Lie 2-algebras and Higher Gauge Theory

Danny Stevenson Department of Mathematics University of California, Riverside

Higher Gauge Theory

Ordinary gauge theory describes how point particles change as they move along paths in spacetime.

In a mathematical formulation this involves the study of **principal bundles** with some structure **group** G, and **connections** on these.

Higher gauge theory is a categorification of this:

- groups are promoted to **2-groups**,
- bundles are promoted to **2-bundles**,
- connections are promoted to **2-connections**

This talk will be about trying to understand 2connections from a more algebraic point of view.

2-groups

A (strict) **2-group** \mathfrak{G} is a category internal to the category **Grp** of groups. So \mathfrak{G} consists of

- a group of objects G_0 , and
- a group of morphisms G_1

such that all operations are homomorphisms of groups.

If G is a group then the associated groupoid G[1] is a 2-group if and only if G is *abelian*. Higher gauge theory for the 2-group U(1)[1] has been extensively studied in the subject of U(1)-gerbes. This is a mathematical formulation of 'higher dimensional electromagnetism'.

2-groups are the same thing as **crossed modules**. These are homomorphisms $t: H \to G$ together with an action of G on H satisfying some identities.

To understand these, its useful to think of the 2-group \mathfrak{G} as a 2-category with one object.

There is a subgroup H consisting of all 2-morphisms of the form

$$\bullet \underbrace{ \| h \\ g \\ }^{1} \bullet$$

The target homomorphism restricts to a homomorphism t from H to the group $G = G_0$ of objects of the 2-group \mathfrak{G} which sends each $h \in H$ to its target:

The action of G on H can be described as follows:

Transition functions

Ordinary principal bundles have transition functions: these are maps

$$g_{ij} \colon U_i \cap U_j \to G$$

satisfying the cocycle condition $g_{ij}(x)g_{jk}(x) = g_{ik}(x)$. A good way to think of this is as a diagram in the groupoid G[1]:

In a categorification of the notion of a principal bundle, these diagrams should be weakened:

The morphism $h_{ijk}(x)$ should satisfy a coherence law of its own — namely the following tetrahedron should commute:

This amounts to a pair of maps

$$g_{ij} \colon U_i \cap U_j \to G$$
$$h_{ijk} \colon U_i \cap U_j \cap U_k \to H$$

which satisfy the pair of equations

$$g_{ij} g_{jk} = g_{ik} t(h_{ijk})$$
$$h_{ijl} \alpha(g_{ij})(h_{jkl}) = h_{ikl} h_{ijk}$$

What kinds of objects have transition functions like these?

Gerbes and 2-bundles

A principal G bundle on a manifold M consists (in part) of another manifold P together with an action of G on P:

 $P \times G \to P$

such that M is the orbit space of this G-action.

If \mathfrak{G} is a 2-group we'd like to define a notion of a 'principal \mathfrak{G} bundle'.

Categorify the definition of principal bundle:

manifolds \rightarrow smooth groupoids smooth maps \rightarrow smooth functors

We would then want to have a smooth functor

$P\times\mathfrak{G}\to P$

between smooth groupoids satisfying some conditions.

There are several ways to do this categorification; one way is described in the thesis of Toby Bartels. Whichever way we choose, we want to find lots of examples!!

Connections

Classically, a **connection** on a principal bundle

$$\begin{array}{c} G \longrightarrow P \\ \downarrow \\ M \end{array}$$

is a preferred way of lifting paths — this is the notion of **parallel transport**.

Another point of view is that a connection on P is an invariant choice of **horizontal subspace** $H_u \subset T_u P$ for all $u \in P$.

This horizontal subspace defines a splitting of the short exact sequence

$$0 \to V_u \to T_u P \xrightarrow{d\pi} T_{\pi(u)} M \to 0$$

where the **vertical subspace** V_u is the kernel of $d\pi$.

The Atiyah Sequence

If $P \to M$ is a principal G-bundle then there is a canonical exact sequence of Lie algebras of vector fields:

 $\left\{\begin{array}{c} \text{inv. vert.} \\ \text{vector fields} \\ \text{on } P \end{array}\right\} \rightarrow \left\{\begin{array}{c} \text{inv.} \\ \text{vector} \\ \text{fields on } P \end{array}\right\} \rightarrow \left\{\begin{array}{c} \text{vec. fields} \\ \text{on } M \end{array}\right\}$

A **connection** on P is a splitting A of this short exact sequence.

