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Higher Gauge Theory

It is natural to assign a group element to each path:

•
g

''•
since composition of paths then corresponds to multipli-
cation:

•
g

''•
g′

''•
while reversing the direction of a path corresponds to tak-
ing inverses:

• •
g−1

ww

and the associative law makes this composite unambigu-
ous:

•
g

''•
g′

''•
g′′

''•



Internalization

Often a useful first step in the categorification process
involves using a technique developed by Ehresmann called
‘internalization.’

How do we do this?

• Given some concept, express its definition completely
in terms of commutative diagrams.

• Now interpret these diagrams in some ambient cate-
gory K.

We will consider the notion of a ‘category inK’ for various
categories K.

A strict 2-group is a category in Grp, the category of
groups.



Categorified Lie Theory,
strictly speaking...

A strict Lie 2-group G is a category in LieGrp, the
category of Lie groups.

A strict Lie 2-algebra L is a category in LieAlg, the
category of Lie algebras.

We can also define strict homomorphisms between
each of these and strict 2-homomorphisms between
them, in the obvious way. Thus, we have two strict 2-
categories: SLie2Grp and SLie2Alg.

The picture here is very pretty: Just as Lie groups have
Lie algebras, strict Lie 2-groups have strict Lie 2-algebras.

Proposition. There exists a unique 2-functor

d : SLie2Grp→ SLie2Alg



Examples of Strict Lie 2-Groups

Let G be a Lie group and g its Lie algebra.

•Automorphism 2-Group

Objects : = Aut(G)

Morphisms : = Go Aut(G)

• Shifted U(1)

Objects : = ∗
Morphisms : = U(1)

• Tangent 2-Group

Objects : = G

Morphisms : = goG ∼= TG

• Poincaré 2-Group

Objects : = SO(n, 1)

Morphisms : = Rn o SO(n, 1) ∼= ISO(n, 1)



Categorified vector spaces

Kapranov and Voevodsky defined a finite-dimensional 2-
vector space to be a category of the form Vectn.

Instead, we define a 2-vector space to be a category in
Vect, the category of vector spaces.

Thus, a 2-vector space is a category where everything in
sight is linear!



A 2-vector space, V , consists of:

• a vector space of objects, Ob(V )

• a vector space of morphisms, Mor(V )

together with:

• linear source and target maps

s, t : Mor(V )→ Ob(V ),

• a linear identity-assigning map

i : Ob(V )→Mor(V ),

• a linear composition map

◦ : Mor(V )×Ob(V ) Mor(V )→Mor(V )



such that the following diagrams commute, expressing the
usual category laws:

• laws specifying the source and target of identity mor-
phisms:

Ob(V ) i //

1Ob(V ) &&NNNNNNNNNNN
Mor(V )

s
��

Ob(V )

Ob(V ) i //

1Ob(V ) &&NNNNNNNNNNN
Mor(V )

t
��

Ob(V )

• laws specifying the source and target of composite
morphisms:

Mor(V )×Ob(V ) Mor(V ) ◦ //

p1

��

Mor(V )

s

��

Mor(V ) s //Ob(V )

Mor(V )×Ob(V ) Mor(V ) ◦ //

p2

��

Mor(V )

t

��

Mor(V ) t //Ob(V )



• the associative law for composition of morphisms:

Mor(V )×Ob(V ) Mor(V )×Ob(V ) Mor(V )
◦×Ob(V )1 //

1×Ob(V )◦

��

Mor(V )×Ob(V ) Mor(V )

◦

��
Mor(V )×Ob(V ) Mor(V ) ◦ // Mor(V )

• the left and right unit laws for composition of
morphisms:

Ob(V )×Ob(V ) Mor(V ) i×1 //

p2

((QQQQQQQQQQQQQQQQQQQQQQQQQQQQ
Mor(V )×Ob(V ) Mor(V )

◦

��

Mor(V )×Ob(V ) Ob(V )1×ioo

p1

vvmmmmmmmmmmmmmmmmmmmmmmmmmmmm

Mor(V )



2-Vector Spaces

We can also define linear functors between 2-vector
spaces, and linear natural transformations between
these, in the obvious way.

Theorem. The 2-category of 2-vector spaces, linear
functors and linear natural transformations is equivalent
to the 2-category of:

• 2-term chain complexes C1
d−→C0,

• chain maps between these,

• chain homotopies between these.



