
Most human things go in pairs.
Alcmaeon, ∼ 450 BC

true false good bad
right left up down
front back future past
light dark hot cold

matter antimatter boson fermion

How can we formalize a general concept of duality? The
Chinese tried yin-yang theory, which inspired Leibniz to
develop binary notation, which in turn underlies digital

computation!

But what’s the state of the art now?



In category theory the fundamental duality is the act of
reversing an arrow:

• → •  • ← •
We use this to model switching past and future, false and
true, small and big...

Every category C has an opposite Cop, where the arrows are
reversed. This is a symmetry of the category of categories:

op : Cat→ Cat

and indeed the only nontrivial one:

Aut(Cat) = Z/2



In logic, the simplest duality is negation. It’s order-reversing:

if P implies Q then ¬Q implies ¬P
and—ignoring intuitionism!—it’s an involution:

¬¬P = P

Thus if C is a category of propositions and proofs, we
expect a functor:

¬ : C → Cop

with a natural isomorphism:

¬2 ∼= 1C



This has two analogues in quantum theory.

One shows up already in the category of finite-dimensional
vector spaces, FinVect. Every vector space V has a dual
V ∗. Taking the dual is contravariant:

if f : V →W then f∗ : W ∗→ V ∗

and—ignoring infinite-dimensional spaces!—it’s an
involution:

V ∗∗ ∼= V

This kind of duality is captured by the idea of a ∗-autonomous
category.



Recall that a symmetric monoidal category is roughly a
category C with a unit object I ∈ C and a tensor product

⊗ : C × C → C
that is unital, associative and commutative up to coherent
natural isomorphisms.

A symmetric monoidal category C is closed if for every
object A ∈ C the functor

X 7→ A⊗X
has a right adjoint, called the internal hom:

X 7→ A( X



In other words, there’s a natural bijection

hom(A⊗X,Y ) ∼= hom(X,A( Y )

In FinVect, A⊗X is the usual tensor product, and A( Y
is the vector space of linear maps from A to Y .

In classical logic, A⊗X is the proposition A&X, and
A( Y is the proposition A⇒ Y .



A symmetric monoidal closed category C is
∗-autonomous if it has an object ⊥ such that if we set

X∗ = X ( ⊥
then the canonical morphism X → X∗∗ is an isomorphism.
We call ⊥ a dualizing object.

Any ∗-autonomous category comes with a functor:

∗ : C → Cop

and a natural isomorphism:

∗2 ∼= 1C



In FinVect we take ⊥ = C, so

X∗ = X ( ⊥
is the usual dual of the vector space X. Here ⊥ is the unit
for the tensor product. Whenever this happens we say C
is compact. In a compact category, A( X ∼= A∗ ⊗X.

In classical logic we take ⊥ = FALSE, so

X∗ = X ( ⊥
is the usual negation ¬X. Here ⊥ is not the unit for the
tensor product: the unit for & is TRUE.



In the category of finite-dimensional Hilbert spaces, we
also have a second kind of duality. Besides the duals for
objects with

hom(A⊗X,Y ) ∼= hom(X,A∗ ⊗ Y )

we have duals for morphisms: given f : X → Y we have
f† : Y → X with

〈fx, y〉 = 〈x, f†y〉
for all x ∈ X and y ∈ Y .

In short, a Hilbert space is like a miniature category, with
an amplitude to go from x to y instead of a set of ways to
go from X to Y .



Duality for morphisms is captured by the concept of a
dagger category : one where every morphism

f : X → Y

gives a morphism
f† : Y → X

with
(ST )† = T †S† T †† = T

Any dagger category comes with a functor

† : C → Cop

and a natural isomorphism

†2 ∼= 1C



Duality for objects and morphisms fit together in the
concept of a dagger-compact category.

This is a compact dagger category for which all relevant
natural isomorphisms are unitary (u† = u−1), and the
dagger of the unit

X∗ ⊗X → I

is the counit
I → X ⊗X∗

followed by the isomorphism

X ⊗X∗ ∼→ X∗ ⊗X



Dagger-compact categories are deeply related to ‘matrix
mechanics’.

Heisenberg used matrices with complex entries to describe
processes in quantum mechanics:

•
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For each input state i and output state j, the process T
gives a complex number T ij ∈ C, the amplitude to go from

i to j.



To compose processes, we sum over paths:

•
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(ST )ik =
∑

j

S
j
k × T ij

In the continuum limit, such sums become path integrals.



Matrix mechanics also works with other rigs (= rings
without negatives):

• [0,∞) with its usual + and ×
Now T ij gives the probability to go from i to j.

