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First quantization is a mystery, but second quantization is a
functor. — Edward Nelson

Naively speaking, geometric quantization seeks to turn
classical state spaces — symplectic manifolds — into quantum
state spaces.

If we could do this functorially, this process would respect
symmetries — and thanks to Noether’s theorem, observables.

But in reality, we need to equip a classical state space with a lot
of extra structure before we can quantize it.

Indeed, there’s no reason to think a classical description of the
world can be systematically quantized. God did not create the
world classically on the first day and quantize it on the second!



It’s actually easier to ‘classicize’ a quantum state space—that
is, reinterpret it as a classical state space.

If H is a finite-dimensional Hilbert space, the projective space
P(H) is the state space of the associated quantum system.
Each point x ∈ P(H) is a 1d subspace x ⊆ H.

In fact P(H) is a symplectic manifold! Given

u, v ∈ TxP(H) ∼= x⊥

we can define
ω(u, v) = Im〈u, v〉

and this gives P(H) a symplectic structure.



Moreover, any quantum observable gives a classical one!

Any self-adjoint operator A : H → H gives a smooth function
fA : P(H)→ R, namely

fA(x) = 〈ψ,Aψ〉

for any ψ ∈ x ⊆ H with ‖ψ‖ = 1.

The classical time evolution generated by fA using Hamilton’s
equations matches the quantum time evolution coming from A,
because

{fA, fB} = f[A,B]/i

where the Poisson brackets come from the symplectic structure.



So, quantum systems can be seen as specially well-behaved
classical systems, whose state spaces are projective spaces.

This is nicely explained here:

I Abhay Ashtekhar and Troy Schilling, Geometrical
formulation of quantum mechanics.

If quantum systems are classical systems with special
properties, geometric quantization should consist of imposing
those properties.

https://arxiv.org/abs/gr-qc/9706069
https://arxiv.org/abs/gr-qc/9706069


I’ll describe a functor called ‘projectivization’:

P : Quant→ Class

Geometric quantization will then be a left adjoint:

Q : Class→ Quant

Moreover this will make Quant into a ‘reflective subcategory’ of
Class, meaning

Q(P(H)) ∼= H ∀H ∈ Quant

If you take a finite-dimensional Hilbert space H, projectivize it,
then quantize the result, you get H back!



Quantization is thus analogous to abelianizing a group. The
forgetful functor

U : AbGp→ Gp

has left adjoint
Ab : Gp→ AbGp

and
Ab(U(A)) ∼= A ∀A ∈ AbGp

If you take an abelian group A, forget it’s abelian, and
abelianize it, you get A back!



In Kähler quantization, we start with a compact symplectic
manifold (M, ω) equipped with a Kähler structure on M: a
smoothly varying way to make each tangent space TxM into a
complex Hilbert space such that

Im〈u, v〉 = ω(u, v) ∀u, v ∈ TxM.

We then choose a holomorphic line bundle L→ M. We then
choose an inner product on L and a hermitian connection ∇ on
L whose curvature is iω.

Our Hilbert space then consists of holomorphic sections of L.



For example, the phase space of a classical spin-1/2 particle is
the Riemann sphere:

with the rotationally-invariant symplectic structure ω such that∫
CP1

ω = 2π



There is a holomorphic line bundle L→ CP1, the dual of the
tautological line bundle, with Lx = x∗. This has a hermitian
structure coming from the usual inner product on C2, and a
hermitian connection ∇ with curvature iω.

Holomorphic sections of L are the same as linear functionals on
C2, so when we geometrically quantize we get

Γ(L) ∼= C2

which is the Hilbert space for the quantum spin-1/2 particle.



More generally: suppose G is any complex simple Lie group
and ρ is an irreducible representation of G on H. We can
choose an inner product on H making ρ unitary for the maximal
compact K ⊂ G.

If v ∈ H is a highest weight vector then

M = {[ρ(g)v ] : g ∈ G} ⊆ P(H)

is a Kähler manifold. Pulling back the dual of the tautological
line bundle to M we get a holomorphic line bundle L→ M with
a connection ∇ having curvature iω. The space of sections is

Γ(L) ∼= H

Points in M ⊆ P(H) are called coherent states.



Kähler quantization is like the parable of “stone soup”.

You can make soup just by boiling a large stone in some water!
But it tastes better if we flavor it with carrots, leeks, broth,
herbs, and some chicken. In fact, the stone is optional!