2-Vector Spaces

Proposition. Given 2-vector spaces V and V ′ there is
a 2-vector space V ⊕ V ′ having:

• Ob(V )⊕ Ob(V ′) as its vector space of objects,

•Mor(V )⊕Mor(V ′) as its vector space of morphisms,

Proposition. Given 2-vector spaces V and V ′ there is
a 2-vector space V ⊗ V ′ having:

• Ob(V )⊗ Ob(V ′) as its vector space of objects,

•Mor(V )⊗Mor(V ′) as its vector space of morphisms,

Moreover, we have an ‘identity object’, K, for the
tensor product of 2-vector spaces, just as the ground field
k acts as the identity for the tensor product of usual vector
spaces:

Proposition. There exists a unique 2-vector space K,
the categorified ground field, with

Ob(K) = Mor(K) = k and

s, t, i = 1k.



Semistrict Lie 2-Algebras

A semistrict Lie 2-algebra consists of:

• a 2-vector space L

equipped with:

• a functor called the bracket:

[·, ·] : L× L→ L

bilinear and skew-symmetric as a function of objects
and morphisms,

• a natural isomorphism called the Jacobiator:

Jx,y,z : [[x, y], z]→ [x, [y, z]] + [[x, z], y],

trilinear and antisymmetric as a function of the objects
x, y, z,

such that:
• the Jacobiator identity holds, meaning the follow-

ing diagram commutes:
[[[w,x],y],z]

[[[w,y],x],z]+[[w,[x,y]],z] [[[w,x],y],z]

[[[w,y],z],x]+[[w,y],[x,z]]
+[w,[[x,y],z]]+[[w,z],[x,y]]

[[[w,x],z],y]+[[w,x],[y,z]]

[[[w,z],y],x]+[[w,[y,z]],x]
+[[w,y],[x,z]]+[w,[[x,y],z]]+[[w,z],[x,y]]

[[w,[x,z]],y]
+[[w,x],[y,z]]+[[[w,z],x],y]

[[[w,z],y],x]+[[w,z],[x,y]]+[[w,y],[x,z]]
+[w,[[x,z],y]]+[[w,[y,z]],x]+[w,[x,[y,z]]]

Jw,[x,z],y
+J[w,z],x,y+Jw,x,[y,z]

[Jw,x,y,z]

uukkkkkkkkkkkkkkkk
1

))SSSSSSSSSSSSSSSS

J[w,y],x,z+Jw,[x,y],z

��

[Jw,y,z,x]

��

J[w,x],y,z

��

[Jw,x,z,y]

��

[w,Jx,y,z] ))RRRRRRRRRRRRRRRRR

uulllllllllllllllll



Given a vector space V and an isomorphism

B : V ⊗ V → V ⊗ V,
we say B is a Yang–Baxter operator if it
satisfies the Yang–Baxter equation, which
says that:

(B⊗1)(1⊗B)(B⊗1) = (1⊗B)(B⊗1)(1⊗B),

or in other words, that this diagram commutes:

V ⊗ V ⊗ V

V ⊗ V ⊗ V

V ⊗ V ⊗ V

V ⊗ V ⊗ V

V ⊗ V ⊗ V

V ⊗ V ⊗ V
B⊗1

**UUUUUUUUUUUUUUUUUUUUUU
1⊗B

uujjjjjjjjjjjjjjjjjjjj

B⊗1

��

1⊗B ))TTTTTTTTTTTTTTTTTTTT

B⊗1ttiiiiiiiiiiiiiiiiiiiiii

1⊗B

��



If we draw B : V ⊗V → V ⊗V as a braiding:

V V

B =

V V

the Yang–Baxter equation says that:

VVV

VVV
%%%%%%%%%%%

=

VVV

VVV



The Zamolodchikov tetrahedron equation is a
formalization of this commutative octagon:

HHHH

BBBB

77777

;;;;

LLL

LLL

77777

;;;;

CCCC

BBBB

777
;;;;
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We can define homomorphisms between Lie 2-algebras,
and 2-homomorphisms between these.

Given Lie 2-algebras L and L′, a homomorphism
F : L→ L′ consists of:

• a functor F from the underlying 2-vector space of L
to that of L′, linear on objects and morphisms,

• a natural isomorphism

F2(x, y) : [F (x), F (y)]→ F [x, y],

bilinear and skew-symmetric as a function of the
objects x, y ∈ L,

such that:

• the following diagram commutes for all objects
x, y, z ∈ L:

[F (x), [F (y), F (z)]]
JF (x),F (y),F (z) //

[1,F2]

��

[[F (x), F (y)], F (z)] + [F (y), [F (x), F (z)]]

[F2,1]+[1,F2]

��

[F (x), F [y, z]]

F2

��

[F [x, y], F (z)] + [F (y), F [x, z]]

F2+F2

��

F [x, [y, z]]
F (Jx,y,z) // F [[x, y], z] + F [y, [x, z]]



Theorem. The 2-category of Lie 2-algebras, homo-
morphisms and 2-homomorphisms is equivalent to the
2-category of:

• 2-term L∞-algebras,

• L∞-homomorphisms between these,

• L∞-2-homomorphisms between these.

