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Quantum field theory can be regarded as the study of representations
of geometric categories.

Parallel transport in a vector bundle E → X with connection ∇ is a
functor

tra∇ : P1(X) → Vect .

This can be quantized. Propagation in the quantum theory is a functor

U : 1CobRiem → Vect .

Propagation in 2-dimensional field theory has been conceived in terms of func-
tors

U : 2CobS → Vect .

The local structure used to build such functors gives rise to 2-vector transport
2-functors

tra : P2 → 2Vect .

We discuss this for topological and conformal 2-dimensional field theory.
Our aim here is to say what a 1-point disk correlator in a 2-dimensional

quantum field theory is, and how it looks like this:
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Our strategy is internalization: we identify the arrow theory of 1-dimensional
quantum field theory, known as quantum mechanics. Categorifying this, we ob-
tain 2-dimensional quantum field theory.

Our imagery is the charged 2-particle. A 2-vector transport on target
space describes a background field to which a 2-particle couples. The quantiza-
tion of this system gives rise to a 2-vector transport on the parameter space of
the 2-particle.

Our motivation are structural similarities between
- the formula for surface holonomy of a gerbe in local data;
- the state sum formula for propagation along a surface in topological 2-

dimensional field theory;
- the ribbon diagram formula for propagation along a surface in conformal

2-dimensional field theory.
In all three of these cases the quantity associcated to a given surface is

obtained, basically, by decorating a dual triangulation of the surface with objects
and morphisms of a Frobenius algebroid.
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Our claim is that all these formulas are special cases of those describing a
locally trivialized 2-transport.
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by string diagrams
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global transport reps of geometric categories
by

local data n-anafunctors on geometric n-categories
with

gluing/descent data by equivalences by special ambijunctions
which is

realized as transition functions Wilson networks
that

take values in
n-groups (principal)

reps thereof (associated)
n-monoids

(of reps of configuration space)
such that

composition yields patchwise parallel transport state sum
and

serves in physics as
phases on target space

(classical)
amplitudes on parameter space

(quantum)

Table 1: Quantum field theory is, from the functorial point of view, the theory of
representations of “geometric” categories. Typically, these are categories
of cobordisms with extra structure – or n-categorical refinements of these. De-
pending on the details, this involves various concepts, as indicated in the above
table.
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1 Introduction

1.1 A map: quantization, categorification and local trivi-
alization

Parallel transport in vector bundles with connection is the model from which we
want to understand 2-dimensional quantum field theories and their local state
sum description. This involves three orthogonal steps, as indicated in figure 1.

The charged 1-particle. The coupling of a charged particle in a space X to
a background field is described by vector bundles E → X with connection ∇.
Parallel transport in the vector bundle is a functor

tra : P1(X) → Vect

that sends paths in base space to morphisms between the fibers over the end-
points.
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ē2(y)��

The parallel transport along the trajectory of the particle models the “phase
shift” that the particle suffers due to its charge while traversing its trajectory.
This way, any flow v in base space induces an endomorphism

Uv : H → H

of the space of sections H ≡ Γ(E) of the vector bundle E.

Quantization of the charged 1-particle. For X Riemannian, quantiza-
tion of the charged particle produces a representation of R

t 7→ U(t) : H → H
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Figure 1: Quantization, categorification and local trivialization are the
three procedures relating n-vector n-transport that play a role in the local
description of n-dimensional quantum field theory. Categorification sends n-
transport to (n + 1)-transport. Quantization sends n-transport on n-paths in
configuration space to n-transport on abstract n-paths (parameter space). Lo-
cal trivialization sends n-transport on globally defined n-paths to n-transport
on local n-paths glued by n-transitions.
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by unitary operators on H, obtained by the generalized Feynman-Kac formula.
U(t) is said to describe time evolution or propagation of the state of the
charged particle.

If we allow ourselves to be slightly more sophisticated, we say that propaga-
tion in quantum mechanics is a functor

U : 1CobRiem → Hilb

from 1-dimensional Riemannian cobordisms to Hilbert spaces.
This way, quantization (of the charged particle) is a procedure that associates

to a functor on paths in X with values in vector spaces a functor on abstract
1-dimensional cobordisms.

The charged 2-particle. There is a more or less obvious 2-category

P2(X)

of 2-paths in X – these are essentially just surfaces cobounding 1-paths in X
– and there are several notions of what one might call

2Vect ,

the 2-category of 2-vector spaces. Fixing any such notion we are lead to
consider 2-functors

tra : P2(X) → 2Vect

that describe parallel 2-transport
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Categorifcation of quantum propagation. Categorifying propagation 1-
functors on 1-dimensional cobordisms with values in vector spaces should lead
us to 2-functors on abstract bigons with values in 2-Hilbert spaces.

These should be thought of as refinements of 1-functors on 2-cobordisms
with values in Hilbert spaces.
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?? provide more details ??

State sum models. ?? see figure ??

The FRS theorem. The FRS theorem uses state sum internal to modular
tensor categories more general than Vect in order to describe not topological,
but conformal 2-dimensional field theory.

2-dimensional (rational) conformal field theories are are encoded in special
symmetric Frobenius algebra objects internal to a modular tensor category.

The algebra A itself is the space of open string states.
Modules for A descibe boundary conditions, also known as D-branes.
Bimodules for A describe defect lines.
Morphisms of twisted modules descibe boundary field insertions.
Morphisms of twisted bimodules descibe bulk field insertions.
The corresponding topological state sum model computes correlators for the

conformal field theory.
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The FRS description of disk and annuli correlators. The FRS construc-
tion crucially also involves 3-dimensional topological field theory and surgery on
the 3-sphere. But all genuinely 2-dimensional ingredients of the formalism al-
ready appear in the description of disk correlators.

The disk correlator from locally trivialized 2-transport. The descrip-
tion of the disk correlator in conformal field theory by the FRS theorem can be
understood from 2-vector 2-transport with values in twisted bimodules.

?? say more ??
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Figure 2: Local trivialization of 2-functors induces local decorations by Frobe-
nius algebroids like those appearing in state sum models of 2-dimensional QFT.
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1.2 A Rosetta stone: arrow theory of quantum mechanics

This section sets up a correspondence between the physics and the mathematics
to follow.

arrow theory of QM

uukkkkkkkkkkkkkkk

))TTTTTTTTTTTTTTT

quantum field theory
section 2

2-functorial transport
section 3

The suggestion is that, according to taste, you start with one of the following
sections, then pull yourself back to this one here and see if that helps pushing
forward towards the remaining one.

Quantum theory terminology. We find the following concept formation
useful and natural.

A 2-transport, be it the parallel transport in a 2-bundle with connection,
or the propagation in 2-dimensional quantum field theory we write as

tra : P2 → T .

Here P2 is a 2-category modelling 2-paths in some space. When we speak just of
2-bundles, this is base space. When we think of the 2-bundles as background
fields in quantum field theory, this is target space.

The codomain T is the category of fibers of the 2-bundle. From the point of
view of quantum field theory, a morphism in here is a phase.

Usually, T is equipped with a monoidal structure. That makes morphisms
into T inherit this monoidal structure. We denote by

1 ∈ [P2, T ]

the tensor unit among these morphisms. Physically speaking, 1 is the vanishing
background field.

The space of generalized objects of a 2-bundle tra with connection

sectfl ≡ [1, tra]

is the space of flat sections. In physics, this is the space of ground states.
n-dimensional quantum field theory describes the propgation of (n − 1)-

dimensional entities. For n = 1 these are called particles. For n = 2 they are
sometimes called strings. Here we shall call them, more generally, n-particles.