We are trying to make a Hilbert space starting with just a
symplectic manifold. But to do this, we equip with the
symplectic manifold with structures that make it look more and
more like the projective space of a Hilbert space... or a
subvariety of this.



If H is a finite-dimensional Hilbert space, P(H) has a lot of
structure:

I It is has a Kähler structure: we can define 〈u, v〉 where
u, v ∈ TxP(H) ⊆ x⊥.

I It is thus symplectic with ω(u, v) = Im〈u, v〉.
I It comes with a holomorphic line bundle L→ P(H), where

Lx = x∗.
I L has an inner product: we can also define 〈u, v〉 for

u, v ∈ Lx = x∗.
I L has a hermitian connection ∇ with curvature iω.

All these structures are precisely what we put on a symplectic
manifold to apply Kähler quantization!



This leads to the following first try:

Definition. Let Classn be the category where an object is a
linearly normal projective variety M ⊆ P(Cn) and a morphism
M → M ′ is an inclusion M ⊆ M ′.

Definition. Let Quantn be the category where an object is a
linear subspace H ⊆ Cn and a morphism H → H ′ is an
inclusion H ⊆ H ′.



Remember a projective variety M ⊆ P(Cn) is linearly normal if
the restriction map

Γ(L)→ Γ(L|M)

is surjective, where L→ P(Cn) is the bundle with Lx = x∗. This
makes M easy to geometrically quantize, since then

Γ(L|M) ∼= H

where H ⊆ Cn is the smallest linear subspace such that P(H)
contains M.

Definition. Let Q : Classn → Quantn be the functor sending
any linearly normal M ⊆ P(Cn) to H ⊆ Cn, the smallest
subspace such that M ⊆ P(H).

Definition. Let P : Quantn → Classn be the functor sending any
linear subspace H ⊆ Cn to its projectivization P(H) ⊆ P(Cn).



Then P and Q are adjoint functors between posets, also called
a Galois connection:

Q(M) ⊆ H ⇐⇒ M ⊆ P(H)

for all M ⊆ P(Cn), H ⊆ Cn.

Taking H = Q(M) we get

M ⊆ P(Q(M))

Thus every classical state x ∈ M gives a quantum state
x ∈ P(Q(M)). Such a quantum state is called a coherent
state: the “best quantum approximation to a classical state”.

Moreover we have
Q(P(H)) ∼= H

for all H ⊆ Cn. If you take a finite-dimensional Hilbert space H,
projectivize it, then quantize the result, you get H back.



Three problems:

I We’re studying the geometry of classical state spaces
extrinsically, treating them as projective subvarieties of
P(Cn). The “intrinsic” approach to geometry is far more
fashionable.

I We’re fixing n.
I Our only morphisms between classical systems, or

quantum systems, are inclusions. Thus, we cannot
describe symmetries as morphisms: our categories are
mere posets.

The last two problems are more important, so let’s fix those.



Definition. Let Class be the category where:

I An object (M,V ) is a finite-dimensional complex vector
space V and a projective variety M ⊆ P(V ) such that no
proper subspace W ⊂ V has M ⊆ P(W ).

I A morphism f : (M,V )→ (M ′,V ′) is an injective linear map
f : V → V ′ such that P(f ) : P(V )→ P(V ′) maps M into M ′.

Note: we’ve dropped the condition that M be linearly normal!
You can include it if you want.

Definition. Let Quant be the category where:

I An object V is a finite-dimensional complex vector space
I A morphism f : V → V ′ is an injective linear map.



Definition. Let Q : Class→ Quant be the functor sending any
object (M,V ) to V , and any morphism f : (M,V )→ (M ′,V ′) to
its underlying injective linear map f : V → V ′.

Definition. Let P : Quant→ Class be the functor sending any
vector space V to (P(V ),V ), and any injective linear map
f : V → V ′ to f : (P(V ),V )→ (P(V ′),V ′).

Theorem. Q is left adjoint to P, and Quant is a reflective
subcategory of Class: P ◦Q ∼= 1Class.

Note: we’ve removed the Hilbert space structure from our
‘quantum systems’: they are mere vector spaces. We’ve also
removed the Kähler and even symplectic structure from our
‘classical systems’: they are mere projective varieties.

We have made stone soup without the stone!

But we can easily reinstate these extra structures: taking V to
have an inner product makes M ⊆ P(V ) Kähler.


