism

~OC = —C
56 = 0.

So far, we have seen that whenever A is a category with finite colimits, every object in
Csp(A) is a symmetric Frobenius pseudomonoid in Csp(A).

But there is more! The multiplication in this Frobenius pseudomonoid is left biadjoint
to the comultiplication, with the counit € of the biadjunction being an isomorphism:

O ——
g ud = 1.

We call a Frobenius pseudomonoid with this property special, extending the existing ter-
minology where a Frobenius monoid is called special if

@ e p—

We do not know if there are additional coherence laws that the counit & obeys, which
should be incorporated in the definition of ‘special’.

Following tradition we have spoken about pseudomonoids in a monoidal bicategory D,
which happens to be the loose bicategory of a monoidal double category D. However, in
this situation we might as well call these pseudomonoids in D. Thus, we have shown:

Theorem 7.13. Let A be a category with finite colimits. Then the above structures make
any object a € A into a special symmetric Frobenius pseudomonoid in Csp(A).

What we have seen for cospans, now follows for structured or decorated cospans:

Theorem 7.14. Let D be a symmetric monoidal structured/decorated cospan double cat-
egory. Then any object a € D becomes a special symmetric Frobenius pseudomonoid in
D.

Proof. Given a category A with finite colimits, we have seen how any object a € A gives
a special symmetric Frobenius pseudomonoid a € Csp(A). This holds in particular when
A = Dy where D is a symmetric monoidal structured/decorated cospan double category.
Applying the symmetric monoidal pseudofunctor ¢: Csp(Dy) — D, we obtain a special
symmetric Frobenius pseudomonoid structure on the object a regarded as an object of
D. O

At the end of Section 7.3, following ideas of Libkind and Myers [64], we proposed a
definition of ‘hypergraph double category’ aimed at isolating the most important common
features of symmetric monoidal structured and decorated cospan double categories. This
definition categorified Fong and Spivak’s slick definition of hypergraph category [45].

We are now in a position to pursue a different definition of hypergraph double category,
which categorifies the ‘old-fashioned’ definition of a hypergraph category, Definition 7.1.
Naively, we could define a hypergraph double category to be a symmetric monoidal
double category D where each object is equipped with the structure of a special symmetric
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Frobenius pseudomonoid, with these structures compatible with the monoidal structure
of D in the sense that they obey all the equations in Definition 7.1. However, it may be
overly strict to demand equations here. Furthermore, besides having a multiplication, unit,
comultiplication and counit, a symmetric Frobenius pseudomonoid is equipped with extra
structure, namely various 2-isomorphisms. Presumably these, too, must be compatible
with the monoidal structure of D.

Thus, there are some coherence issues to sort out, of the kind only higher category
theorists truly enjoy. We leave this as a challenge:

Challenge 7.15. Find the correct definition of ‘hypergraph double category’ along the
following lines: it is a symmetric monoidal double category D where each object has the
structure of a special symmetric Frobenius pseudomonoid and these structures are com-
patible with the symmetric monoidal structure of D. To test the correctness of a candidate
definition, show that every symmetric monoidal structured/decorated cospan category is a
hypergraph double category according to this definition. If possible, also show that this
definition is equivalent to the one proposed at the end of Section 7.3.

To conclude, let us recall why this issue is important. We have some intuition of what
open systems are in the variable sharing paradigm. Structured and decorated cospans gives
us examples. But what is the right general concept of a symmetric monoidal double cat-
egory of open systems in the variable sharing paradigm? It may be a hypergraph double
category. But what, exactly, is that? We have outlined two approaches to defining this
concept. Ideally they will lead to equivalent definitions.
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