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Higher (Gauge Theory

It is natural to assign a group element to each path:

g

/\
o [

since composition of paths then corresponds to multipli-
cation:

while reversing the direction of a path corresponds to tak-
INng Inverses:

ous:



Internalization

Often a useful first step in the categorification process
involves using a technique developed by Ehresmann called
‘Internalization.’

How do we do this?

e (Given some concept, express its definition completely
in terms of commutative diagrams.

e Now interpret these diagrams in some ambient cate-
gory K.

We will consider the notion of a ‘category in K for various
categories K.

A strict 2-group is a category in Grp, the category of
aroups.



Categorified Lie Theory,
strictly speaking...

A strict Lie 2-group G is a category in LieGrp, the
category of Lie groups.

A strict Lie 2-algebra L is a category in LieAlg, the
category of Lie algebras.

We can also define strict homomorphisms between
each of these and strict 2-homomorphisms between

them, in the obvious way. Thus, we have two strict 2-
categories: SLie2Grp and SLie2Alg.

The picture here is very pretty: Just as Lie groups have
Lie algebras, strict Lie 2-groups have strict Lie 2-algebras.

Proposition. There exists a unique 2-functor

d: SLie2Grp — SLie2Alg



Examples of Strict Lie 2-Groups

Let G be a Lie group and g its Lie algebra.

e Automorphism 2-Group

Objects : = Aut(G)
Morphisms : = G x Aut(G)

e Shifted U(1)

Objects : =
Morphisms : = U(1)

e Tangent 2-Group

Objects: = G
Morphisms: = gx G=TdG

e Poincaré 2-Group

Objects : = SO(n,1)
Morphisms : = R" x SO(n,1) = 150(n,1)



Categorified vector spaces

Kapranov and Voevodsky defined a finite-dimensional 2-
vector space to be a category of the form Vect”.

Instead, we define a 2-vector space to be a category in
Vect, the category of vector spaces.

Thus, a 2-vector space is a category where everything in
sight is linear!



A 2-vector space, V', consists of:

e a vector space of objects, Ob(V)

e a vector space of morphisms, Mor(V)
together with:

e linear source and target maps
s,t: Mor(V) — Ob(V),
e a linear identity-assigning map
i: Ob(V) — Mor(V),
e a linear composition map

o: Mor(V') xopvy Mor(V) — Mor(V)



such that the following diagrams commute, expressing the
usual category laws:

e laws specitying the source and target of identity mor-
phisms:

Ob(V)—-Mor(V)  Ob(V)—~Mor(V)

s S

Y ob(V) " ob(V)

e laws specifying the source and target of composite
morphisms:

Mor(V) X Ob(V) Mor(V)—°>—Mor(V)

P1 S

Mor(V) i Ob(V)

Mor(V) X Ob(V) Mor(V)—°>—Mor(V)

p2 t

Mor(V) t Ob(V)




e the associative law for composition of morphisms:
Mor(V') xopvy Mor(V') xopevy Mor(V) %MOT(V) X op(vy Mor(V')
leb(V)o o

Mor(V') xopvy Mor(V) 2 Mor(V)

e the left and right unit laws for composition of
morphisms:

Ob(V') X opry Mor(V) =22 Mor(V) x opvry Mor (V) << Mor(V)) X opry Ob(V')

Mor(V)



2-Vector Spaces

We can also define linear functors between 2-vector
spaces, and linear natural transformations between
these, in the obvious way.

Theorem. The 2-category of 2-vector spaces, linear
functors and linear natural transformations is equivalent
to the 2-category of:

e 2-term chain complexes C'; 4, Co,
e chain maps between these,

e chain homotopies between these.



2-Vector Spaces

Proposition. Given 2-vector spaces V and V"’ there is
a 2-vector space V @ V' having:

e Ob(V) @ Ob(V’) as its vector space of objects,
e Mor(V') ® Mor(V”) as its vector space of morphisms,

Proposition. Given 2-vector spaces V and V"’ there is
a 2-vector space V' ® V' having:

e Ob(V) ® Ob(V’) as its vector space of objects,
e Mor(V') ® Mor(V") as its vector space of morphisms,

Moreover, we have an ‘identity object’, K, for the
tensor product of 2-vector spaces, just as the ground field
k acts as the identity for the tensor product of usual vector
spaces:

Proposition. There exists a unique 2-vector space K,
the categorified ground field, with

Ob(K) = Mor(K) =k and
S,t,i — 1k



Semistrict Lie 2-Algebras

A semistrict Lie 2-algebra consists of:
e a 2-vector space L
equipped with:
e a functor called the bracket:
)] Lx L — L
bilinear and skew-symmetric as a function of objects
and morphisms,

e a natural isomorphism called the Jacobiator:

‘]xay,Z: [[377 y]? Z] — [{E’ [ya Z“ + ng) Z]a y]:
trilinear and antisymmetric as a function of the objects
L, Y, 2,
such that:

e the Jacobiator identity holds, meaning the follow-
ing diagram commutes:

[[[w;2],y],2]