• {TRUE,FALSE} with ∨ as + and & as ×
Now T ij gives the possibility to go from i to j.

•RMIN = R ∪ {+∞} with MIN as + and + as ×
Now T ij gives the action to go from i to j.

In the continuum limit, matrix mechanics using RMIN gives
the principle of least action in classical mechanics — see
work on ‘idempotent analysis’ and ‘tropical algebra’.



For any commutative rig R, there is a compact category
Mat(R) where:

• objects are natural numbers;

•morphisms T : m → n are n ×m matrices with entries
in R.

If R is also a ∗-rig :

(a+ b)∗ = a∗ + b∗, (ab)∗ = b∗a∗, a∗∗ = a

then Mat(R) is dagger-compact, with

(T †)ij = (T
j
i )∗

Every rig becomes a ∗-rig with a∗ = a. So, Mat(RMIN) is
dagger-compact and we can apply dagger-compact
categories to classical mechanics!



Mat(R) is equivalent to the category of finite-dimensional
real Hilbert spaces.

Mat(C) is equivalent to the category of finite-dimensional
complex Hilbert spaces.

Mat(H) is equivalent to the category of finite-dimensional
quaternionic Hilbert spaces.

The first two are dagger-compact. The third is not
monoidal but still a dagger-category. Why does Nature
love complex Hilbert spaces best?

My answer:

In fact Nature loves all three, each in its own way!



To understand this, it helps to equip our Hilbert spaces
with more structure.

Start with a compact topological group G. Let Rep(G) be
the category of continuous unitary representations of G on
finite-dimensional complex Hilbert spaces.

This category is dagger-compact. It’s crucial in quantum
physics, where G describes symmetries!

But Freeman Dyson’s ‘Threefold Way’ reveals that con-
tinuous unitary representations of G on finite-dimensional
real and quaternionic Hilbert spaces are also contained in
Rep(G)!



We can ask if an object X ∈ Rep(G) is its own dual. If X
is irreducible — not a direct sum of other objects in a non-
trivial way — there are three mutually exclusive choices:

•X � X∗.

•X ∼= X∗ and X is real : it comes from a representation
of G on a real Hilbert space H:

X = C⊗RH

•X ∼= X∗ and X is quaternionic: it comes from a
representation of G on a quaternionic Hilbert space H:

X = the underlying complex space of H



Why? If X is irreducible there’s a 1-dimensional space of
morphisms f : X → X. So if X ∼= X∗ there’s a 1d space of
morphisms f : X → X∗, and thus a 1d space of morphisms

g : X ⊗X → C
But

X ⊗X ∼= S2X ⊕ Λ2X

so either there exists a nonzero g that is symmetric:

g(x, y) = g(y, x)

or one that is skew-symmetric:

g(x, y) = −g(y, x)

One or the other, not both!



Either way, we can write

g(x, y) = 〈jx, y〉
for some real-linear operator j : X → X with

ji = −ij

If g is symmetric, we can rescale j to achieve

j2 = 1

Then j acts like complex conjugation, so

H = {x ∈ X : jx = x}
is a real representation of G with:

X = C⊗RH



If g is skew-symmetric, we can rescale j to achieve

j2 = −1

Then i, j and k = ij act like the quaternions:

i2 = j2 = k2 = ijk = −1

so we obtain a representation ofG on a quaternionic Hilbert
space H with:

X = the underlying complex space of H



Why can we rescale j to achieve either j2 = ±1 but not
both?

Suppose g is symmetric, so that

〈jx, y〉 = g(x, y) = g(y, x) = 〈jy, x〉
Then

〈j2x, x〉 = 〈jx, jx〉 ≥ 0

so j2 > 0. Letting J = αj with α ∈ R we have

J2 = α2j2

so by correctly choosing α we can achive

J2 = 1

Similarly, if g is skew-symmetric j2 < 0 and we can rescale
j to achieve J2 = −1.



An example: G = SU(2). Every object in Rep(SU(2)) is
self-dual. There is one irreducible representation for each
‘spin’ j = 0, 1

2, 1, . . .

If j ∈ Z, the spin-j rep is real.

If j ∈ Z+ 1
2, the spin-j rep is quaternionic.

For example: the spin-1 or vector rep on C3 is the
complexification of a real rep on R3.

But the spin-1
2 or spinor rep on C2 is the underlying

complex rep of a quaternionic rep on H.



In short: spin-1
2 particles are quaternions!

But what is the physical meaning of j? For any iJ ∈ su(2):

j exp(iθJ) = exp(iθJ) j

and thus
j iJ = iJ j

but ij = −ji so
jJj−1 = −J

So: j reverses the angular momentum J .