In our language a 2-particle is a 1-category generated from a single non-
trivial morphism. The category

paropn = {a → b}
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models the open 2-particle. The categories

parclsd,1 = Σ(Z)

and
parclsd,2 = Σ(N)

model the closed 2-particle. In the language of σ-models, these categories
play the role of parameter space.

A morphism
γ : par → P2

from parameter space to target space is a field configuration. This is where
field theory gets its name from. The morphisms of the category

Cob = [par,P2]

are embedded cobordisms. Physically they correspond to trajectories of the
2-particle in its configuration space. Accordingly, embeddings of subcategories

conf
⊂ // [par,P2]

essentially surjective on objects are called configuration spaces. The isomor-
phisms in conf are those that relate gauge equivalent configurations. The
morphisms not in conf are the physical trajectories.

By postcomposition, the background field tra transgresses to configuration
space

tra∗ : conf → [par, T ] .

A generalized object of this,

e : 1∗ → tra∗ ,

is a section of the 2-bundle with respect to conf. For the quantum theory, such
a section is known as a state.

The space of all sections

sectconf = [1∗, tra∗]

is, accordingly, the space of states.
The space of states is naturally acted on by

obs = End(1∗) .

This is the monoid of (position) observables. Usually we have

obs = [par, obsloc]

in which case obsloc are the local observables. The space of states is moreover
naturally acted on by

G = Aut(tra∗) .
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Figure 3: The 0-disk and the 0-disk correlator with two boundary insertions in
1-dimensional quantum field theory.

This is the group of local gauge transformations.
Similarly, there is the space of co-sections

cosectconf = [tra∗, 1∗] .

Physically, these, or rather the natural pairing

(·, ·) : cosect× sect → C

corresponds to measurements. The pairing should be thought of as being the
image of the identity under the Hom

(·, ·) : cosect× sect
Hom(·,·) // [End(tra∗),End(1∗)]

ev(·,Id) // C .

On the space of sections, equipped with the above pairing, physical processes act
as linear operators. An operator T : sect → sect has an adjoint T † : cosect →
cosect if

(ē2, T e1) ' (T †ē2, e1)

for all sections e1 and cosections e2.
An important example is the translation along a flow in in configuration

space.

Flows. We formulate the arrow theory of a flow along a vector field.
Let P1 be a category. Let

F(P1) ⊂ Σ(Aut(P))

be the category whose single object is P1, and whose morphisms are natural

13
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Figure 4: The disk and the disk correlator with two boundary insertions in
2-dimensional quantum field theory.

transformations
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Id
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with composition being horizontal composition of natural transformations.

Definition 1 For R some group, an R-flow on P1 is a functor

exp(v) : Σ(R) → F (P1) .

An R-flow on Cob is compatible with the configuration space symmetries if

conf

��

exp(v)(t) // conf

��
Cob

exp(v)(t)
// Cob

∼{� �
���

.
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In that case, the R-flow exp(v) defines, for any t ∈ R, a translation operator

exp(v)(t) : sect → sect

on the space of states, which sends any section e to

 conf

1∗

""

tra∗

<<
[par, T ]e

��

 7→ conf
exp(v)(t)−1

// conf //

1∗

��
Cob

Id

  

exp(v)(t)

>>Cob
tra∗ // [par, T ]

��

e��

.

Given a section e1 and a cosection ē2, the expression

(ē2, exp(v)(t)e1)

provides us with a measure for the correlator after translation along v, with
boundary insertions e1 and e2

For a simple example try example 1 below.
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2 Background on low-dimensional quantum field
theory

Example 1 (quantum mechanics of the charged point particle)

In physics, the study of what is called the quantum mechanics of the charged
particle involves the following ingredients.

There is a point, {•}, supposed to model an elementary particle.
There is a smooth, Riemannian space X, called the target space and sup-

posed to model the physical space that the particle propagates in.
There is a hermitean vector bundle E → X with connection ∇ on X, called

a background field and supposed to model a physical gauge field, like the
electromagnetic field.

A configuration of this physical system is a map from the particle to target
space, c : {•} → X, modelling the idea of a physical state where the particle is
found at the point c(•) in configuration space.

Accordingly, the space of maps [{•}, X] is called the configuration space
of the system. For the point particle, the configuration space coincides with
target space.

To a path in configuration space, modelling a trajectory of the point parti-
cle, the connection ∇ associates, by parallel transport, a morphism of hermitean
vector spaces. This is called the phase associated to the given path.

These ingredients are known as the classical aspects of the physical system.
From them, one finds the quantum aspects, for instance by applying geometric
quantization.

The bundle (E,∇) on target space can be transgressed to a bundle with
connection on configuration space. For the point particle this step is empty.

Combining the Riemannian structure on X with the hermitean structure
on E, the space of sections Γ(E) of the bundle on configuration space inherits
a scalar product. Completing with respect to this yields a Hilbert space of
sections, called the space of states of the quantum particle.

From the phase associated to each path in configuration space we obtain an
operator ∆ = ∇†

E∇E on the space of states, called the Hamiltonian. It gives
rise to a 1-parameter familiy of operators, U(t) = exp(it∆), called the prop-
agator and modelling the operation of propagating quantum states through
time.

For the present case, the integral kernel of this operator can rigorously be ex-
pressed as the phase integrated over all paths in configuration space connecting
two given configurations.

This setup is called the quantum mechanics of the charged point particle.

Remark. In conclusion, the quantization step sends a parallel vector transport
on target space

( x
γ // y ) 7→ ( Ex

tra∇(γ) // Ey )
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to a vector transport on parameter space

( •
[0,t] // • ) 7→ ( Γ(E)

U(t) // Γ(E) ) .

2.1 Functorial QFT

Similar considerations as in example 1 have lead people to a similar character-
ization of the structures appearing in d-dimensional quantum field theory as
follows:

Definition 2 Let dCobS be a symmetric monoidal category of d-dimensional
cobordisms equipped with some extra structure S. Then a d-dimensional quan-
tum field theory with respect to S is a monoidal functor

U : dCobS → Hilb .

Various obvious slight modifications of this definition can be considered and
have been considered. In particular, the codomain is sometimes taken to be not
Hilbert spaces, but just vector spaces.

One of the simplest nontrivial and best known examples is 2-dimensional
topological field theory.

Example 2 (closed 2-dimensional topological field theory)

Let 2Cob be the category whose objects are disjoint unions of the circle with
itself, and whose morphisms are diffeomorphism classes of oriented 2-manifolds
cobounding these circles. Since in this category all morphisms are completely
characterized by the topology of any manifold representing that morphism, rep-
resentations of this category are addressed as topological field theories.

Proposition 1 The category of functors

U : 2Cob → Vect

is equivalent to that of commutative Frobenius algebras.

Remark. This result can be understood both from a global, as well as from
a local perspective.

Global Perspective. Globally, proving this statement amounts to real-
izing that gluing 3-holed spheres corresponds, under the functor U , to taking
associative products and coproducts on the vector space A = U(S1) associated
by U to a single copy of the circle. The disk then maps to a unit and counit
on A, and topological invariance implies the compatibility of the product and
coproduct with these units as well as the Frobenius property.

17



Local Perspective. It turns out that we can think of this functor also by
triangulating any cobordism and suitably decorating the resulting graph with
certain local data.

