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Abstract

We begin with a chronology tracing the rise of symmetry concepts in physics,
starting with groups and their role in relativity, and leading up to more sophis-
ticated concepts from n-category theory, which manifest themselves in Feyn-
man diagrams and their higher-dimensional generalizations: strings, mem-
branes and spin foams.

1 Introduction

This paper is a highly subjective chronology describing how physicists have begun to
use ideas from n-category theory in their work, often without making this explicit.
Somewhat arbitrarily, we start around the discovery of relativity and quantum
mechanics, and lead up to conformal field theory and topological field theory. In
parallel, we trace a bit of the history of n-categories, from Eilenberg and Mac
Lane’s introduction of categories, to later work on monoidal and braided monoidal
categories, to Grothendieck’s dreams involving ∞-categories and recent attempts
to realize this dream.

Many different histories of n-categories can and should be told. Ross Street’s
Conspectus of Australian Category Theory [1] is a good example: it overlaps with
the history here, but only slightly. It would also be good to have a history of
n-categories that focused on algebraic topology, one that focused on algebraic ge-
ometry, and one that focused on logic. For higher categories in computer science,
we have John Power’s Why Tricategories? [2], which while not a history at least
explains some of the issues at stake.

What is the goal of this history? We are scientists rather than historians of
science, so we are trying to make a specific scientific point, rather than accurately
describe every twist and turn in a complex sequence of events. We want to show
how categories and even n-categories have slowly come to be seen as a good way
to formalize physical theories in which ‘processes’ can be drawn as diagrams—for
example Feynman diagrams—but interpreted algebraically—for example as linear
operators. To minimize the prerequisites, our history includes a gentle introduction
to n-categories (in fact, mainly just categories and 2-categories). It also includes a
review of some key ideas from 20th-century physics.

The most obvious roads to n-category theory start from issues internal to pure
mathematics. Applications to physics only became visible much later, starting
around the 1980s. So far, these applications mainly arise around theories of quantum
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gravity, especially string theory and ‘spin foam models’ of loop quantum gravity.
These theories are speculative and still under development, not ready for experi-
mental tests. They may or may not succeed. So, it is too early to write a real history
of n-categorical physics, or even to know if this subject will become important. We
believe it will—but so far, all we have is a ‘prehistory’.

2 Road Map

Before we begin our chronology, to help the reader keep from getting lost in a cloud
of details, it will be helpful to sketch the road ahead. Why did categories turn out
to be useful in physics? The reason is ultimately very simple. A category consists
of ‘objects’ x, y, z, . . . and ‘morphisms’ which go between objects, for example

f : x→ y.

A good example is the category of Hilbert spaces, where the objects are Hilbert
spaces and the morphisms are bounded operators. In physics we can think of an
object as a ‘state space’ for some physical system, and a morphism as a ‘process’
taking states of one system to states of another (perhaps the same one). In short,
we use objects to describe kinematics, and morphisms to describe dynamics.

Why n-categories? For this we need to understand a bit about categories and
their limitations. In a category, the only thing we can do with morphisms is ‘com-
pose’ them: given a morphism f : x→ y and a morphism g : y → z, we can compose
them and obtain a morphism gf : x → z. This corresponds to our basic intuition
about processes, namely that one can occur after another. While this intuition is
temporal in nature, it lends itself to a nice spatial metaphor. We can draw a mor-
phism f : x → y as a ‘black box’ with an input of type x and an output of type
y:

f

��x

��y

Composing morphisms then corresponds to feeding the output of one black box into
another:

f

��x

��y

g

��z

This sort of diagram might be sufficient to represent physical processes if the
universe were 1-dimensional: no dimensions of space, just one dimension of time.
But in reality, processes can occur not just in series but also in parallel—‘side by
side’, as it were:

f

��x

��y

f ′
�� x′

�� y′
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To formalize this algebraically, we need something more than a category: at the
very least a ‘monoidal category’, which is a special sort of ‘2-category’. The term
‘2-category’ hints at the two way of combining processes: in series and in parallel.

Similarly, the mathematics of 2-categories might be sufficient for physics if the
universe were only 2-dimensional: one dimension of space, one dimension of time.
But in our universe, is also possible for physical systems to undergo a special sort
of process where they ‘switch places’:





��

��

x y

To depict this geometrically requires a third dimension, hinted at here by the cross-
ing lines. To formalize it algebraically, we need something more than a monoidal
category: at the very least a ‘braided monoidal category’, which is a special sort of
‘3-category’.