Is $A \neq homomorphism$ of Lie algebras??

In general the answer is no. The **curvature** F_A of the connection measures the failure of A to be a homomorphism of Lie algebras:

 $F_A(X,Y) = [A(X), A(Y)] - A[X,Y]$

 F_A satisfies an equation involving three vector fields X, Y and Z — the Bianchi identity.

Can we think of F_A as a *Lie algebra 2-cocycle*?

Classification of Lie algebra extensions

Consider an abstract extension of Lie algebras:

$$0 \to J \xrightarrow{i} K \xrightarrow{p} L \to 0$$

Let $A: L \to K$ be a linear splitting of p. We can measure the 'curvature' of A through the skew linear map $F_A: L \otimes L \to J$ defined by

$$F_A(x, y) = [A(x), A(y)] - A([x, y])$$

We can also define a linear map

$$\nabla_A \colon L \to \operatorname{Der}(J)$$

by

$$\nabla_A(x)(\xi) = [A(x), \xi] \text{ for } \xi \in J$$

 ∇_A is not a Lie algebra homomorphism; instead we have

$$\nabla_A([x,y]) = [\nabla_A(x), \nabla_A(y)] - \operatorname{ad}(F_A(x,y))$$

 F_A satisfies an analogue of the 'Bianchi identity'.

Interlude: Lie 2-algebras

Lie 2-algebras were introduced by Baez and Crans in HDA6. A (**strict**) **Lie 2-algebra** is a category L internal to **LieAlg**. Thus L consists of

- a Lie algebra of objects L_0 , and
- a Lie algebra of morphisms L_1

such that all structure maps are Lie algebra homomorphisms.

Baez and Crans go further and consider the notion of a **semi-strict Lie 2-algebra**. This is a 2-vector space L equipped with a skew bilinear functor

 $[\,,\,]\colon L\times L\to L$

together an isomorphism (the **Jacobiator**)

 $J_{x,y,z} \colon [x, [y, z]] \to [[x, y], z] + [y, [x, z]]$

natural in x, y and z. $J_{x,y,z}$ is required to satisfy the Jacobiator identity.

A good example of a Lie 2-algebra is the following. Let J be a Lie algebra. Recall that we have the adjoint homomorphism

ad:
$$J \to \operatorname{Der}(J)$$

which we can think of as a chain complex. Define a Lie 2-algebra DER(J) with

- objects = Der(J), the Lie algebra of derivations of J, and
- morphisms = $Der(J) \ltimes J$, the semi-direct product Lie algebra with bracket defined as usual by

$$[(f,x),(g,y)] = ([f,g],[x,y] + f(y) - g(x))$$

The source and target homomorphisms are defined by

$$s(f, x) = f, \ t(f, x) = f + \operatorname{ad}(x)$$

We can think of the pair (∇_A, F_A) as giving a **ho-momorphism** of Lie 2-algebras

$$F: L \to \mathrm{DER}(J),$$

where L is thought of as a *discrete* Lie 2-algebra.

For an object x of L, we set

$$F(x) = \nabla_A(x) \in \operatorname{Der}(J).$$

The 'curvature' $F_A(x, y)$ can be interpreted as a morphism

$$F([x,y]) \xrightarrow{F_2(x,y)} [F(x),F(y)]$$

in DER(J). The 'Bianchi identity' for $F_A(x, y)$ is the statement that the following diagram commutes:

$$\begin{array}{c|c} F[x,[y,z]] & \xrightarrow{1} & F[[x,y],z] + F[y,[x,z]] \\ & \downarrow^{F_2(x,[y,z])} \downarrow & \downarrow^{F_2([x,y],z) + F_2(y,[x,z])} \\ [F(x),F[y,z]] & [F[x,y],F(z)] + [F(y),F[x,z]] \\ & \downarrow^{[F_2(x,y),1_{F(z)}] + [1_{F(y)},F_2(x,z)]} \\ [F(x),[F(y),F(z)]] & \xrightarrow{1} [[F(x),F(y)],F(z)] + [F(y),[F(x),F(z)]] \end{array}$$

We should think of the homomorphism F as a 'nonabelian Lie algebra cocycle'. Here is a classification theorem for extensions of Lie algebras. It must be well known.

Theorem. Let L and J be Lie algebras. Then there is a bijection

 $\operatorname{Ext}(L,J) \approx [L, \operatorname{DER}(J)]$

between the set of equivalence classes of extensions of L by J and the set of homotopy classes of homomorphisms $L \to DER(J)$.