Observation 1 (Fukuma, Hosono, Kawai) Choose any special Frobenius al-
gebra A (not necessarily commutative). A 2-dimensional topological field theory
is then obtained by choosing on any cobordims an oriented dual triangulation,
labelling edges of that with A and trivalent vertices with the product or coprod-
uct in A, as required. The resulting morphisms A⊗n → A⊗m then constitute a
functor U : 2Cob → Vect that is well defined, and in particular independent of
the choices involved in its construction.

It turns out that the commutative Frobenius algebra As of the global picture
arises as the center of the Frobenius algebra Al in the local picture. When we
generalize the cobordisms in the domain and also admit cobordisms between
open intervals, then our functor U : 2Coboc → Vect will assign Al to the open
interval, As to the circle and assign to any open-closed cobordism a morphisms
obtained by local data as above.

This statement has been turned into a rigorous theorem, by Lauda and
Pfeiffer.

Theorem 1 (Lauda,Pfeiffer) Open/closed 2-dimensional topological field the-
ories are equivalent to knowledgeable Frobius algebras.

?? discuss this in more detail ??
There are various ways to think about such decorated graphs. Similar struc-

tures are sometimes called Wilson networks or spin networks. We will re-
encounter the general mechanism here when we talk about the local description
of parallel surface transport in vector 2-bundles (or in gerbes).

It turns out that the subset of quantum field theories that are both interest-
ing and at the same time tractable is rather small. This phenomenon has lead
to a wide gap between the development of quantum field theory in physics and
in mathematics.

To some extent, the only physically interesting quantum field theories that
are also mathematically well understood are the topological ones. However,
progress has been made in extracting the topological essence of non-topological
quantum field theories.

Example 3 (2-dimensional conformal field theory)

The next best thing after topological cobordisms are conformal cobordisms.
There are already technical difficulties with constructing a category 2Cobconf

of conformal 2-dimensional cobordisms. The naive identity morphisms do not
exist.

One can either try to deal with this problem, or else be content with working
with a notion of category without requiring identity morphisms. Either way, we
would then say
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Definition 3 (G. Segal) A 2-dimensional conformal field theory is a functor

U : 2Cobconf → Vect .

Here Vect in general denotes topological vector spaces.
Actually, such a functor is, more precisely, a 2-dimensional conformal field

theory of vanishing central charge. More generally, one takes the functors U
to be just projective, involving a multiple of a cocylce, known as the Liouville
action, by a factor c, known as the central charge.

It turns out that understanding such functors is hard. A great advance has
been obtained by Fuchs, Runkel and Schweigert, Fjelstad and Fröhlich, in the
rational case. They noticed that rational conformal field theory is essentially
like topological conformal field theory - but internalized not in Vect, but in some
modular tensor category C.

2.2 The FRS theorem solving rational conformal field the-
ory.

Theorem 2 (FFRS) Let V be a vertex operator algebra, such that C = Rep(V )
is a modular tensor category.

Then any (special symmetric) Frobenius algebra object A internal to C defines
a 2-dimensional rational conformal field theory UA : 2Cobconf → Vect.

The FFRS theorem allows us to split, schematically,

(R)CFT = complex analytic data + topological data
= chiral data + sewing constraints
= Rep(V ) + (A ∈ Obj(Rep(V ))) .

It is known how knowledge of V alone allows to compute spaces of “pre-correlators”,
or “conformal blocks” associated to each extended conformal surface. These are
spaces of functions that potentially encode the value of the quantum field theory
functor on that surface, obtained by taking into account just the local symme-
tries.

The construction of a full conformal field theory then amounts to picking, in a
consistent fashion, for each extended conformal surface one of its asscociated pre-
correlators, such that this assignment conspires to form a functor on 2Cobconf .

The FRS theorem tells us that this last step is purely topological in nature,
and that there exists a topological field theory which computes consistent choices
of conformal blocks.

This topological field theory is constructed essentially in the same local way
as described by Fukuma, Hosono, Kawai and Lauda, Pfeiffer, the only difference
being that where before we decorated graphs with algebra objects internal to
Vect, we now decorate them with algebra objects internal to a potentially more
general modular tensor category C.

We say this again, slightly more detailed:
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given a conformal cobordism (X, g), find in the vector space
Hom(∂in(X, g), ∂out(X, g)) ' (∂in(X, g)⊗ ∂out(X, g)∗)∗

the correlator of a 2d CFT
↓

given the data of a chiral CFT in terms of a vertex operator algebra V ,
it is sufficent to look at the subspace

BV (X, g) ⊂ (∂in(X, g)⊗ ∂out(X, g)∗)∗

of conformal blocks
↓

the BV (X, g) form a projective vector bundle with flat connection
over the moduli space of conformal structures on X;
it is sufficient to consider the space

V (X)
of flat sections of this vector bundle

↓
FFRS theorem:
the true correlator, regarded as an element of V (X), is the
correlator of a 3d TFT on an extended 3-manifold with boundary X

&
this extended 3-manifold is a fattened version of a
Wilson network of a 2d TFT internal to Rep(V )

Table 2: The main idea of the FFRS theorem. Imposing chiral symmetries
on a 2-dimensional conformal field theory allows to decouple the dependence on
the conformal structure from the global behaviour under gluing of cobordisms.

Correlator. The image of any cobordism X under the QFT functor is a

morphism Vin

f(X) // Vout of vector spaces. The image of this morphism under
the isomorphism

Hom(Vin, Vout) ' V ∗
in ⊗ Vout ' (Vin ⊗ V ∗

out)
∗

is called the correlator of X.
Sewing and Factorization. For certain choices of extra structure S, cobor-

disms with that extra structure do not provide naive identity morphisms and
hence do not form categories with identities in the obvious way. One way to
reformulate the desired functoriality property without having to use identity
morphisms is this:

Given any cobordism X, and given a way to cut it such as two obtain two
new boundary components, one incoming and one outgoing, factorization is the
demand that the morphism associated to the full cobordism is the obvious trace
of the morphism associated to the cobordism obtained after cutting.

2-dimensional Conformal Field Theory. A representation of the cate-
gory of 2-dimensional oriented cobordisms with conformal structure and collared
boundary components is called a conformal field theory of vanishing central
charge.
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More generally, one is interested in functors that respect conformal rescalings
only projectively. A conformal field theory of central charge c is a represen-
tation of Riemannian cobordisms such that the correlators of two Riemannian
surfaces whose metrics differs by by a conformal factor eσ differ by the factor
ecS[σ], where S is the Liouville action functional.

Chiral 2d Conformal Field Theory. A chiral conformal field theory is
one for which the vector spaces assigned to boundary components are modules
of a vertex operator algebra V and whose correlators take values in the space
of conformal blocks

B( ∂in(X, g) X // ∂out(X, g) ) ⊂ (Vin ⊗ V ∗
out)

∗ ,

of V . This is a space of invariants of the action of V on its modules, with respect
to X.

Conformal blocks can be thought of as pre-correlators that are compat-
ible with the local symmetries of the conformal field theory, but from which
the true correlators compatible with the global factorization property still need
to be picked.

The spaces of conformal blocks form a projective vector bundle over the
moduli space of conformal structures on a given X. This vector bundle naturally
carries a flat connection, the Knizhnik-Zamolodchikov connection. The
space

V (X)

of flat sections of the bundle of spaces of conformal blocks with respect to this
connection is hence a vector space we may associate to a topological cobordism
X.

The insight underlying the FFRS theorem is: picking the true correlators
of a full conformal field theory from the space of conformal blocks of a chiral
conformal field theory is equivalent to constructing a certain topological field
theory that assigns to each topological cobordism X an element in V (X).