This escalation of dimensions can continue. In the diagrams Feynman used to
describe interacting particles, we can continuously interpolate between this way of
switching two particles:





��

��

x y

and this:






 ��

x y

This requires four dimensions: one of time and three of space. To formalize this
algebraically we need a ‘symmetric monoidal category’, which is a special sort of
4-category.

More general n-categories, including those for higher values of n, may also be
useful in physics. This is especially true in string theory and spin foam mod-
els of quantum gravity. These theories describe strings, graphs, and their higher-
dimensional generalizations propagating in spacetimes which may themselves have
more than 4 dimensions.

So, in abstract the idea is simple: we can use n-categories to algebraically for-
malize physical theories in which processes can be depicted geometrically using
n-dimensional diagrams. But the development of this idea has been long and con-
voluted. It is also far from finished. In our chronology we describe its development
up to the year 2000. To keep the tale from becoming unwieldy, we have been
ruthlessly selective in our choice of topics.

In particular, we can roughly distinguish two lines of thought leading towards n-
categorical physics: one beginning with quantum mechanics, the other with general
relativity. Since a major challenge in physics is reconciling quantum mechanics and
general relativity, it is natural to hope that these lines of thought will eventually
merge. We are not sure yet how this will happen, but the two lines have already
been interacting throughout the 20th century. Our chronology will focus on the
first. But before we start, let us give a quick sketch of both.

The first line of thought starts with quantum mechanics and the realization that
in this subject, symmetries are all-important. Taken abstractly, the symmetries of
any system form a group G. But to describe how these symmetries act on states of a
quantum system, we need a ‘unitary representation’ ρ of this group on some Hilbert
space H . This sends any group element g ∈ G to a unitary operator ρ(g) : H → H .
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The theory of n-categories allows for drastic generalizations of this idea. We
can see any group G as a category with one object where all the morphisms are
invertible: the morphisms of this category are just the elements of the group, while
composition is multiplication. There is also a category Hilb where objects are
Hilbert spaces and morphisms are linear operators. A representation of G can be
seen as a map from the first category to the second:

ρ : G→ Hilb.

Such a map between categories is called a ‘functor’. The functor ρ sends the one
object of G to the Hilbert space H , and it sends each morphism g of G to a unitary
operator ρ(g) : H → H . In short, it realizes elements of the abstract group G as
actual transformations of a specific physical system.

The advantage of this viewpoint is that now the group G can be replaced by a
more general category. Topological quantum field theory provides the most famous
example of such a generalization, but in retrospect the theory of Feynman diagrams
provides another, and so does Penrose’s theory of ‘spin networks’.

More dramatically, both G and Hilb may be replaced by a more general sort of
n-category. This allows for a rigorous treatment of physical theories where physical
processes are described by n-dimensional diagrams. The basic idea, however, is
always the same: a physical theory is a map sending sending ‘abstract’ processes to
actual transformations of a specific physical system.

The second line of thought starts with Einstein’s theory of general relativity,
which explains gravity as the curvature of spacetime. Abstractly, the presence of
‘curvature’ means that as a particle moves through spacetime from one point to
another, its internal state transforms in a manner that depends nontrivially on the
path it takes. Einstein’s great insight was that this notion of curvature completely
subsumes the older idea of gravity as a ‘force’. This insight was later generalized to
electromagnetism and the other forces of nature: we now treat them all as various
kinds of curvature.

In the language of physics, theories where forces are explained in terms of curva-
ture are called ‘gauge theories’. Mathematically, the key concept in a gauge theory
is that of a ‘connection’ on a ‘bundle’. The idea here is to start with a manifold
M describing spacetime. For each point x of spacetime, a bundle gives a set Ex
of allowed internal states for a particle at this point. A connection then assigns
to each path γ from x ∈ M to y ∈ M a map ρ(γ) : Ex → Ey . This map, called
‘parallel transport’, says how a particle starting at x changes state if it moves to y
along the path γ.

Category theory lets us see that a connection is also a kind of functor. There
is a category P1(M) whose objects are points of M : the morphisms are paths, and
composition amounts to concatenating paths. Similarly, any bundle gives a category
Trans(E) where the objects are the sets Ex and the morphisms are maps between
these. A connection gives a functor

ρ : P1(M)→ Trans(P ).

This functor sends each object x of P1(M) to the set Ex, and sends each path γ to
the map ρ(γ).

