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There is an extensive analogy between statistical mechanics and quan-
tum mechanics. In statistical mechanics, a system in thermal equilibrium
occupies all possible states, each with a probability depending on the energy
of that state. In quantum mechanics, a system takes all possible paths with
the passage of time, each with an amplitude depending on the action of that
path.

This analogy is famous and widely used in physics. But what does it
really mean? Is it just a mathematical ‘trick’, or something deeper? I believe
it is trying to tell us something about information.

Occam’s razor says that the best model of a system is the simplest one
that fits the data we have. As noted by Jaynes [8] and Solomonoff [11], the
concept of ‘simplicity’ can be made quantitative using information theory.
In these terms, Occam’s razor says the best model specifies the least amount
of information needed to fit the data. But since entropy is another name
for unspecified information, we can say this another way: our model should
maximize entropy subject to the constraints given by the data. This is the
principle of maximum entropy.

Statistical mechanics is governed by the principle of maximum entropy.
A system in thermal equilibrium occupies states with precisely the proba-
bilities that maximize entropy subject to the constraints given by what we
know about the system.

In preliminary calculations, I have found that the analogy between sta-
tistical mechanics and quantum mechanics extends to include a concept
analogous to entropy, which I call ‘quantropy’. In quantum mechanics, the
amplitudes for a system to take different paths are precisely those that ex-
tremize quantropy.

Quantropy is not the same as the entropy of a quantum system; it is
something new. For example, it is a complex number instead of a real
number. It governs dynamical rather than static systems. Nonetheless, we
can ask: does the tight relation between information and entropy extend
to include quantropy? Can we use quantropy to understand dynamics in
quantum mechanics using a new generalization of Occam’s razor? To answer
these questions, the first step is to carefully work out the role quantropy
plays in quantum mechanics.

In what follows, I start by reviewing some variational principles in physics,
and noting that the principles governing statics all follow from the principle
of maximum entropy. Then I argue that the principles governing dynamics
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follow from the principle of stationary quantropy. Finally, I sketch a re-
search program, to be funded by this grant, that could study this principle
and explore its implications.

1 Variational principles in physics

1.1 Statics

Static systems at temperature zero obey the principle of minimum en-
ergy: they seek to minimize their energy. Energy is typically the sum of
kinetic and potential energy:

E = K + V

where the potential energy V depends only on the system’s position, while
the kinetic energy K also depends on its velocity. The kinetic energy usually
has a minimum at velocity zero. In classical physics, this lets our system
minimize energy in a two-step way. It minimizes kinetic energy by staying
still. It minimizes potential energy by finding the right place to stay still.
So classically, statics at zero temperature is usually described using the
principle of minimum potential energy.

In quantum physics, a tradeoff is required: thanks to the uncertainty
principle, we can’t simultaneously minimize potential and kinetic energy.
This makes minimizing their sum more tricky. However, the principle of
minimum energy still holds.

What about static systems at nonzero temperature? These are studied
in the subject called ‘equilibrium thermodynamics’, which is governed by
the principle of minimum free energy. In equilibrium at any fixed
temperature, a closed system will minimize its free energy

F = E − TS

where T is the temperature and S is the entropy. Note that this principle
reduces to the principle of minimum energy when T = 0.

But where does the principle of minimum free energy come from? We
can understand it using probability theory. Suppose for simplicity that our
system has a finite set of states, say X, and the energy of the state x ∈ X is
Ex. Instead of our system occupying a single definite state, let us suppose
it can be in any state, with a probability px of being in the state x. Then
its entropy is, by definition:

S = −
∑
x

px ln px.
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The expected value of the energy is

E =
∑
x

pxEx.

Now suppose our system maximizes entropy subject to a constraint on the
expected value of energy. Using the method of Lagrange multipliers, this is
the same as maximizing

S − βE

where β is a Lagrange multiplier. When we go ahead and maximize this, we
find the system chooses a ‘Boltzmann distribution’:

px =
exp(−βEx)∑
x

exp(−βEx)
.

But what does this mean? The quantity β is the reciprocal of the temper-
ature T, at least in units where Boltzmann’s constant is set to 1. So, when
the temperature is positive, maximizing S − βE is the same as minimizing
the free energy F = E − TS.

In short, all the variational principles in statics, in order of increasing
generality:

• the principle of least potential energy

• the principle of least energy

• the principle of least free energy

are special or limiting case of the principle of maximum entropy, as long as
we maximize entropy subject to the relevant constraints.