2.3 n-functorial quantum field theory?

The fact that field theories conceived as representations of cobordism categories
can have a local description, in which data is assigned to pieces of cobordisms,
is a first indication that we may want to find a refinement of that definition.

Excision for elliptic objects. One of the intended applications of Segal’s
definition of conformal field theory was a geometric description of elliptic coho-
mology. In that context, one considers conformal cobordisms equipped with the
extra structure of a map from the cobordism into some fixed space X.

For this to have a chance of being applicable to a generalized cohomology
theory like elliptic cohomology, one needs to have a notion of locality with
respect to X. This, however, is necessarily violated by functors 2CobX

conf →
Vect.
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Observation 2 (Stolz,Teichner) In order for Segal’s definition of conformal
field theory to be useful for the description of elliptic cohomology, one needs
to refine 1-functors on cobordisms to 2-functors on a 2-category of surface ele-
ments.

All this motivates

Definition 4 Let 2Vect be some flavor of a 2-category of 2-vector spaces and
let P2 be a 2-category that models 2-dimensional geometric structures. Then a
2-vector 2-transport on P2 is a 2-functor

tra : P2 → 2Vect .

tra : P2 → 2Vect

local trivialization adjoint equivalence special ambijunction

description parallel surface transport propagation in 2d QFT

domain target space parameter space

as morphism of 3-transport transition gerbe with field insertions

Table 3: 2-Vector transport describes parallel surface transport in a 2-
vector bundle (a gerbe) with connection; but also evolution (propagation) in
2-dimensional quantum field theory.
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3 2-Functorial Quantum Field Theory

We have said that topological 2-dimensional field theory can be constructed
from dual triangulations decorated with Frobenius algebras in Vect.

Rational conformal 2-dimensional field theories can be constructed from dual
triangulations decorated with Frobenius algebras internal to a modular tensor
category.

Line bundle gerbes with connection can be constructed from dual triangu-
lations decorated in something like Frobenius algebroids.

All three of these are examples of locally trivializable 2-transport.

3.1 2-Transport

Definition 5 Let X be some smooth space and let p : U → X be a surjective
submersion. The 2-category

P2(U•)

of 2-paths in the transition 2-groupoid is generated from 2-paths in U , 1-
paths in U [2] and 0-path in U [3], subject to relations which make U [2] a Frobenius
algebroid.

Proposition 2 (KW,usc) 2-paths in X are equivalent to 2-paths in the tran-
sition 2-groupoid

P2(X) ' P2(U•) .

Definition 6 Let T ′
i // T be a morphism of 2-categories and let

tra : P2(X) → T be a 2-functor. We say that tra is p-locally i-trivializable
if there exists

P2(U)
p //

traU

��

P2(X)

tra

��
T ′

i
// T

t

∼
{� ��

���
�

such that t fits into a special ambidextrous adjunction.

Proposition 3 Every p-locally i-trivializable 2-functor tra on P2(X) gives rise
to a 2-functor on P2(U•) that coincides with i∗traU on P2(U).

Remark. More is true. There is an equivalence of locally trivializable 2-
functors on P2(X) with suitable 2-functors on P2(U•). This can be understood
as saying that locally trivializable 2-functors form a 2-stack.
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tra

 x

γ1

��

γ1

?? yD
��

 =

Ax tra(γ1) //

t(x)

��
Ax

��

Ay

t(y)

��
Ay

��

11

tra11(γ1)

��

tra11(γ2)

AA

t̄(x)

��

11

t̄(y)

��
Ax tra(γ2) // Ay

t(γ1)

{� ��
���
�

t̄(γ2)

{� ��
���
�

iAyks
ẽAxks

tra11(S)

��

Figure 5: If the trivialization tra t→ tra11 is by a special ambidextrous
adjunction we can express tra entirely in terms of tra11 and the trivialization
data.

3.2 Zoo of 2-Bundles with connection: parallel surface
transport

Several kinds of 2-bundles (∼ “gerbes”) with connection arise from 2-transport
that is locally trivializable not just by some special ambijunction – but by an
adjoint equivalence.

Heuristically, the fact that the local trivialization is an equivalence implies
that the global 2-transport is obtained from locally gluing typical fibers.

We shall adopt the slightly abusive but convenient terminology of addressing
the very 2-functor

tra : P2 → T

as a 2-bundle with connection if it has local trivializations by adjoint equiv-
alences. We do not explicitly consider the total space of such a 2-bundle,
whatever that might be.

Simply by choosing different morphisms i : T ′ // T we obtain various
kinds of 2-bundles with connection.

Principal 2-transport.

Example 4 (bibundle gerbe) Let G2 = AUT(H) be the automorphism 2-
group of a group H. Transition data of parallel 2-transport with respect to the
canonical embedding

i : Σ(AUT(H)) → Σ(HBiTor)

is equivalent to Aschieri-Jurčo principal bibundle gerbes with fake-flat con-
nection.
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Remark. This has an immediate generalization to arbitrary strict 2-groups.

Remark. The equivalence is actually a canonical isomorphism. A local i-
trivialization as above is a bibundle gerbe with fake-flat connection. For in-
stance, the transition g : p∗1tra → p∗2tra is a transition bibundle equipped with
the special kind of twisted connection that is described by Aschieri-Jurčo. Anal-
ogous remarks apply to the following examples.

As a special case we get

Example 5 (U(1)-principal bundle gerbe) Let G2 = Σ(Σ(U(1))) be the dou-
ble suspension of U(1). Transition data of parallel 2-transport with respect to
the canonical embedding

i : Σ(Σ(U(1))) → Σ(U(1)Tor)

is equivalent to principal U(1)-bundle gerbes with connection.

Remark. We say “bundle gerbe with connection” where one sometimes sees
“with connection and curving”. There is no place in this world for a bundle
gerbe with connection but without a notion of “curving”.

Remark. The fake-flatness condition disappears in the abelian case.
Notice that we did not use the nontrivial automorphism of U(1) in the above

example. In fact

Example 6 (U(1)-principal bundle gerbe over unoriented surfaces) Let
G2 = Σ(AUT(U(1))) = (U(1) → Z) be the automorphism 2-group of U(1). Par-
allel 2-transport locally trivial with respect to the canonical embedding

i : Σ(AUT(U(1))) → Σ(U(1)Tor)

admits certain Z2-equivariant structures – known as Jandl structures – that
allow to define holonomy on unoriented surfaces.

A bundle gerbe is a transition bundle. We may further trivialize these tran-
sition bundles to obtain full cocycle data.

Example 7 (JB,usc: nonabelian differential cocycle data) Let G2 be any
strict 2-group. Transition data of 2-transport with respect to i = IdΣ(G2) is equiv-
alent to the local nonabelian cocycle data of a G2-gerbe with fake flat connection.

The fake flatness we encounter everywhere is a phenomenon not visible in
ordinary parallel transport along paths. It is a manifestation of the respect of
the transport 2-functor for the vertical composition in the target 2-category.
For some applications, fake flatness is just what we want:

Example 8 (BF-theory) Solutions of the equations of motion of G-BF-theory
are are fake flat G2-transport functors for G2 = (G → G).
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Relaxing the fake flatness constraint amounts to passing from the transport
codomain locally being a strict 2-group to higher categorical groups.

