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This is a very rough draft, just to lay out the ideas. We include neither
proofs, which will eventually be provided, nor motivation — which will also be
provided, but for now can be found online in the reams of material associated to
the Fall 2007 seminar on Geometric Representation Theory [3]. Before reading
this draft, it’s probably good to look at the groupoidification website [1] and
read the paper ‘Groupoidification made Easy’ [4].

1 Degroupoidification

The idea of groupoidification is to take interesting pieces of linear algebra, such
as the representation theory of finite groups, and systematically replace vec-
tor spaces by groupoids and linear operators by spans of groupoids. Equa-
tions between linear operators then become interesting maps between spans of
groupoids.

So, groupoidification is a special form of categorification. As always, the
hope is that we are not just making stuff up, but revealing structures in mathe-
matics that were already implicitly there. And, as always, this is not a systematic
process — but its reverse is a systematic process. We call this ‘degroupoidifi-
cation’.

Degroupoidification is a process going from spans of groupoids to linear
operators between vector spaces. To avoid issues of analysis we limit ourselves
here to spans of finite groupoids.

Lemma 1. There is a weak 2-category FinSpan where:

• the objects are finite groupoids,
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• a morphism S : X 9 Y is a span of finite groupoids

S

��~~~~~~~

��???????

X Y

• a 2-morphism f : S ⇒ S ′ is a diagram

S

�� &&NNNNNNNNNNNNN // S′

xxppppppppppppp

��
X Y

commuting up to natural isomorphism,

• composition of morphisms is done via weak pullback of spans,

• composition of 2-morphisms is done in the obvious way,

• all identity morphisms and 2-morphisms, left and right unit laws, and
associators are the obvious things.

(Note: To obtain a bicategory FinSpan, we must arbitrarily choose a weak
pullback for each composable pair of spans. A more principled — but ultimately
equivalent — approach would avoid these choices and yield, for example, an
opetopic bicategory. We prefer to use traditional bicategories because they
are more familiar. So, henceforth we use ‘weak 2-category’ as a synonym for
‘bicategory’)

Next, we fix a field k of characteristic zero. Let FinVect be the category
whose objects are finite-dimensional vector spaces and whose morphisms are
linear operators. We shall often think of this as a weak 2-category with only
identity 2-morphisms.

Our goal is now to describe a weak 2-functor

D : FinSpan→ FinVect

called ‘degroupoidification’. For this we need a bit of information about the
zeroth homology of groupoids. This can be seen either as a covariant functor,
via ‘pushforward’, or as a contravariant one, via ‘transfer’. (The name ‘transfer’
is traditional in the homology theory of spaces; sufficiently nice maps between
spaces give not only a pushforward in homology but also a ‘transfer’ going back.)

Let FinGpd be the weak 2-category of finite groupoids, functors and natu-
ral isomorphisms. Given X ∈ FinGpd, we define its zeroth homology with
coefficients in k, H0(X), to be the free vector space on the set of isomorphism
classes of objects of X . Given a functor f : X → Y between finite groupoids,
we define its pushforward

f∗ : H0(X)→ H0(Y )
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by
f∗[x] = [f(x)]

where [x] is the isomorphism class of x ∈ X . It is easy to check that naturally
isomorphic functors give the same pushforward, and:

Lemma 2. There is a weak 2-functor from FinGpd to FinVect sending:

• X ∈ FinGpd to its zeroth homology H0(X) ∈ FinVect,

• f : X → Y to its pushforward f∗ : H0(X)→ H0(Y ),

• α : f ⇒ g to the identity.

Given a functor f : X → Y between finite groupoids, we can also define a
linear operator

f ! : H0(Y )→ H0(X)

called its transfer. This maps each isomorphism class [y] of objects in Y to a
cleverly weighted sum over objects in X that map to it — or more precisely, to
objects isomorphic to it. The ‘clever weighting’ involves the concept of groupoid
cardinality [2], but we will supress that concept here for the sake of efficiency.
We still need a little notation:

Definition 3. Given a category X, let X be the set of isomorphism classes of
objects of X.