The Lie 2-algebras L and L′ are equivalent if there are
homomorphisms

f : L→ L′ f̄ : L′ → L

that are inverses up to 2-isomorphism:

ff̄ ∼= 1, f̄f ∼= 1.

Theorem. Lie 2-algebras are classified up to equivalence
by quadruples consisting of:

• a Lie algebra g,

• an abelian Lie algebra (= vector space) h,

• a representation ρ of g on h,

• an element [j] ∈ H3(g, h).



The Lie 2-Algebra gk

Suppose g is a finite-dimensional simple Lie algebra over
R. To get a Lie 2-algebra having g as objects we need:

• a vector space h,

• a representation ρ of g on h,

• an element [j] ∈ H3(g, h).

Assume without loss of generality that ρ is irreducible.
To get Lie 2-algebras with nontrivial Jacobiator, we need
H3(g, h) 6= 0. By Whitehead’s lemma, this only happens
when h = R is the trivial representation. Then we have

H3(g,R) = R
with a nontrivial 3-cocycle given by:

ν(x, y, z) = 〈[x, y], z〉.

The Lie algebra g together with the trivial representation
of g on R and k times the above 3-cocycle give the Lie
2-algebra gk.

In summary: every simple Lie algebra g gives a one-
parameter family of Lie 2-algebras, gk, which reduces
to g when k = 0!

Puzzle: Does gk come from a Lie 2-group?



Coherent 2-Groups

A coherent 2-group is a weak monoidal category in
which every morphism is invertible and every object is
equipped with an adjoint equivalence.

A homomorphism between coherent 2-groups is a weak
monoidal functor. A 2-homomorphism is a monoidal
natural transformation. The coherent 2-groups X and
X ′ are equivalent if there are homomorphisms

f : X → X ′ f̄ : X ′→ X

that are inverses up to 2-isomorphism:

ff̄ ∼= 1, f̄f ∼= 1.

Theorem. Coherent 2-groups are classified up to equiv-
alence by quadruples consisting of:

• a group G,

• an abelian group H ,

• an action α of G as automorphisms of H ,

• an element [a] ∈ H3(G,H).



Suppose we try to copy the construction of gk for a par-
ticularly nice kind of Lie group. Let G be a simply-
connected compact simple Lie group whose Lie algebra
is g. We have

H3(G,U(1))
ι
↪→Z ↪→ R ∼= H3(g,R)

Using the classification of 2-groups, we can build a
skeletal 2-group Gk for k ∈ Z:

• G as its group of objects,

• U(1) as the group of automorphisms of any object,

• the trivial action of G on U(1),

• [a] ∈ H3(G,U(1)) given by k ι[ν], which is nontrivial
when k 6= 0.

Question: Can Gk be made into a Lie 2-group?

Here’s the bad news:

(Bad News) Theorem. Unless k = 0, there is no
way to give the 2-group Gk the structure of a Lie 2-group
for which the group G of objects and the group U(1) of
endomorphisms of any object are given their usual
topology.



(Good News) Theorem. For any k ∈ Z, there is
a Fréchet Lie 2-group PkG whose Lie 2-algebra Pkg is
equivalent to gk.

An object of PkG is a smooth path f : [0, 2π]→ G start-
ing at the identity. A morphism from f1 to f2 is an equiv-
alence class of pairs (D,α) consisting of a disk D going
from f1 to f2 together with α ∈ U(1):

�

�

G

1

f1 f2D
+3

For any two such pairs (D1, α1) and (D2, α2) there is a
3-ball B whose boundary is D1 ∪ D2, and the pairs are
equivalent when

exp

(
2πik

∫

B

ν

)
= α2/α1

where ν is the left-invariant closed 3-form on G with

ν(x, y, z) = 〈[x, y], z〉
and 〈·, ·〉 is the smallest invariant inner product on g such
that ν gives an integral cohomology class.



PkG and Loop Groups

We can also describe the 2-group PkG as follows:

• An object of PkG is a smooth path in G starting at
the identity.