Example 9 (Breen-Messing data) Let G3 = INN(G2) be the 3-group of in-
ner automorphisms of a strict 2-group G2. Transition data of 2-transport with
respect to i = IdΣ(G3) is equivalent to the local nonabelian cocycle data of gerbes
with connection as given by Breen-Messing.

Remark. At the infinitesmal level, where groupoids and their morphisms are
replaced by algebroids and their morphisms, this has been noticed by Danny
Stevenson. He relates it to higher Schreier theory. Ordinary Schreier theory
says that extensions of groupoids

K → G → B

are classified by pseudo-functors from the 1-groupoid B to the 2-groupoid AUT(K).
Recall that a principal G-bundle P → X can be conceived in terms of its expo-
nentiated Atiyah sequence of groupoids

AUT(AdP )

AdP // Trans(P ) // X ×X

(∇,F∇)
jjVVVVVVVVVVVVVVVVVVVV

P ×G G // P ×G P // X ×X

.

A section ∇ on P with curvature F∇ is a pseudofunctor from the pair groupoid
X×X to AUT(Ad(P )), but locally taking values only in inner automorphisms.
The curvature F∇ of ∇ provides the compositor for this pseudofunctor. The
Bianchi identity corresponds to the coherence for the compositor.

Associated 2-vector transport We obtain associated 2-transport by choos-
ing the morphism i : T ′ → T to be a representation of a 2-group on 2-vector
spaces. There are several notions of 2-vector spaces. For the moment, let a
2-vector space be a VectC-module category. We will only be interested in the
image of the canonical embedding Bim(VectC) → VectC

Mod.

Proposition 4 (the canonical 2-representation) For G2 = (H → G) any
strict 2-group, and ρ : Σ(H) → VectC any ordinary representation, there is a
canonical 2-representation

ρ̃ : Σ(G2) → Bim(Vect) .

This ρ̃ represents G2 on the category of modules of the algebra spanned by the
image of ρ.
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Example 10 (line-2-bundle) Let E → X be a PU(H)-bundle on X. Using
PU(H) ' Aut(K(H)), we canonically associate to it a bundle A → X of alge-
bras of compact operators. A connection on that bundle gives rise to a transport
1-functor

P1(X) → Bim(VectC) .

Extending this to a 2-functor

P2(X) → Bim(VectC)

yields a line-2-bundle with connection. This is associated to a principal U(1)-
bundle gerbe by the canonical rep of Σ(U(1)). Locally i-trivializing this we obtain
the line bundle gerbe with connection classified by the original PU(H)-bundle.

Example 11 (line bundle gerbe with connection) Parallel 2-transport lo-
cally trivialized with respect to the canonical embedding

i : Σ(Σ(U(1))) → Σ(VectC)

is equivalent to line bundle gerbes with connection.

Example 12 (string bundle) Let G2 = StringG = (Ω̂kG → PG) be the strict
version of the String 2-group, for G a compact simple and simply connected
Lie group and k ∈ Z a level. For any positive energy rep of Ω̂kG the above
construction of the canonical 2-rep should go through. As a result, we would get
a notion of a connection on a StringG-bundle.

We can also consider locally trivializable 2-transport with values in higher
dimensional vector spaces, but the local trivialization will now just be a special
ambijunction, essentially expressing the duality between a vector space V and
its dual V ∗.

Example 13 (FHK from locally trivialized 2-transport) The FHK dec-
oration prescription is that of a p-locally i-trivialized 2-vector transport for

i : {•} → Σ(Vect) .

3.3 Classical theory: sections, phases and holonomy

Example 14 (sections of 1-vector bundles)

Let tra : P1(X) → Vect be a vector bundle with parallel transport. Let 1 :
P1(X) → Vect be the tensor unit in the category of all such functors, i.e.
the functor wich sends every path to the identity on the ground field. Then
morphisms

1 → tra

are in bijection with flat sections of the vector bundle.
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We can restrict both 1 and tra to the discrete category on the collection of
objects of P1(X) to obtain 1∗ and tra∗. The morphisms

1∗ → tra∗

are in bijection with general sections of the underlying vector bundle.
This example motivates

Definition 7 Let 1 : P2(X) → Bim(C) be the tensor unit, i.e. the 2-functor
that sends everything to the identity on the tensor unit in C. Then, for any
2-vector transport tra : P2(X) → Bim(C) we say that

[1, tra]

is the space of flat sections of tra.

Often we are interested in more than the flat sections. Let par be any 1-category,
fix

conf ⊂ [par,P2(X)]
and denote by

tra∗ : conf → [par,Bim(C)]
the 2-functor obtained from post-coposition with tra. Then

Definition 8 The space of sections of tra with respect to conf is

sect ≡ [1∗, tra∗] .

Proposition 5 The space of sections is a module category over the monoidal
category

C = End(1∗) .

Example 15 (ordinary sections of a 1-bundle)

Let tra : P1(X) → Vect be an ordinary vector bundle. Let par = {•} be the
discrete category on a single element. Let conf ⊂ [par,P1(X)] be the discrete
category on the objects of P1(X). Then the objects of sect = [1∗, tra∗] are
the ordinary sections of that vector bundle. Morphisms in sect are morphisms
induced on sections from bundle endomorphisms that leave the base space in-
variant.

Moreover, C = End(1∗) in this example is the monoid of C-valued functions
on X, acting on the space of sections in the usual fashion.

Example 16 (gerbe modules from 2-sections)

Let
tra : P2(U•) // Σ(1dVect) ⊂ // Bim(Vect)

be a line bundle gerbe with connection. Let par = {a → b} be a model for the
open interval. Let conf ⊂ [par,P2(U•)] be the sub-2-category whose morphisms
are only those coming from 1-paths in U [2]. Then

Proposition 6 A section [1∗, tra∗] in this case is in each connected component
of conf a choice of gerbe module Ea over the endpoint a, a choice of gerbe module
Eb over the endpoint b, connected by a morphism of gerbe modules.
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Remark. In physics, gerbe modules are known as Chan-Paton bundles on
D-branes. In this language the above proposition says that the endpoints of
an open string couple to a Chan-Paton bundle on a D-brane.

Definition 9 A disk transport associated to a cobordism

par

γ1

��

γ2

??
P2 (X)D

��
,

as well as to a section e1 and a cosection ẽ2 is the morphism is the correlator
of e1 with ē2 after translation along D:

1∗(γ1)

e1

��
tra∗(γ1)

tra∗(D)

��
tra∗(γ2)

ẽ2

��
1∗(γ2)

= par

γ1

��

γ1

��

γ2

CC

γ2

CCP2 (X)

1

��

1

DD
tra // TD

��

e1
��

ẽ2
��

.

This describes a state e1 coming in, propagating along D, and being pro-
jected on a state ē2 coming out. The result is the two-point disk holonomy
of D under the surface transport tra.

Example 17 (general form of 2-point disk holonomy)

We want to restrict attention to the case where tra takes values in right-induced
bimodules

tra : P2 → RIBim(C) ⊂ Bim(C) ,

and that the sections involved are such that

( 11
e1(x) // Ax ) = ( 11

Ax // Ax ) ,

as well as

( Ax

ẽ2(x) // 11 ) = ( Ax
Ax // 11 ) ,

for all x ∈ X. Moreover, let tra be such that

( Ax

tra(γ) // Ay ) = ( Ax

(Ax,φ(γ))// Ay )
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for φ(γ) and algebra homomorphism.
The 2-point disk holonomy then comes from a 2-morphism in Bim of the

form

11
Id //

Ax1

��

Id





11

Ay1

��
Id

��

11

Id

��

Ax1 tra(γ1) //

tra(γ−)

��

Ax1

oo Ay1

tra(γ+)

��
Ax2 tra(γ2) //

Ax2

��

Ay2

Ay2

��

11
Ay2oo

Id

zz
11

Id
// 11

tra(D){� ��
���
�

ẽ2(γ2)
{� ��

���
�

e1(γ1)
{� ��

���
�

{� ����

{� ����

{� ����

{� ����

=

11

Id

��

Id // 11

Id

��
11

Id
// 11

c{� ��
���
� .

