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In 1930, the famous biologist, statistician and eugenicist Ronald
Fisher stated his ‘fundamental theorem of natural selection’:

The rate of increase in fitness of any organism at any
time is equal to its genetic variance in fitness at that
time.



In 1972, George R. Price wrote:

It has long been a mystery how Fisher derived his
famous ‘fundamental theorem of Natural Selection’
and exactly what he meant by it.

He compared this result to the second law of
thermodynamics, and described it as holding ‘the
supreme position among the biological sciences’.
Also, he spoke of the ‘rigour’ of his derivation of the
theorem and of ‘the ease of its interpretation’. But
others have variously described his derivation as
‘recondite’ (Crow & Kimura), ‘very difficult’ (Turner), or
‘entirely obscure’ (Kempthorne). And no one has ever
found any other way to derive the result that Fisher
seems to state.



George R. Price explains:

In addition to the central confusion resulting from the
use of the word fitness in two highly different senses,
Fisher’s three publications on his theorem contain an
astonishing number of lesser obscurities, infelicities of
expression, typographical errors, omissions of crucial
explanations, and contradictions between different
passages about the same point.



Some say Fisher meant this:

The time derivative of the mean fitness of a population
equals the variance of its fitness.

But this is only true under very limited circumstances. We’ll see
why — and see what ‘fitness’ means here.

I’ll also prove a true theorem correcting Fisher’s. It’s a simple,
general result on dynamical systems and information theory.

Ironically, the concept that saves the day is ‘Fisher information’.
I’ll explain that too.



Fisher didn’t use differential equations, but population biology
often uses these, so I’ll translate his ideas into that language.

The most famous example is this predator-prey model:

dP1

dt
= αP1 − βP2P1

dP2

dt
= γP1P2 − δP2

P1

P2

I P1(t) is the population of rabbits at time t .
I P2(t) is the population of wolves at time t .

https://commons.wikimedia.org/wiki/File:Lotka-Volterra.svg


THE GENERAL LOTKA–VOLTERRA EQUATION

Suppose we have self-replicating entities of different kinds:
I organisms belonging to different species
I genes of different alleles
I restaurants belonging to different chains
I people with different beliefs
I game-players with different strategies
I etc.

I’ll call them replicators of different types.



Let Pi : R→ (0,∞) be the population of the i th type, as a
function of time.

The Lotka–Volterra equation says

d
dt

Pi = fi(P1, . . . ,Pn)Pi

where fi(P1, . . . ,Pn), the fitness of the i th type, can depend on
the populations of all the types.

Here fi : (0,∞)n → R is any continuous function.



The probability that a randomly chosen replicator belongs to
the i th type is

pi =
Pi∑
j Pj

The mean fitness is
〈f 〉 =

∑
j

fj pj

where fj is short for fj(P1, . . . ,Pn).

The variance in fitness is

Var(f ) =
∑

j

pj
(
fj − 〈f 〉

)2



In this framework, Fisher’s supposed claim:

The time derivative of the mean fitness of a population
equals the variance of its fitness.

amounts to this:

d
dt
〈f 〉 = Var(f )

We’ll see it’s not true — but Var(f ) equals something else that’s
interesting.

First let’s figure out

ṗi =
d
dt

pi



ṗi =
d
dt

Pi∑
j Pj

=
Ṗi∑
j Pj
−

Pi

(∑
j Ṗj

)
(
∑

j Pj)2

Using the Lotka–Volterra equation:

ṗi =
fiPi∑

j Pj
−

Pi

(∑
j fjPj

)
(
∑

j Pj)2

Using the definition of pi again:

ṗi = fipi −
(∑

j fjpj
)
pi

=
(

fi − 〈f 〉
)

pi



THE REPLICATOR EQUATION

This is called the replicator equation:

ṗi =
(

fi − 〈f 〉
)

pi

For the fraction of people like you to increase, you don’t need to
be fit. You just need to be fitter than average!



Now let’s calculate the time derivative of the mean fitness:

d
dt
〈f 〉 =

d
dt

∑
i

fi pi

=
∑

i

dfi(P1, . . . ,Pn)

dt
pi + fi ṗi

We’ll show the second term is Var(f ). So, Fisher’s supposed
claim

d
dt
〈f 〉 = Var(f )

is true if and only if the first term vanishes, e.g. if each fitness
function fi is constant.



Let’s compute that second term:∑
i

fi ṗi =
∑

i

fi
(

fi − 〈f 〉
)

pi

=
∑

i

fi
(

fi − 〈f 〉
)

pi −

this is zero︷ ︸︸ ︷
〈f 〉
∑

i

(
fi − 〈f 〉

)
pi

=
∑

i

(
fi − 〈f 〉

)(
fi − 〈f 〉

)
pi

= Var(f )



So,
d
dt
〈f 〉 6= Var(f )

except in very special cases, but∑
i

fi ṗi = Var(f )

whenever the Lotka–Volterra equation holds.

The problem: what’s so great about∑
i

fi ṗi ?

Here information theory enters the stage.



IT’S ALL RELATIVE — EVEN INFORMATION!

When you learn something, how much information do you gain?

It depends on what you believed before!

We can model hypotheses as probability distributions. When
you update your prior hypothesis p to a new one q, how much
information have you gained?