Definition 4. Given a category X and an object x ∈ X, let aut(x) be the group
of automorphisms of x.

Definition 5. Given a functor f : X → Y and an object y ∈ Y , let f−1(y) be
the essential preimage of y, that is, the full subcategory of X consisting of all
objects that f maps to objects isomorphic to y.

We define the transfer by:

f ![y] =
1

|aut(y)|
∑

[x]∈f−1(y)

[x]

|aut(x)|

Maybe it’s better to say this in words too. To compute f ![y], we sum over
objects in X mapping to objects isomorphic to y, picking one object from each
isomorphism class. This sum is cleverly weighted by factors involving the size
of various automorphism groups. I hope I have these factors right! The first
way to check it is to prove this lemma:

Lemma 6. There is a contravariant weak 2-functor from FinGpd to FinVect
sending:

• X ∈ FinGpd to its zeroth homology H0(X) ∈ FinVect,

• f : X → Y to its transfer f ! : H0(Y )→ H0(X),
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• α : f ⇒ g to the identity.

Now for the punchline:

Proposition 7. There is a weak 2-functor, degroupoidification,

D : FinSpan→ FinVect

sending:

• any object X ∈ FinSpan to its zeroth homology H0(X) ∈ FinVect,

• any morphism

S
p

��~~~~~~~
q

��???????

X Y

to the operator q∗p! : H0(X)→ H0(Y ),

• any 2-morphism α : S ⇒ S ′ to the identity.

Note that since FinVect is a weak 2-category with only identity morphisms,
this is all the information we need to provide to describe a weak 2-functor.
The main job in proving the lemma is showing that composite spans get sent
to composite linear operators. This is where the ‘clever weighting’ becomes
important: the lemma works when you get this weighting right.

2 Nice Topoi

It is profitable to study groups, or more generally groupoids, by their actions
on sets. In fact, any groupoid has a topos of actions, which serves as a kind of
stand-in for the groupoid itself. So, the degroupoidification process we described
above can also be thought of as a process sending such a topos to a vector space.

As in the previous section, we will impose finiteness restrictions to avoid
some technicalities that complicate things. If X is a finite groupoid, there is a
category XSet whose objects are actions of X on sets — that is, functors

A : X → Set

This category is a topos of some very nice sort:

Definition 8. A category is a nice topos if it is equivalent, as a category, to
XSet for some finite groupoid X.

We would naturally like an intrinsic characterization of such topoi.
A functor f : X → Y between finite groupoids induces a ‘pullback’ map

f∗ : Y Set → XSet
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but this has a left adjoint
f∗ : XSet → Y Set

So, any span of finite groupoids

S
p

��~~~~~~~
q

��???????

X Y

gives rise to a functor
q∗p
∗ : XSet → Y Set

Definition 9. A functor between nice topoi is nice if it is naturally isomorphic
to one of the form

q∗p
∗ : XSet → Y Set

for some span of finite groupoids

S
p

��~~~~~~~
q

��???????

X Y

Definition 10. A natural isomorphism between nice functors is nice if it is
equal to one arising from an equivalence of spans of finite groupoids.

We would also like intrinsic characterizations of nice functors and nice nat-
ural transformations.

There is a 2-category Nice of nice topoi, nice functors and nice natural
isomorphisms, and:

Lemma 11. There is an equivalence of weak 2-categories

J : FinSpan→ Nice

sending each finite groupoid X to the nice topos XSet.

Combining this and Proposition 7, we get a weak 2-functor from Nice to
FinVect. Namely, we choose a weak inverse to J , say

K : Nice→ FinSpan

This gives an alternative form of degroupoidification,

DK : Nice→ FinVect.
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3 The Hecke Bicategory

We now apply degroupoidification to an important example. Suppose G is a
finite group. Given G-sets A and B, there is an obvious notion of a morphism
from A to B, namely a G-invariant map f : A→ B. However, it turns out to be
much more interesting to consider a different sort of morphism, namely a span
of G-sets

S

���������

��???????

A B

where the arrows areG-equivariant maps. But in fact, such spans are the objects
of a nice topos!