It reduces to the usual description of Ext(L, J)when J is central in L.

Connections on gerbes

Several authors (Breen-Messing, Baez-Schreiber, and Jurčo et al) have developed a theory of **connections** on gerbes/2-bundles.

In particular Baez and Schreiber have shown how under certain conditions a connection on a gerbe can be used to define a notion of parallel transport over surfaces.

Connections on gerbes are difficult to understand; whereas a connection on a principal bundle can be described in terms of local gauge potentials

A_i ,

a connection on a gerbe involves several gauge fields

```
A_i, \alpha_{ij}, B_i, \nu_i
```

satisfying lots of complicated equations.

We would like to have a description of connections on gerbes analogous to the description of connections on principal bundles in terms of Lie 2-algebras.

Derivations of L_{∞} algebras

We need to understand derivations of Lie 2-algebras. To do this it is easiest to work with chain complexes.

Recall that in HDA6 Baez and Crans define the notion of a 2-term L_{∞} algebra. This is a chain complex L, concentrated in degrees 0: and 1:

$$L_1 \xrightarrow{d} L_0$$

together with skew linear maps

$$\ell_2 \colon L^{\otimes 2} \to L, \deg(\ell_2) = 0$$

$$\ell_3 \colon L^{\otimes 3} \to L, \deg(\ell_3) = 1$$

satisfying some conditions.

They prove the following result:

Theorem (Baez-Crans). *There is a 2-equivalence of 2-categories*

${\bf 2Term} \ L_{\infty} \simeq {\bf Lie2Alg}$

We define instead a notion of derivation of a 2-term L_{∞} algebra.

Let L be any L_{∞} algebra. Then we can prove the following results.

Theorem. There is a differential graded (DG)Lie algebra Der(L).

One should think of these as derivations up to chain homotopy.

Theorem. There is an L_{∞} morphism ad: $L \rightarrow Der(L)$.

This is a generalisation of the usual adjoint homomorphism ad: $L \to Der(L)$ for Lie algebras L.

Theorem. There is a DG Lie algebra DER(L)whose underlying graded vector space is

 $Der(L) \oplus sL$ (s = suspension).

If L is a 2-term L_{∞} algebra then DER(L) is concentrated in degrees 0, 1 and 2:

$$\operatorname{Der}_0(L) \leftarrow \operatorname{Der}_1(L) \oplus L_0 \leftarrow L_1$$

The underlying idea behind DER(L) is that it is supposed to be an infinitesimal version of the automorphism 3-group AUT(G) associated to a (weak) 2-group G.

Extensions of Lie 2-algebras

Let $f: L \to L'$ be an L_{∞} morphism between 2term L_{∞} algebras. What do we mean by the **kernel** of f?

The correct notion is the **homotopy fibre** H(f)of f; this has a natural structure of a 2-term L_{∞} algebra such that the natural map $H(f) \to L$ extends to an L_{∞} morphism.

Let L and J be 2-term L_{∞} algebras. An **extension** of L by J consists of a 2-term L_{∞} algebra Kand an L_{∞} morphism

 $p\colon K\to L$

such that the underlying chain map is surjective, together with an L_{∞} quasi-isomorphism

 $J \xrightarrow{\simeq} H(p).$

The analogous notion for 2-groups was first considered by Breen in "*Théorie de Schreier Supérieure*".

Denote by Ext(L, J) the set of equivalence classes of extensions of L by J.

Classification Theorem

Theorem. Let L and J be 2-term L_{∞} algebras. Then there is a bijection

 $\operatorname{Ext}(L,J) \approx [L,\operatorname{DER}(J)]$

To any gerbe P on M, one can associate an analogue of the Atiyah short exact sequence.

 $0 \to \Gamma(\mathrm{ad}\, P) \to \Gamma(TP/G) \to \mathrm{Vect}(M) \to 0$

This is now an exact sequence of Lie 2-algebras, where the Lie algebra Vect(M) of vector fields on M is considered as a discrete Lie 2-algebra.

We can think of this as an extension of Vect(M) by $\Gamma(ad P)$. By the theorem, this extension is classified by a '3-cocycle'

 $F: \operatorname{Vect}(M) \to \operatorname{DER}(\Gamma(\operatorname{ad}(P))).$

The condition that this map is a homomorphism of L_{∞} algebras neatly encodes the complicated equations for a connection on the gerbe.