Example 18 (2-point disk holonomy of a line bundle gerbe)

Regard a line bundle gerbe with connection as a 2-functor to Bim as in example
10. Take the cobordism to be a disk by setting γ1 = Id and γ2 = Id. Assume
there exists a complex vector bundle V → ∂D with connection (V,∇) over the
boundary, such that

Ap ≡ tra(p) = EndVp

for all p ∈ ∂D. In the language of bundle gerbes, this says that the gerbe module
descends over the boundary to an untwisted vector bundle.

Furthermore, let
B ∈ Ω2

(
D1

)
be the globally defined curving 2-form of the 2-transport trivialized over the
disk.
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Then we have the equality

Aa

N

��

N ′

@@Abtra(D)
��

=

Aa

(Aa,Adtra∇(γ+))//

Va

��
Id

��

Ab

Vb

��
Id

��

C

Id

��

Id

@@

V ∗
a

��

C

V ∗
b

��
Aa

(Aa,Adtra∇(γ−))
// Ab

exp(
R

D
B)
��

¯tra∇(γ+){� �
����
�

tra∗∇(γ−){� �
����
�

ksks .

Inserting this into the general equation from example 17 yields

holtra (D) ≡

C Id //

Af(a)

��

Id

��

C

Af(b)

��

Id

��

Af(a)

(Af(a),Adtra∇(∂+D1))//

Vf(a)

��
Id

��

Af(b)

Vf(b)

��
Id

��

C

Id

  

Id

>>

V ∗
f(a)

��

C

V ∗
f(b)

��
Af(a)

(Af(a),Adtra∇(∂−D1))
//

Af(a)

��

Af(b)

Af(b)

��
C

Id
// C

exp(
R

D1 B)
��

¯tra∇(f(∂+D1)){� ��
���
�

tra∗∇(f(∂−D1)){� ��
���
�

ksks ksks

Adtra∇(∂+D1)
{� ��

���
�

Id{� �
����
�

.

Proposition 7 The right hand side is a complex number, whose value is

holtra (D) = exp
(∫

D

B

)
Tr(tra∇ (∂D)) .
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3.4 Quantum transport

We will not solve the mystery of quantization here. But we shall illuminate
some aspects.

Assume the quantization of a charged 2-particle has been performed, result-
ing in a 2-vector transport on parameter space with values in twisted bimodules

TwBim(C) ⊂ Cyl(Σ(Bim(C)))

internal to a given abelian braided monoidal category C.
We will indicate how the correlator

〈ē2|Tρe1〉

of a state e1 with a costate ē2 across a disk which is assigned a given 2-morphism
ρ ∈ Mor2(TwBim) has the form indicated in the introduction.

First, consider the category of abstract par-cobordisms, modelling the world-
volume of our 2-particle.

Definition 10 For a given parameter space par let

Cobpar

be the 2-category coming from the double category that is generated from the
category of horizontal morphism being par and that of vertical morphisms being
Σ(R).

A 2-morphism in Cobpar for par = {a → b} the open 2-particle is

a //

t

��

b

t

��
a // b

{� ����

for t ∈ R.

Definition 11 For C a braided monoidal category, Bim(C) is monoidal and we
denote by

Σ(Bim(C))

its suspension. A 3-morphism in there we draw as

A B

•

•

N

��

N′

D
M

>>
q

z

'' ss

ρ

��
�
�
�
�

.
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Definition 12 The 2-category TwBim(C) of twisted bimodules is the 2-
category of tin cans in Σ(Bim(C)) whose top and bottom are 11-11-bimodules,

TwBim(C) ≡


A

N

��

N ′

@@BV ρU

��


.

Here

NN ′

A

B

V ρUks

'' ss

≡

11 11

•

•

11 11

•

•

U //

&& ss

V__ //__

l
y




N
;

+

&& ss

B

��

A

�
�
�
�
�

���
�
�
�
�

N ′

��
�

�!
N

}}ρ
�
�
�
�

��
�
�
�
�

.

In this context

Example 19 (1-point disk correlator)

where tra : Cobpar → TwBim(C) is a 2-vector transport such that

tra :

a //

t

��

b

t

��
a // b

Σ
{� ���� 7→ A

A

��

A

@@AV ρU

��

for given t, the following examples describe the disk correlator over Σ for given
section

e1 : ( a // b ) 7→

11
Id //

Na

��

11

Nb

��
A

A
// A

e1(a→b)
{� ����

33



and cosection

ē2 : ( a // b ) 7→

A
A //

N∨
a

��

A

N∨
b

��
11

Id
// 11

ē2(a→b)
{� ���� .

First let N1 = A and N2 = A and let e1(a → b) and ē2(a → b) be identity
morphisms. This corresponds to the trivial boundary field insertion. By writing

A

A⊗+U

��

A⊗−V

AAA
ρ
��

=

A A⊗+U //

A

��

A

A

��
A

A

��

A⊗+U

��

A⊗−V

AAA

A

��
A A⊗−V // A

ρ
��

Id{� �
����
�

Id{� �
����
�

we find the corresponding disk correlator to be

11

11

��

U //

L

��

11

11

��

L

��
A

A

��

A⊗+U //

R

��

A

A

��

R

��
11 U //

L

��

11

L

��
A

A

��

R

��

A⊗+U
$$

A⊗−V

:: A

A

��

R

��
11 V //

L

��

11

L

��
A

R

��

A⊗−V // A

R

��
11

V
// 11

ρ��

Id{� �
����
�

−{� �
����
�

Id�� 






+�� 






ẽks iks

ẽks iks

ĩ

ks
e
ks

+{� �
����
�

Id{� �
����
�

.
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Here R and L denote A, regarded as, respectively, a left or right module over
itself.

Proposition 8 The Poincaré-dual string diagram in C of this globular diagram
is

ρ̃

A

A

A

A

L

��

L

&&

R

R

ww

R





R

$$

L

L

yy

L

��

R

��

L

��

R

��

/o/o/o/o U ///o/o/o/o V ///o/o/o/o/o/o/o/o/o/o/o/o .

If Na and Nb are allowed to be arbitrary, but e1(a → b) and ē2(a → b) still
identity morphisms, this becomes

ρ̃A

A

N

��

N

&&

N∨

N∨

ww

R

��

R

""

GGG

R∨

R∨

{{www

L
R

L





R

/o/o/o/o U ///o/o/o/o V ///o/o/o/o/o/o/o/o/o/o/o/o .
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physics arrow theory FHK/FRS
tra 2d QFT 2-transport decoration prescription
A space of open string states 2-vector space Frobenius algebra
e boundary field insertion section of 2-transport morphism of one-sided modules
ρ bulk field insertion image of bulk under 2-transport morphism of (twisted) bimodules
N boundary condition (D-brane) value of section on objects one-sided module

Table 4: Part of the dictionary that indicates how concepts in quantum field
theory are captured by local “state sum” prescriptions, like those of Fukuma-
Hosono-Kawai and Fuchs-Runkel-Schweigert, which in turn are realized here in
terms of locally trivialized 2-vector transport.