This much:

I(q, p) =
n∑

i=1

qi ln

(
qi

pi

)
This is the information of q relative to p, also called the

“information gain” or “Kullback–Leibler divergence”.

I(q,p) ≥ 0 and I(q,p) = 0 ⇐⇒ q = p



For example, suppose we flip a coin you think is fair. Your prior
hypothesis is this:

pH =
1
2

pT =
1
2

Then you learn it landed heads up:

qH = 1 qT = 0

The relative information is 1 bit:

I(q,p) = 1 ln

(
1

1/2

)
+ 0 ln

(
0

1/2

)
= ln2

where we define 0 ln0 = 0. You have gained 1 bit of
information.



But suppose you think there’s only a 25% chance of heads:

pH =
1
4

pT =
3
4

Then you learn the coin landed heads up:

qH = 1 qT = 0

Now the relative information is higher:

I(q,p) = 1 ln

(
1

1/4

)
+ 0 ln

(
0

3/4

)
= ln4 = 2 ln2

You have gained 2 bits of information!



THE FISHER INFORMATION METRIC

How can we quantify the rate of learning?

Here we face a “paradox”:

For any probability distribution p(t) that changes with time in a
differentiable way, we have

d
dt

I(p(t),p(t0))
∣∣∣∣
t=t0

= 0

for all times t0.

“To first order, you’re never learning anything new.”



However, as long as the velocity ṗ(t0) is nonzero, we have

d2

dt2 I(p(t),p(t0))
∣∣∣∣
t=t0

> 0

“To second order, you’re always learning something new...
unless your opinions are fixed.”

This lets us define a “rate of learning” — that is, the “speed” of
the changing probability distribution p(t).



Namely, define the length of the vector ṗ(t0) by

‖ṗ(t0)‖2 =
d2

dt2 I(p(t),p(t0))
∣∣∣∣
t=t0

This notion of length defines a Riemannian metric on the space
of probability distributions: the Fisher information metric.



We can calculate the Fisher information metric and show

g(v ,w) =
∑

i

viwi

pi

where v ,w are tangent vectors to the space of probability
distributions at the point p: that is, n-component vectors with∑

i vi =
∑

i wi = 0.

This makes the space of probability distributions round:



So, the square of the “rate of learning” is

‖ṗ‖2 = g(ṗ, ṗ) =
∑

i

ṗ2
i

pi

Now suppose p obeys the replicator equation:

ṗi =
(

fi − 〈f 〉
)

pi

Then

‖ṗ‖2 =
∑

i

ṗ2
i

pi

=
∑

i

(
(fi − 〈f 〉

)2
pi

= Var(f )



THE FUNDAMENTAL THEOREM OF NATURAL SELECTION

Theorem. If the populations Pi : R→ (0,∞) obey

d
dt

Pi = fi(P1, . . . ,Pn)Pi

for some continuous functions fi : (0,∞)n → R, then the
probabilities

pi =
Pi∑
j Pj

obey
‖ṗ‖2 = Var(f )

The square of the rate of learning is the variance of the fitness!



SOME LESSONS

Fisher was close to stating a true result. The biggest missing
ingredient was Fisher information, which he himself had
invented earlier in 1922.

Often we can make progress just by combining ideas we
already have. Often we hold the keys to our own problems, but
just don’t notice it.



On the other hand, Fisher’s idea that nature progresses toward
an optimum was wrong.

In the simple but general model we considered, it’s not the rate
of increase in mean fitness that equals the variance in fitness.
It’s the rate at which information is updated.

Diversity may not lead to improvement, but it does lead to
change.

The Red Queen Hypothesis says that replicators must keep
changing simply to survive amid other changing replicators.



THE RED QUEEN HYPOTHESIS

"Now, here, you see, it takes all the running you can do, to keep
in the same place."

https://en.wikipedia.org/wiki/Red_Queen's_race


For example, in males of the common side-blotched lizard,
orange beats blue, blue beats yellow, and yellow beats orange:

http://bio.research.ucsc.edu/~barrylab/lizardland/male_lizards.overview.html


We can model this using the replicator equation by assuming
lizards play randomly chosen opponents in the rock-paper-
scissors game, with fitness determined by the game’s outcome:

I Sinervo and Lively, The rock-paper-scissors game and the
evolution of alternative male strategies, Nature 380 (1996).

https://en.wikipedia.org/wiki/Rock-paper-scissors
http://www.indiana.edu/~curtweb/L567/readings/Sinervo&Lively1996.pdf
http://www.indiana.edu/~curtweb/L567/readings/Sinervo&Lively1996.pdf


It’s possible for the replicator equation to give this dynamics
for the probability distribution of strategies ‘rock’, ‘paper’ and
‘scissors’:

There is a steady state, but it is not an attractor. Mean fitness is
not always increasing. In general, the population never stops
learning new information!

https://ocw.mit.edu/courses/economics/14-11-insights-from-game-theory-into-social-behavior-fall-2013/lecture-slides/MIT14_11F13_Replica_dynam.pdf


For more, try:

I John Baez, The fundamental theorem of natural selection.
I John Baez and Blake Pollard, Relative entropy in biological

systems.
I Marc Harper, The replicator equation as an inference

dynamic.
I Marc Harper, Information geometry and evolutionary game

theory.
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