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Network theory is the study of complex interacting systems
that can be represented as graphs equipped with extra
structure. A graph is a bunch of vertices connected by edges:

In this example, the ‘extra structure’ is that the vertices are
labelled with numbers and the edges have arrows on them.



Network theory is a vast, sprawling subject. For example, it
includes the study of electrical circuits:



In the 1950’s, Howard Odum introduced networks to model the
flow of resources like energy through ecosystems:

This is from a recent paper on the San Luis Basin in Colorado.

http://en.wikipedia.org/wiki/Howard_T._Odum
http://www.sciencedirect.com/science/article/pii/S0301479711003112


Starting in 2008, biologists have introduced Systems Biology
Graphical Notation to describe networks. This is actually 3
different languages. For example, the Entity Relationship
Language lets you talk about how entities affect each other:

http://www.sbgn.org/Main_Page
http://www.sbgn.org/Main_Page
http://precedings.nature.com/documents/3719/version/2
http://precedings.nature.com/documents/3719/version/2


Many people use ‘network theory’ to mean the study of large
graphs, and how they change with time.

This is from a paper on “the network of global corporate
control”, which analyzed ownership links between 600,000
companies.

http://en.wikipedia.org/wiki/Network_theory
http://j-node.blogspot.com/2011/10/network-of-global-corporate-control.html
http://j-node.blogspot.com/2011/10/network-of-global-corporate-control.html


I’ve been working on ‘reaction networks’ and their applications
to evolutionary game theory—a topic closely connected to
economics.

Reaction networks were born in chemistry. Here’s an example:

C + O2
α //

β %%

CO2

δww
CO + O

γ
55

Here α, β, γ, δ > 0 are ‘rate constants’ for the reactions shown.

http://www.azimuthproject.org/azimuth/show/Chemical+reaction+networks
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Reaction networks are also implicit in evolutionary game
theory, a topic important in biology and economics.

For example, suppose we have a population of agents of two
kinds: ‘aggressive’ (A) and ‘cooperative’ (C). Their dynamics
might be described by this reaction network:

A + A α−→ A

A + C
β−→ A

C + C
γ−→ C + C + C

for some constants α, β, γ > 0. The idea is that aggressive
agents sometimes destroy the agents they meet, while
cooperative ones sometimes reproduce.

We could elaborate this example indefinitely by introducing
more kinds of agents: for example, agents with different
strategies, locations, or resources.

http://www.ssc.wisc.edu/~whs/research/egt.pdf
http://www.ssc.wisc.edu/~whs/research/egt.pdf
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More formally, to give a reaction network we start with any finite
collection of species A1,A2, . . . ,Ak .

We define a complex to be a linear combination of species
with natural number coefficients, e.g.

2A1 + A3 + A4

We define a reaction network to be a graph with:
vertices labelled by complexes
edges labelled with arrows and also positive rate
constants.
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For example, if we have species A,B,C,D,E , here is an
example of a reaction network:

A + 2B α //

β &&

C

B + D + E
γ

99

A + B

δ

&&
2C

ε

gg

where α, β, γ, δ, ε are any positive numbers.
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A reaction network gives an evolutionary game with stochastic
dynamics.

The idea is to write down a vector ψ whose components ψ` are
the probabilities that the species present are described by any
given complex `. Then, evolve ψ according to the master
equation:

dψ
dt

= Hψ

Here H is a matrix whose entries describe the probabilistic rate
at which one complex turns into another. So, in detail:

dψ`
dt

=
∑
`′

H``′ψ`′

where H``′ is the probabilistic rate at which `′ becomes `.
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We can write down the matrix entries H``′ starting from the
reaction network by following some simple rules. For example,
suppose we have this reaction network:

A + 2B α //

β &&

C

B + D + E
γ

99

Suppose `′ = 5A + 3B + C and ` = 4A + B + 2C. Then

H``′ = 5× 3× 2× α

since the reaction on top turns A + 2B into C and there are 5
ways to pick an A and 3× 2 ways to pick two B’s.
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The chemists Horne, Jackson and Feinberg have found quite
general conditions under which the evolutionary game
described by a reaction network has a unique equilibrium for
each value of all the conserved quantities present. This result
is called the Deficiency Zero Theorem.

The stability of these equilibria is proved by finding a ‘Lyapunov
function’. Roughly, this means showing that a certain quantity
always decreases, and takes a minimum value at the
equilibrium.

http://www.math.wisc.edu/~anderson/RecentTalks/2008/MBI2008.pdf
http://en.wikipedia.org/wiki/Lyapunov_function
http://en.wikipedia.org/wiki/Lyapunov_function
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In applications to chemistry, this quantity is ‘free energy’. Free
energy always decreases, and takes its minimum value in
equilibrium. This is a way of saying that entropy approaches a
maximum subject to certain constraints.

In certain evolutionary games, this result is related to Fisher’s
Fundamental Theorem on natural selection, which describes
how fitness increases through natural selection.

In economic applications, it is not genomes but strategies that
are being selected for.

http://www.hum.utah.edu/~plutynsk/FundamentalTheorem
http://www.hum.utah.edu/~plutynsk/FundamentalTheorem
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An example: the 1-2-3 coordination game. In ordinary game
theory, this is a 2-player game where each player has 3
strategies, and both players win the following payoffs
depending on their choice of strategy: 1 0 0

0 2 0
0 0 3



It’s called a coordination game since Nash equilibria with pure
strategies arise when both players choose the same strategy.
There are also Nash equilibria with mixed strategies.
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But let’s see this as an evolutionary game given by this reaction
network:

A + A α−→ A + A + A

B + B 2α−→ B + B + B

C + C 3α−→ C + C + C

So, when players whose strategies match meet each other,
they can reproduce.

Strategy C is the most fit.

What does the master equation predict in the limit of large
numbers?



But let’s see this as an evolutionary game given by this reaction
network:

A + A α−→ A + A + A

B + B 2α−→ B + B + B

C + C 3α−→ C + C + C

So, when players whose strategies match meet each other,
they can reproduce. Strategy C is the most fit.

What does the master equation predict in the limit of large
numbers?



But let’s see this as an evolutionary game given by this reaction
network:

A + A α−→ A + A + A

B + B 2α−→ B + B + B

C + C 3α−→ C + C + C

So, when players whose strategies match meet each other,
they can reproduce. Strategy C is the most fit.

What does the master equation predict in the limit of large
numbers?



The fraction of the population playing each strategy evolves as
in this picture from Sandolm’s Evolutionary Game Theory :

The equilibria here are the Nash equilibria. This example does
not obey the conditions of the Deficiency Zero Theorem: that’s
how we can have nonunique and unstable equilibria.

http://www.ssc.wisc.edu/~whs/research/egt.pdf
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