Finally, for nontrivial morphisms e1 := e1(a → b) and ē2 := ē2(a → b) we get

ρ̃

e1

ē2

A

A

N1





N2

&&

N∨
1

N∨
2

yy

R

��

R

""

GGG

R∨

R∨

{{www

L
R

L





R

/o/o/o/o U ///o/o/o/o V ///o/o/o/o/o/o/o/o/o/o/o/o .

Here we have slightly deformed the diagram and inserted canonical isomor-
phisms L ' R∨.
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x

γ1
??

??

��?
? γ2

��
��

����

γ3

OO

• •

•

•

•

•

•

• •

gik(x) //

gij(x)
���������

EE���������
gjk(x)

33
33

33
33

3

��3
33

33
33

33fijk(x)

��

�� ��

�#
??

?
??

?

trai(γ1)
LLLLLLLL

%%LLLLLLLL

traj(γ1)
LLLLLLLL

%%LLLLLLLL

EE�������������������

traj(γ2)
rrrrrrrr

yyrrrrrrrr

trak(γ2)
rrrrrrrr

yyrrrrrrrr

YY3333333333333333333

trak(γ3)

OO

trai(γ3)

OO

//

∇

A A

A

��?
??

??
??

??

����
��

��
��

�

��

A
??

??
??

��?
??? A

��
��

��

�����
�

A

��

����
��

��

����
��

��
__??????

__??????

////

fkli (x)

��?
??

??
??

??

����
��

��
��

�

��

gij(x)

??
??

?

��?
?? gjk(x)

��
��

�

�����

gik(x)

��

����
��

��

����
��

��
__??????

__??????

////

Figure 6: 2-Anafunctors decorate dual triangulations subordinate to a cover
of base space with gluing 2-morphism, shown in the top row in globular nota-
tion. In the Poincaré-dual string diagram notation one manifestly recognizes the
decoration structure of gerbe surface holonomy (bottom right) or, alternatively,
of the state sum prescription in 2-dimensional quantum field theory (bottom
left).
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1. associativity of the product

p∗1traU

p∗2traU p∗3traU

p∗4traU

p∗12g

OO
p∗23g //

p∗34g

��

p∗14g
//

p∗13g
���������

??����������#p∗123f

???
???

��
p∗134f

=

traU

traU traU

traU

p∗12g

OO
p∗23g //

p∗34g

��

p∗14g
//

p∗24g

??
??

??
??

?

��?
??

??
??

??

{�
p∗234f ����

����

��
p∗124f

.

2. associativity of the coproduct

p∗1traU

p∗2traU p∗3traU

p∗4traU

p∗12g

OO
p∗23g //

p∗34g

��

p∗14g
//

p∗13g
���������

??���������p∗123f̃

[c???
???

p∗134f̃

KS =

trai

traj trak

tral

p∗12g

OO
p∗23g //

p∗34g

��

p∗14g
//

p∗24g

??
??

??
??

?

��?
??

??
??

??

p∗234f̃ ;C����
����

p∗124f̃

KS .

3. Frobenius property

p∗1tra

p∗2tra

p∗3tra

p∗4tra

p∗12g
�����

??�����
p∗23g

??
??

?

��?
??

??

p∗43g
�����

??�����
p∗14g

??
??

?

��?
??

??

p∗24g

��

p∗124f

�� ��
���
� p∗243f̃

�� ��
���
� = p∗1tra

p∗2tra

p∗3tra

p∗4tra

p∗12g
�����

??�����
p∗23g

??
??

?

��?
??

??

p∗43g
�����

??�����
p∗14g

??
??

?

��?
??

??

p∗13g //

p∗123f ��

p∗143f̃ ��

= p∗1tra

p∗2tra

p∗3tra

p∗4tra

p∗12g
�����

??�����
p∗23g

??
??

?

��?
??

??

p∗43g
�����

??�����
p∗14g

??
??

?

��?
??

??

p∗42g

OO

p∗142f̃ ��
77

7
77

7
p∗423f ��

77
7
77

7

Figure 7: A local trivialization p∗tra t→ traU of the 2-functor tra by a special
ambidextrous adjunction implies that the transition data satisfies relations
expressing the idea of a special Frobenius algebroid.
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4 Interlude: transition gerbes, bulk fields and a
kind of holography

A state in an n-dimensional quantum field theory, being a morphism of transport
n-functors, is itself an (n − 1)-transport with values in an (n − 1)-category of
cylinders in an n-category.

Hence to a state in n-dimensional quantum field theory we may try to asso-
ciated a correlator in an (n− 1)-dimensional quantum field theory.

n = 1 x 7→

C

e(x)

��
Vx

n = 2 x
γ // y 7→

C Id //

ex

��

C

ey

��
Ax

Nγ

// Ay

eγ
{� ����

n = 3 γ1 γ2

x

y

S //

'' ss

7→

Id Id

C

C

Id Id

C

C

U //

## uu

V__ //__

l
y




N
;

+

  uu

ey

��

ex

�
�
�
�
�

���
�
�
�
�

e(γ2)
}}

e(γ1)
��
�

�!
e(S)

�
�
�
�

��

Figure 8: A state of the charged n-particle is a morphisms of n-functors
e : 1∗ → tra∗, hence itself an (n − 1)-functor with values in cylinders in the
codomain of tra.
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Example 20 (quantum mechanical correlator with bulk insertion)

Consider a quantum mechanical 1-transport, but not with values in Vect,
but with values in cylinders in Bim(Vect) ⊂ 2Vect:

tra : { a
t // b } → Cyl(Bim(Vect)) .

For instance

tra : { a
t // b } 7→

C U //

Ea

��

C

Eb

��
C

V
// C

φ
{� ���� .

As for other 1-transport, we may consider the 2-point disk correlator obtained
from that. It would read

C //

C

��

C U //

Ea

��

C C //

Eb

��

C

C

��
C // C

V
// C C

// C

ē2
{� ����

e1{� �
���

“exp(it∆)”
{� ���� =

CU

“exp(it∆)”

VC

e1

//
//

//
//

��/
//

//
//

/

ē2

��

.

Here we denoted by “exp(it∆)” the linear map defined by this procedure, in or-
der to emphasize how it plays the same role as the quantum mechanical propa-
gator, but twisted by the presence of incoming bulk insertions in U and outgoing
bulk insertions in V .

Remark. Bulk field insertions in 2-dimensional quantum field theory follow
the same general mechanism, now for n = 3.

?? say how simimlar remarks apply to transition (n − 1) − bundles: their
multiplicative structure is a consequence of them taking values in cylinders ??
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5 Application: On WZW and Chern-Simons

An especially rich and well understood class of 2-dimensional conformal field
theories are those whose target space is a Lie group manifold. These are the
Wess-Zumino-Witten models.

For given Lie group G and given central extension L̂kG of the corresponding
loop group, these models are controlled by the modular tensor category

C = Rep(L̂kG) .

This means in particular that boundary conditions in these theories are encoded
by Rep(L̂kG)-module categories.

This can be derived by considering the following target space for 2-functorial
field theory.

5.1 Target and configuration space of Chern-Simons the-
ory

Let G be a compact simple and simply connected group. G-Chern-Simons
theory is a 3-dimensional quantum field theory that associates to a 3-dimensional
surface X a quantity obtained from summing, over all trivial G-bundles with
connection 1-form A on X, the integral∫

X

CS(A)

of the Chern-Simons 3-form

CS(A) = 〈A ∧ dA〉+
1
3
〈A ∧ [A ∧A]〉 .