[Jw=11yvz \

([[wyl ], 2]+ [[w,[x,y]],2] [[[w,z],y],2]
ezt w2y, Jlw,aly,=
([[w,yl,2],2] +[[w,y],[2,2]] [[[w,2],2]y]+{[w,z],[y,z]]

[Jw,y,25T] [Jow,z,25Y]
[lw.2) )]+ w.ly.21) o [0
Hlwad loall+w gl 2] +Hlw 2] el +lwally A+ lw 2y

w,[z,z],y
m\ +J[w,z],z,y+Jw,z,[y,z]

[[[w,2],y], 2] +[[w,2], [z, y]]+ [[w,y],[2,2]]
Flw [,z yll+H[w [y 2]] 2]+ [w,[2,[y,2]]]



Given a vector space V' and an isomorphism
B:VV-V&YV

we say B is a Yang—Baxter operator if it
satisfies the Yang—Baxter equation, which
says that:

(B®1)(1®B)(B®1)=(19B)(B®1)(1 B),
or in other words, that this diagram commutes:

1B V “ V “ V B®1
V®V®§//// \\\\?®V®V
B®1 1®B
VeVeV VeVeV

M %

VeveV



If wedraw B: V@V — V&V as a braiding:



The Zamolodchikov tetrahedron equation is a
formalization of this commutative octagon:

K
// \\»\\



We can define homomorphisms between Lie 2-algebras,
and 2-homomorphisms between these.

Given Lie 2-algebras L and L', a homomorphism
F: L — L' consists of:

e a functor F' from the underlying 2-vector space of L
to that of L', linear on objects and morphisms,

e a natural isomorphism

Fy(x,y): [F(z), Fly)] — Flz,y),

bilinear and skew-symmetric as a function of the
objects z,y € L,

such that:

e the following diagram commutes for all objects
x,Yy,z € L:

[F(2), [F(y), F(2)]| —— 295050 (B (@), F(y)], F(2)] + [Fy), [F(z), F(2)]
[1,F) [Fo,1]+([1,F2)]
[F(x), Fly, 2] [Fle, 9], F(2)] + [F(y), Flz, 2]
Fla, [y, 2]] R Fllz,y), 2] + Fly, [, 2]




Theorem. The 2-category of Lie 2-algebras, homo-
morphisms and 2-homomorphisms is equivalent to the
2-category of:

e 2-term L.-algebras,
e L.-homomorphisms between these,

e [ -2-homomorphisms between these.

The Lie 2-algebras L and L’ are equivalent if there are
homomorphisms

f:L—L f:L' =L
that are inverses up to 2-isomorphism:

fre1 ffeEL

Theorem. Lie 2-algebras are classified up to equivalence
by quadruples consisting of:

e a Lie algebra g,

e an abelian Lie algebra (= vector space) b,

e a representation p of g on b,

e an clement [j] € H3(g, h).



The Lie 2-Algebra g;

Suppose g is a finite-dimensional simple Lie algebra over
R. To get a Lie 2-algebra having g as objects we need:

e a vector space b,
e a representation p of g on b,

e an clement [j] € H%(g, h).

Assume without loss of generality that p is irreducible.

To get Lie 2-algebras with nontrivial Jacobiator, we need
H3(g,b) # 0. By Whitehead’s lemma, this only happens
when h = R is the trivial representation. Then we have

H’(g,R) =R
with a nontrivial 3-cocycle given by:

v(z,y,z) = (|r,y],2).

The Lie algebra g together with the trivial representation
of g on R and k& times the above 3-cocycle give the Lie
2-algebra gp.

In summary: every simple Lie algebra g gives a one-
parameter family of Lie 2-algebras, gi., which reduces
to g when k =0/

Puzzle: Does g; come from a Lie 2-group?



Coherent 2-Groups

A coherent 2-group is a weak monoidal category in
which every morphism is invertible and every object is
equipped with an adjoint equivalence.

A homomorphism between coherent 2-groups is a weak
monoidal functor. A 2-homomorphism is a monoidal
natural transformation. The coherent 2-groups X and
X' are equivalent if there are homomorphisms

f: X —-X f X' —-X
that are inverses up to 2-isomorphism:

fre1 ffeEL

Theorem. Coherent 2-groups are classified up to equiv-
alence by quadruples consisting of:

e a group G,
e an abelian group H,

e an action a of G as automorphisms of H,
e an clement [a] € H*(G, H).



Suppose we try to copy the construction of g; for a par-
ticularly nice kind of Lie group. Let G be a simply-
connected compact simple Lie group whose Lie algebra
is g. We have

H3(G,U(1))—Z — R = H%g,R)

Using the classification of 2-groups, we can build a
skeletal 2-group G, for k € Z:

e (7 as its group of objects,
e U(1) as the group of automorphisms of any object,
e the trivial action of G on U(1),

e [a] € H3(G,U(1)) given by k¢[v], which is nontrivial
when £ # 0.

Question: Can G be made into a Lie 2-group?

Here’s the bad news:

(Bad News) Theorem. Unless k& = 0, there is no
way to give the 2-group G the structure of a Lie 2-group
for which the group G of objects and the group U(1) of
endomorphisms of any object are given their usual
topology.