To see this, recall the concept of ‘action groupoid’ or ‘weak quotient’:

Definition 12. Given a set S with an action of a group G on it, the weak
quotient S//G is the groupoid with elements of S as objects, and pairs (g, s) ∈
G × S as morphisms from s to gs, where the composite of (g, s) : s → s′ and
(g′, s′) : s′ → s′′ is defined to be (g′g, s) : s→ s′.

Lemma 13. Given a set S with an action of a group G on it, the category of
G-sets over S is equivalent to the category (S//G)Set. When G and S are finite,
so is S//G, so (S//G)Set is a nice topos.

So, given finite G-sets A and B, we can think of a span of G-sets

S

���������

��???????

A B

as a G-set over A×B. By the above lemma, this is an object of the nice topos
((A×B)//G)Set.

So, unravelling what we’ve done, we see:

Lemma 14. Suppose G is a finite group and let A and B be finite G-sets. Then
there is a nice topos ((A×B)//G)Set where:

• objects are spans of G-sets

S

���������

��???????

A B

• morphisms are commuting diagrams

S

�� &&NNNNNNNNNNNNN // S′

xxppppppppppppp

��
A B
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As mentioned, we want to think of a span of G-sets from A to B as a kind of
morphism from A to B. The morphisms mentioned in the above lemma should
thus be 2-morphisms between these! We can make this more precise:

Lemma 15. For any finite group G there is a weak 2-category enriched over
Nice, the Hecke bicategory of G, denoted Hecke(G), where:

• objects are finite G-sets,

• given finite G-sets A and B, hom(A,B) is the nice topos ((A×B)//G)Set.

This is not a very precise statement of the lemma, since we haven’t said how
composition and the like are supposed to work! We also need to say how Nice
is a monoidal bicategory, in order to speak of bicategories enriched over it.

But for now, let us just combine Lemmas 14 and 15, just to see where we
stand:

Lemma 16. 15 For any finite group G, the weak 2-category Hecke(G) has:

• finite G-sets as objects

• spans of G-sets as morphisms

S

���������

��???????

A B

• commuting diagrams

S

�� &&NNNNNNNNNNNNN // S′

xxppppppppppppp

��
A B

as 2-morphisms.

This should make it clearer how composition works: we use the usual com-
position of spans, via pullback. Indeed, it’s easy to use this description to show
that Hecke(G) is a bicategory. So, the ‘tricky part’ is just showing that Hecke(G)
is enriched over Nice.

But now let us plunge ahead and state the Fundamental Theorem of Hecke
Algebras! For this, we first recall that by Lemma 11, the weak 2-functor

J : FinSpan→ Nice

has a weak inverse
K : Nice→ FinSpan

In fact J is monoidal (with respect to some obvious monoidal structures on
FinSpan and Nice), and so therefore is K. This allows us to do ‘base change’ and
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convert any bicategory B enriched over Nice into a bicategory K(B) enriched
over FinSpan. Here we use an overline to denote base change with respect to
some weak monoidal 2-functor.

Similarly, degroupoidification

D : FinSpan→ FinVect

is monoidal. So, we can convert any bicategory B enriched over FinSpan into a
bicategory D(B) enriched over FinVect.

We can do both sorts of base change starting with the Hecke bicategory of G:
Hecke(G) is enriched over Nice, so D(K(Hecke(G))) is enriched over FinVect.

The Fundamental Theorem of Hecke Operators reveals this FinVect-enriched
category to be something very familiar.

Definition 17. Let Perm(G) be the category where:

• Objects are permutation representations of G: that is, representations
of G arising from actions of G on finite sets via the ‘free vector space’
functor F : FinSet→ FinVect.

• Morphisms are intertwining operators — that is, G-equivariant linear
operators.

Theorem 18. For any finite group G,

D(K(Hecke(G))) ' Perm(G)

The point of this theorem is that the category Perm(G) is obtained via a
‘degroupoidification’ process, namely D, together with a slight change in view-
point, namely K, from the Hecke bicategory Hecke(G).
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