In 1948, Shannon [10] had an insight that cast these facts in a brand
new light: he realized that entropy is the same as unspecified information.
This led Jaynes [8] to realize that the principle of maximum entropy can be
seen as a precise, quantitative version of Occam’s razor. In other words: our
probabilistic description of a system in equilibrium should contain as little
information as possible, beyond that needed to fit the data we observe.

1.2 Dynamics

Now suppose things are changing as time passes, so we are doing ‘dynamics’
instead of mere statics. In classical mechanics we can imagine a system
tracing out a path γ(t) as time passes from one time to another, for example
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from t = t0 to t = t1. The action of this path is typically the integral of the
kinetic minus potential energy:

I(γ) =

∫ t1

t0

(K(t)− V (t)) dt

where K(t) and V (t) depend on the path γ. The principle of least action
says that if we fix the endpoints of this path, the system will follow the path
that minimizes the action subject to these constraints.

The situation becomes more interesting in quantum mechanics. Here
Feynman proposed that instead of our following a single definite path, it
can follow any path, with an amplitude a(γ) of following the path γ. And
he proposed this prescription for the amplitude:

a(γ) =
exp(iI(γ)/~)∫
exp(iI(γ)/~)Dγ

where ~ is Planck’s constant. He also gave a heuristic argument showing
that as ~→ 0, this prescription reduces to the principle of least action.

Unfortunately the integral over all paths is hard to make rigorous except
in certain special cases. Since this issue is a bit of a distraction here, let us
talk more abstractly about ‘histories’ instead of paths with fixed endpoints,
and consider a system whose possible histories form a finite set, say X.
Suppose the action of the history x ∈ X is Ix. Then Feynman’s ‘sum over
histories’ prescription says the amplitude of the history x is

ax =
exp(iIx/~)∑
x

exp(iIx/~)

The formula here looks very much like the Boltzmann distribution:

px =
exp(−Ex/T )∑
x

exp(−Ex/T )

This gives rise to the following famous analogy:

Statics Dynamics
statistical mechanics quantum mechanics

probabilities amplitudes
Boltzmann distribution Feynman sum over histories

energy, E action, I
temperature, T i times Plancks constant, i~

entropy ???
free energy ???
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However, this analogy is missing two items, which would be good to fill
in. Most importantly: what is the analogue of entropy? The principle of
minimum entropy is our way of making Occam’s razor precise using infor-
mation theory. It guides our understanding of statistical mechanics. Surely
we should seek its analogue in quantum mechanics!

1.3 Quantropy

Since the Boltzmann distribution

px =
exp(−Ex/T )∑
x

exp(−Ex/T )

comes from the principle of maximum entropy, we might hope Feynman’s
sum over histories formulation of quantum mechanics:

ax =
exp(iAx/~)∑
x

exp(iAx/~)

comes from a maximum principle too.
Unfortunately Feynman’s sum over histories involves complex numbers,

and it doesn’t make sense to maximize a complex function. However, when
we say nature minimizes or maximizes something, it sometimes behaves like
a bad student who applies the first derivative test and quits there: it just
finds a ‘stationary point’, where the first derivative is zero. For example,
paths in classical mechanics need not minimize the action: they may merely
be stationary points. This is good for us, because stationary points still
make sense for complex functions.

So, let us try to derive Feynman’s prescription from a principle of
stationary quantropy.

Suppose we have a finite set of histories X and each history x ∈ X has
a complex amplitude ax ∈ C. Assume these amplitudes are normalized so
that ∑

x

ax = 1

since that is what Feynman’s normalization actually achieves. We can try
to define the quantropy of a by:

Q = −
∑
x

ax ln ax.

5



One might fear this is ill-defined when ax = 0, but that is not the main
problem; in the study of entropy we typically set 0 ln 0 = 0 , and everything
works fine. The more serious problem is that the logarithm has different
branches: we can add any multiple of 2πi to our logarithm and get another
equally good logarithm. To deal with this, let us assume we have chosen a
specific logarithm for each number ax, and suppose that when we vary them
they don’t go through zero, so we can smoothly change their logarithm as
they move. (Clearly this issue deserves further study.)

Next, suppose each history x has an action Ix ∈ R. Recall that in statis-
tical mechanics, the probabilities give a stationary point of entropy subject
to a constraint on the expected energy. So, following our analogy chart,
let us seek amplitudes ax that give a stationary point of the quantropy Q
subject to a constraint on the expected action:

A =
∑
x

axIx.