• Given objects f1, f2 ∈ PkG, a morphism

̂̀: f1 → f2

is an element ̂̀∈ Ω̂kG with

p(̂̀) = f2/f1

where Ω̂kG is the level-k Kac–Moody central
extension of the loop group ΩG:

1−→U(1)−→ Ω̂kG
p−→ΩG−→ 1

Remark: p(̂̀) is a loop in G. We can get such a loop with

p(̂̀) = f2/f1

from a disk D like this:

�

�

G

1

f1 f2D
+3



The Lie 2-Group PkG
Thus, PkG is described by the following where p ∈ P0G

and γ̂ ∈ Ω̂kG:

• A Fréchet Lie group of objects:

Ob(PkG) = P0G

• A Fréchet Lie group of morphisms:

Mor(PkG) = P0Gn Ω̂kG

• source map: s(p, γ̂) = p

• target map: t(p, γ̂) = p∂(γ̂) where ∂ is defined as
the composite

Ω̂kG
p−→ΩG

i
↪→P0G

• composition: (p1, γ̂1) ◦ (p2, γ̂2) = (p1, γ̂1γ̂2) when
t(p1, γ̂1) = s(p2, γ̂2), or p2 = p1∂(γ̂1)

• identities: i(p) = (p, 1)



Topology of PkG
The nerve of any topological 2-group is a simplicial
topological group and therefore when we take the geo-
metric realization we obtain a topological group:

Theorem. For any k ∈ Z, the geometric realization of
the nerve of PkG is a topological group |PkG|. We have

π3(|PkG|) ∼= Z/kZ
When k = ±1,

|PkG| ' Ĝ,

which is the topological group obtained by killing the
third homotopy group of G.

When G = Spin(n), Ĝ is called String(n). When

k = ±1, |PkG| ' Ĝ.



The Lie 2-Algebra Pkg

PkG is a particularly nice kind of Lie 2-group: a strict
one! Thus, its Lie 2-algebra is easy to compute.

The 2-term L∞-algebra V corresponding to the Lie
2-algebra Pkg is given by:

• V0 = P0g

• V1 = Ω̂kg ∼= Ωg⊕ R,

• d : V1→ V0 equal to the composite

Ω̂kg→ Ωg ↪→ P0g ,

• l2 : V0 × V0 → V0 given by the bracket in P0g:

l2(p1, p2) = [p1, p2],

and l2 : V0 × V1 → V1 given by the action dα of P0g
on Ω̂kg, or explicitly:

l2(p, (`, c)) =
(
[p, `], 2k

∫ 2π

0

〈p(θ), `′(θ)〉 dθ
)

for all p ∈ P0g, ` ∈ ΩG and c ∈ R,

• l3 : V0 × V0 × V0 → V1 equal to zero.



The 2-term L∞-algebra V corresponding to the Lie
2-algebra gk is given by:

• V0 = the Lie algebra g,

• V1 = R,

• d : V1→ V0 is the zero map,

• l2 : V0 × V0 → V0 given by the bracket in g:

l2(x, y) = [x, y],

and l2 : V0 × V1 → V1 given by the trivial
representation ρ of g on R,

• l3 : V0 × V0 × V0 → V1 given by:

l3(x, y, z) = k〈[x, y], z〉
for all x, y, z ∈ g.



The Equivalence Pkg ' gk

We describe the two Lie 2-algebra homomorphisms form-
ing our equivalence in terms of their corresponding
L∞-algebra homomorphisms:

• φ : Pkg→ gk has:

φ0(p) = p(2π)
φ1(`, c) = c

where p ∈ P0g, ` ∈ Ωg, and c ∈ R.

• ψ : gk → Pkg has:

ψ0(x) = xf
ψ1(c) = (0, c)

where x ∈ g, c ∈ R, and f : [0, 2π] → R is a smooth
function with f(0) = 0 and f(2π) = 1.

Theorem. With the above definitions we have:

• φ ◦ ψ is the identity Lie 2-algebra homomorphism on
gk, and

• ψ◦φ is isomorphic, as a Lie 2-algebra homomorphism,
to the identity on Pkg.



What’s Next?

We know how to get Lie n-algebras from Lie algebra
cohomology! We should:

• Classify their representations

• Find their corresponding Lie n-groups

• Understand their relation to higher braid theory

Moreover, many other questions remain:

•Weak n-categories in Vect?

•Weakening laws governing addition and scalar multi-
plication?

•Weakening the antisymmetry of the bracket in the
definition of Lie 2-algebra?

•What’s a free Lie 2-algebra on a 2-vector space?

• Lie 2-algebra cohomology? L∞-algebra cohomology?

• Deformations of Lie 2-algebras?