(Good News) Theorem. For any k € Z, there is
a Fréchet Lie 2-group PrG whose Lie 2-algebra Prg is
equivalent to g;.

An object of PrG is a smooth path f: [0, 27] — G start-
ing at the identity. A morphism from f; to f, is an equiv-
alence class of pairs (D, a) consisting of a disk D going
from fi to fy together with av € U(1):

&

For any two such pairs (D1, aq) and (Ds, as) there is a
3-ball B whose boundary is Dy U Dy, and the pairs are
equivalent when

exp (27m'k/ V) = as/ay
B

where v is the left-invariant closed 3-form on G with

v(z,y,z) = (|z,y],2)

and (-, -) is the smallest invariant inner product on g such
that v gives an integral cohomology class.



P.G and Loop Groups

We can also describe the 2-group PG as follows:

e An object of P.G is a smooth path in G starting at
the identity:.

e Given objects f1, fo € PrG, a morphism
z Ji— fo

is an element £ € @ with

AN

p(f) = fa/ fr

where @ is the level-k Kac-Moody central
extension of the loop group QG

1—>U<1>—>®LQG—>1

Remark: p(Z) is a loop in G. We can get such a loop with

AN

p(f) = f2/ fi
from a disk D like this:

&



The Lie 2-Group PG

Thus, PG is described by the following where p € PyG
and ”3/ c O.G:

e A Fréchet Lie group of objects:
Ob(P.G) = PG

e A Fréchet Lie group of morphisms:

Mor(PyG) = PG x 4G
e source map: s(pﬂ) =D

e target map: t(p,7y) = pd(7y) where 0 is defined as
the composite

0.G-5065 PG

e composition: (p1,71) © (p2,72) = (p1,7172) when
t(pla f?l) — S(p27 yZ)? Or P2 = plﬁ(ﬁl)

e identities: i(p) = (p, 1)



Topology of P.G

The nerve of any topological 2-group is a simplicial
topological group and therefore when we take the geo-
metric realization we obtain a topological group:

Theorem. For any k£ € Z, the geometric realization of
the nerve of PG is a topological group |PrG|. We have

m3(|PrG|) = Z/kZ
When k£ = +1, R
‘PkG| ~ G,

which is the topological group obtained by killing the
third homotopy group of G.

When G = Spin(n), G is called String(n). When
k==1, PG| ~G.



The Lie 2-Algebra P.g

PG is a particularly nice kind of Lie 2-group: a strict
one! Thus, its Lie 2-algebra is easy to compute.

The 2-term L.-algebra V' corresponding to the Lie
2-algebra Prg is given by:
o Vo = Fug
oVi=0g ¥ QoR,
o d: Vi — Vj equal to the composite
Qg — Qg — Pog.,
o [y: Vy x Vi — Vj given by the bracket in Fyg:
l2(p1, p2) = [p1, P2l;

and l: Vo x Vi — Vi given by the action da of Fyg
on {g, or explicitly:

21
la(p, (4, ) = (p, ], 2k / (p(6).£(0)) do )
0
for all p € Pyg, £ € QG and ¢ € R,

o [5: Vo x V) x Vi — V] equal to zero.



The 2-term L.-algebra V' corresponding to the Lie
2-algebra gy is given by:

e |y = the Lie algebra g,

o] =R,

e d: Vi — V| is the zero map,

o [y: V) x Vi — Vj given by the bracket in g:
lo(x,y) = |z, Y],

and ly: V) x Vi — Vj given by the trivial
representation p of g on R,

o /3: V) x Vo x Vi — V) given by:
l3($7y7 Z) — k([x,y],z)
for all z,y, 2z € g.



The Equivalence Prg ~ g,

We describe the two Lie 2-algebra homomorphisms form-
ing our equivalence in terms of their corresponding
L-algebra homomorphisms:

e ¢: Prg — g; has:
¢o(p) = p(2)
¢1(l,c) = ¢
where p € Fug, ¢ € (g, and c € R.

e : gr — Prg has:
o(x) = xf
Pi(c) = (0,
0,2

where x € g, ¢c € R, and f:
function with f(0) = 0 and f(2

R 1s a smooth

| |

)
)

Theorem. With the above definitions we have:

e ¢ o 1 is the identity Lie 2-algebra homomorphism on
gk, and

® )o@ is isomorphic, as a Lie 2-algebra homomorphism,
to the identity on Ppg.



What’s Next?

We know how to get Lie n-algebras from Lie algebra
cohomology! We should:

e (Classify their representations
e ['ind their corresponding Lie n-groups

e Understand their relation to higher braid theory

Moreover, many other questions remain:

e Weak n-categories in Vect?

e Weakening laws governing addition and scalar multi-
plication?”

e Weakening the antisymmetry of the bracket in the
definition of Lie 2-algebra?

e What's a free Lie 2-algebra on a 2-vector space?
e Lie 2-algebra cohomology? L-algebra cohomology?

e Deformations of Lie 2-algebras?