The term ‘expected action’ is a bit odd, since the numbers ax are amplitudes
rather than probabilities. While we could try to justify it from how expected
values are computed in Feynman’s formalism, I am mainly using this term
because A is analogous to the expected value of the energy, which we saw
earlier.

To find a stationary point of Q subject to a constraint on A, we can
use the method of Lagrange multipliers, which reduces this task to finding
a stationary point of

Q− λA

where λ is a Lagrange multiplier. This quantity λ is analogous to the inverse
temperature β = 1/T in statistical mechanics, so our analogy chart suggests
we should take

λ = 1/i~.

Finding stationary points of Q−λA is not hard; a calculation [1] shows they
occur when

ax =
exp(−λIx)∑
x

exp(−λIx)

If we choose λ as above, this is precisely Feynman’s sum over histories for-
mulation of quantum mechanics!

So, the principle of stationary quantropy indeed gives the correct am-
plitudes for time evolution in quantum mechanics. In the process, it also
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gives a stationary point of the free action I− i~Q. This ‘free action’ is the
quantum analogue of the free energy, and it completes our analogy chart:

Statics Dynamics
statistical mechanics quantum mechanics

probabilities amplitudes
Boltzmann distribution Feynman sum over histories

energy, E action, I
temperature, T i times Planck’s constant, i~

entropy, S quantropy, Q
free energy, E − TS free action, I − i~Q

When ~ → 0, free action reduces to action, so we recover the principle of
stationary action in classical mechanics.

2 Research Proposal

The challenge now is to understand quantropy in more detail, and especially
its relation to information theory. My plan is as follows:

1. Write and publish a paper explaining the basic idea of quantropy, how
it arises naturally from the analogy between statistical mechanics and
quantum mechanics, and how it can be seen as a novel extension of
the concept of information.

2. Show that quantropy and free action obey a host of identities analogous
to those obeyed by entropy and free energy in thermodynamics. I have
already begun this [2], but there is more to do, and all this work needs
to be published.

3. Explicitly compute the quantropy and free action in some examples,
and investigate their properties. I have already begun this for the
n-dimensional quantum harmonic oscillator [3]. Since the space of his-
tories for this system is not finite, the sums in my expository treatment
above become path integrals that require some work to deal with in a
rigorous way. Here my experience with mathematically rigorous quan-
tum field theory will come in handy [5]. The assistance of a graduate
student, to be funded by this grant, will also be very helpful here.

4. Study the sense in which quantropy generalizes information. In physics
the technique of Wick rotation lets us think of time as ‘imaginary in-
verse temperature’: the role of exp(−βE) in statistical mechanics is
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sometimes taken over by exp(itE/~) in quantum mechanics. Similarly,
while there is a well-known way to compute probabilities from ampli-
tudes in quantum mechanics, it can also be useful to treat amplitudes
as ‘complex probabilities’. I am almost done writing a book with Ja-
cob Biamonte on this topic [4]. Extending this line of thought, we can
try to see quantropy as ‘complex information’. However, the meaning
of this remains obscure, and demands further thought! This part of
the project is more risky than the rest, but it holds the promise of
bigger payoffs, since it is deeply foundational in nature.

5. Study the extent to which Occam’s razor can be formalized using in-
formation theory and the principle of maximum entropy, and then
generalized using the principle of stationary quantropy. The afore-
mentioned work of Jaynes [8] went a long way toward clarifying the
former question, but there is a somewhat separate body of work go-
ing back to Solomonoff [11], which uses ‘algorithmic information’ to
measure the complexity of a model. Various forms of algorithmic in-
formation has been extensively studied, along with their connection to
entropy [7, 9]. However, it is only rather recently that Mike Stay and
I have generalized all the usual formulas of thermodynamics to ‘algo-
rithmic thermodynamics’, using the fact that algorithmic information
is actually a special case of the entropy of a probability distribution
[6]. So, there is more to do when it comes to clarifying the conceptual
foundations of the principle of maximum entropy. When it comes to
quantropy, the field is wide open.

To pursue these goals, I am proposing a 2-course reduction in my teach-
ing load during the period of the grant. (Math department faculty at U.
C. Riverside teach 4 quarter-long courses per year, so this would be a 25%
teaching load reduction.) I am also asking for support for one graduate stu-
dent at 49% for 6 academic months per year for two years. This would reduce
their usual teaching assistant duties and enable them to put time into this
project, helping me with calculations and writing papers. All this would en-
able me to pursue work on quantropy, and more generally the foundations of
information theory and its interaction with quantum theory, which I would
otherwise be hard pressed to do.
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