In order to better understand what this means, we will now cast this setup
in the general form of our arrow theory of quantum mechanics.

Notice that, by the above, a Chern-Simons 3-form connection on X is a field
configuration in Chern-Simons theory along the trajectory X.

For simplicity, restrict attention to propagation along trajectories whose
incoming and outgoing boundaries are 2-spheres. We can then model the pa-
rameter space of our Chern-Simons theory by the 2-groupoid

par =


•

−

��

−

AA •��


freely generated from one nontrivial 2-morphisms as indicated.

We will argue in a moment that the relevant target space is

tar = Σ(INN(StringG)) ,
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the suspension of the 3-group of inner automorphisms of the StringG-2-group.
But in our present context, we are interested only in the space of states of

Chern-Simons theory, and its relation to 2-dimensional conformal field theory,
not in the dynamics of Chern-Simons theory itself. Therefore it suffices for us
to know the configuration space

conf ⊂ [par,Σ(INN(StringG))] .

The choice of morphisms in conf determines which configurations are to be
considered gauge equivalent. We shall take a semi-skeletal version of configura-
tion space and set

conf = [par,Σ(StringG)] ⊂ [par,Σ(INN(StringG))] .

The codomain for Chern-Simons parallel 3-transport.

Proposition 9 For any Lie algebra g, there is a semistrict Lie-3-algebra

cs(g)

such that a 3-connection with values in this Lie-3-algebra

dtra : Lie(P1(X)) → cs(g)

is in degree 1 a g-valued 1-form A ∈ Ω1(X, g), in degree 2 the curvature FA of
A as well as a 2-form B ∈ Ω2(X), and in degree 3 the 3-form

C = CS(A) + dB .

At the infinitesimal level cs(g) is the right target space for Chern-Simons
theory. The true target space should therefore be the 3-group that integrates
the Chern-Simons Lie-3-algebra. To obtain this, first consider

Definition 13 For (δ : h → g) any strict Lie 2-algebra coming from a differ-
ential crossed module, we may form the associated Lie-3-algebra

inn(h → g)

of inner derivations of (δ : h → g).

Proposition 10 inn(h → g) is the Lie 3-algebra characterized by the fact that
a 3-connection with values in it is a 1-form A ∈ Ω(X, g) and a 2-form B ∈
Ω2(X, h) such that with

β = FA + δ(B)

and
H = dAB

we have
dAβ = δ(H)

and
dAH + β ∧B = 0 .
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Proposition 11 The Chern-Simons Lie-3-algebra is a sub-Lie-3-algebra of the
inner derivations of the string Lie-2-algebra

cs(g) ⊂ // inn(stringk(g)) (k = −1) .

Remark. I expect that this inclusion is in fact an equivalence.
This means that as a Lie-3-group integrating the Chern-Simons Lie-3-algebra

we should take the 3-group of inner automorphisms of the String 2-group,

G3 = INN(StringK) .

In other parts of the literature the 2-gerbe relevant for Chern-Simons theory
is usually characterized in terms of its transition 1-gerbes, which are required
to be WZW gerbes.

Definition 14 A G-WZW-gerbe on a space X at level k is a gerbe on X which
is obtained by pullback along a map

g : X → G

of the canonical gerbe on G.

In the existing literature, the status of this definition for gerbes with connec-
tion remains inconclusive. The result above seems to indicate that the transition
gerbe for a Chern-Simons 2-gerbe with connection should be a nonabelian gerbe
with structure 2-group the 2-group

Cyl(INN(StringG))

of cylinders in inner autmorphisms of the String 2-group.

Proposition 12 Let G̃3 = (U(1) → Ω̂kG → PG) be the strict Lie-3-group
inside INN(StringG). A transition 2-bundle for a G̃3-3-bundle is a 2-functor
from the 2-groupoid of the covering of the given double intersection Uij to the
2-group

CylId(G̃3)

of cylinders in G̃3 with trivial top and bottom. Such a 2-functor a pullback of
the canonical U(1)-bundle gerbe

L

��
PG× ΩG

//// PG

��
G

along a map
g : Uij → G ,

together with a choice of section.
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Remark. Notice that this essentially yet another way of saying that the
StringG-2-group is the multiplicative bundle gerbe on G.

5.2 States of Chern-Simons and Correlators of WZW

As before, we take G to be a simple, simply connected and compact Lie group,
and let k ∈ H3(G, Z) be a level. From the centrally extended loop group, Ω̂kG,
we can form the groupoid StringG ≡ PG n Ω̂kG

//// PG over based paths
in G.

This groupoid can be regarded from two points of view. As a centrally ex-
tended groupoid, it is the canonical bundle gerbe with class k over G. The
groupoid has a strict monoidal structure, with strict monoidal inverses. There-
fore it can also be regarded as a strict 2-group.

Being monoidal, we can form the suspension Σ(StringG), which is a 2-
category with a single object.

Here we discuss the

5.2.1 Rep(LkG) and states of the 2-particle on Σ(StringG)

Before studying the states of the 3-particle on Σ(StringG), it is of interest to
consider just the 2-particle obtained as the boundary of that 3-particle.

So let
par = Σ(Z)

and consider 1 : Σ(StringG) → Bim to be the trivial 2-vector bundle on Σ(StringG)
(instead of the trivial 3-vector bundle that will be relevant for the 3-particle).

Proposition 13 The groupoid

ΛStringG ≡ [Σ(Z),Σ(StringG)]/∼

obtained by identifying isomorphic 1-morphisms in configuration space is a cen-
tral extension of the the loop groupoid

ΛG ≡ [Σ(Z),Σ(G)]

of G.

Proposition 14 The monoidal category C = End(1∗) is

C = [Σ(Z),Rep(ΛStringG)] .

Proposition 15 The category Rep(StringG) is a category of equivariant gerbe
modules on G.
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Remark. Simon Willerton has shown that, for G a finite group, ΛG = [Σ(Z),Σ(G)]
plays the role of the loop group of G, in that

Proposition 16 (Willerton) For G a finite group we have

BΛG ' LBG .

In as far as this statement for finite groups generalizes to Lie groups, the above
proposition is apparently analogous to the Freed-Hopkins-Teleman theo-
rem. This identifies the representation ring of the loop group with the twisted
equivariant K-theory of the group.

Proposition 17 For 2-transport on Pcyl with values in T = Bim(C) we have
on Σ(Z)

End(1∗) = ΛC

Remark. Proposition 14 says that the space of states is a module category for
ΛRep(ΛStringG). This follows indepdently of which kind of 2-bundle we choose
on target space. But modules for loops in C are in particular obtained from
loops in modules of C.

Thence let ModA be a C-module category, with A an algebra internal to C
and take a section e to be an object in ΛModA:

11
Id //

e(•)

��

11

e(•)

��
A

Id
// A

e(•→•){� ����

5.2.2 Algebras internal to Rep(LkG) and states of the 3-particle on
Σ(StringG)

Let

par =


•

−

��

−

AA •��


model the 3-particle. Consider a trivial 3-vector bundle on Σ(StringG) and its
space of sections relative to the configuration space

conf = [par,Σ(StringG)] .

Proposition 18 The space of 3-states on conf is something like

[par,Bim(Rep(Λ2StringG))] .
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?? give more details ??
?? point out how such a 3-state is a 2-transport with values in twisted bi-

modules ??
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