This calculation works for all reps of SU(2). Thus the
meaning of j is time reversal.



For any self-dual X ∈ Rep(G) we can write g : X⊗X → C
as a ‘cup’:

Since g defines an isomorphism X ∼= X∗ we have a corre-
sponding ‘cap’:

satisfying the zig-zag identities:

!
�

� = � = �

� !



For a real self-dual object (j2 = 1) we have

�

= �

but for a quaternionic one (j2 = −1) we have

�

= − �

This is the behavior we expect from bosons and fermions,
respectively.



THE THREEFOLD WAY

complex X � X∗ unitary U(n)

real X ∼= X∗ orthogonal O(n)
j2 = 1

quaternionic X ∼= X∗ symplectic Sp(n)
j2 = −1

This accounts for the ‘classical groups’, leaving 5 excep-
tional groups related to the octonions and ‘triality’. These
are important in superstring theory...

...but that’s a story for another day.



When it comes to duality, categories are just the
beginning. We also have n-categories:

• −→ •

• •##;;
��

• •!!==
�� �	

_*4

and so on...

An (n+ k)-category with only one j-morphism for j < k
is called a k-monoidal n-category. We have guesses about

these...



THE PERIODIC TABLE

n = 0 n = 1 n = 2
k = 0 sets categories 2-categories
k = 1 monoids monoidal monoidal

categories 2-categories
k = 2 commutative braided braided

monoids monoidal monoidal
categories 2-categories

k = 3 ‘’ symmetric sylleptic
monoidal monoidal
categories 2-categories

k = 4 ‘’ ‘’ symmetric
monoidal

2-categories
k = 5 ‘’ ‘’ ‘’

k = 6 ‘’ ‘’ ‘’



Back in 1995, James Dolan and I proposed studying n-
categories with duals at all levels, in order to make precise
and prove:

THE TANGLE HYPOTHESIS: The n-category of framed
n-dimensional tangles in a (n+ k)-dimensional cube is the
free k-monoidal n-category with duals on one object: the
postively oriented point.

When n = 1, k = 1 we get a monoidal category with duals:

•x •x∗ •x

•
x
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LL

��

Morphisms here model worldlines of particles in 2d space-
time.



When n = 1, k = 2 we get a braided monoidal category
with duals:

•x •
x∗ •x
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Morphisms here model worldlines of particles in 3d space-
time.

When n = 1, k = 3 we get a symmetric monoidal cat-
egory with duals—i.e. a dagger-compact category. Mor-
phisms here model models worldlines of particles in 4d
spacetime. Dagger-compact categories seem natural in
logic and physics because we’re used to particles in 4d
spacetime!



PERIODIC TABLE OF TANGLES
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‘Categorified matrix mechanics’ gives examples of symmet-
ric monoidal 2-categories with duals.

For example, there’s a symmetric monoidal 2-category Prof
where:

• an object is a small category C;
• a morphism T from C to D is a functor

T : Cop ×D → Set

also known as a profunctor ;

• a 2-morphism is a natural transformation between
profunctors.

Prof has duals for objects: the dual of C is Cop. It doesn’t
have duals (adjoints) for all morphisms—but a functor
gives a profunctor with a right adjoint. It doesn’t have
daggers for 2-morphisms.



We can do better by replacing Set here by a dagger-compact
category.

Furthermore, the symmetric monoidal 2-category of ‘finite-
dimensional 2-Hilbert spaces’ has duals at all levels!

But let’s look at Prof....



A 2-dimensional topological quantum field theory gives a
Frobenius monoid in FinVect:

unit multiplication

counit comultiplication



Associativity and unit laws:

=

= =

Coassociativity and counit laws:

=

= =



Commutativity:

=

The Frobenius law:

= =



Similarly, Ross Street showed that a ∗-autonomous
category C gives a ‘weak Frobenius monoid’ in Prof!

hom(TRUE, A) hom(A&B,C)

hom(A,FALSE) hom(A,B ∨ C)

The Frobenius law is the ‘cut rule’ in logic!



SUMMARY

‘Matrix mechanics’ over commutative ∗-rigs describes
quantum and classical physics. See Aaron Fenyes’
no-cloning theorem for classical mechanics.

The study of duality unifies real, complex and quaternionic
quantum mechanics into a single theory which is already
implicit in standard physics.

Dagger-compact categories are the n = 1, k = 3 exam-
ple of ‘k-monoidal n-categories with duals’—the case most
relevant to particles in 4d spacetime, but just one of many.

Treating Prof as a categorified version of FinVect relates
propositional logic—i.e. ∗-autonomous categories—to
categorified 2d topological quantum field theories!