So, the ‘second line of thought’, starting from general relativity, leads to a picture
strikingly similar to the first one! Just as a unitary group representation is a functor
sending abstract symmetries to transformations of a specific physical system, a
connection is a functor sending paths in spacetime to transformations of a specific
physical system: a particle. And just as unitary group representations are a special
case of physical theories described as maps between n-categories, when we go from
point particles to higher-dimensional objects we meet ‘higher gauge theories’, which
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use maps between n-categories to describe how such objects change state as they
move through spacetime [3]. In short: the first and second lines of thought are
evolving in parallel—and intimately linked, in ways that still need to be understood.

Sadly, we will not have much room for general relativity, gauge theories, or
higher gauge theories in our chronology. We will be fully occupied with group
representations as applied to quantum mechanics, Feynman diagrams as applied
to quantum field theory, how these diagrams became better understood with the
rise of n-category theory, and how higher-dimensional generalizations of Feynman
diagrams arise in string theory, loop quantum gravity, topological quantum field
theory, and the like.

3 Chronology

Maxwell (1876)

In his book Matter and Motion, Maxwell [4] wrote:

Our whole progress up to this point may be described as a gradual devel-
opment of the doctrine of relativity of all physical phenomena. Position
we must evidently acknowledge to be relative, for we cannot describe
the position of a body in any terms which do not express relation. The
ordinary language about motion and rest does not so completely exclude
the notion of their being measured absolutely, but the reason of this is,
that in our ordinary language we tacitly assume that the earth is at
rest.... There are no landmarks in space; one portion of space is exactly
like every other portion, so that we cannot tell where we are. We are,
as it were, on an unruffled sea, without stars, compass, sounding, wind
or tide, and we cannot tell in what direction we are going. We have no
log which we can case out to take a dead reckoning by; we may compute
our rate of motion with respect to the neighboring bodies, but we do
not know how these bodies may be moving in space.

Readers less familiar with the history of physics may be surprised to see these
words, written when Einstein was 3 years old. In fact, the relative nature of velocity
was already known to Galileo, who also used a boat analogy to illustrate this. How-
ever, Maxwell’s equations describing light made relativity into a hot topic. First, it
was thought that light waves needed a medium to propagate in, the ‘luminiferous
aether’, which would then define a rest frame. Second, Maxwell’s equations pre-
dicted that waves of light move at a fixed speed in vacuum regardless of the velocity
of the source! This seemed to contradict the relativity principle. It took the genius
of Lorentz, Poincaré, Einstein and Minkowski to realize that this behavior of light
is compatible with relativity of motion if we assume space and time are united in a
geometrical structure we now call Minkowski spacetime. But when this realization
came, the importance of the relativity principle was highlighted, and with it the
importance of symmetry groups in physics.

Poincaré (1894)

In 1894, Poincaré invented the fundamental group: for any space X with a
basepoint ∗, homotopy classes of loops based at ∗ form a group π1(X). This hints
at the unification of space and symmetry, which was later to become one of the main
themes of n-category theory. In 1945, Eilenberg and Mac Lane described a kind of
‘inverse’ to the process taking a space to its fundamental group. Since the work
of Grothendieck in the 1960s, many have come to believe that homotopy theory is
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secretly just the study of certain vast generalizations of groups, called ‘n-groupoids’.
From this point of view, the fundamental group is just the tip of an iceberg.

Lorentz (1904)

Already in 1895 Lorentz had invented the notion of ‘local time’ to explain the results
of the Michelson–Morley experiment, but in 1904 he extended this work and gave
formulas for what are now called ‘Lorentz transformations’ [5].

Poincaré (1905)

In his opening address to the Paris Congress in 1900, Poincaré asked ‘Does the
ether really exist?’ In 1904 he gave a talk at the International Congress of Arts
and Science in St. Louis, in which he noted that “. . . as demanded by the relativity
principle the observer cannot know whether he is at rest or in absolute motion”.

On the 5th of June, 1905, he wrote a paper ‘Sur la dynamique de l’electron’ [6] in
which he stated: “It seems that this impossibility of demonstrating absolute motion
is a general law of nature”. He named the Lorentz transformations after Lorentz,
and showed that these transformations, together with the rotations, form a group.
This is now called the ‘Lorentz group’.

Einstein (1905)

Einstein’s first paper on relativity, ‘On the electrodynamics of moving bodies’ [7]
was received on June 30th, 1905. In the first paragraph he points out problems that
arise from applying the concept of absolute rest to electrodynamics. In the second,
he continues:

Examples of this sort, together with the unsuccessful attempts to dis-
cover any motion of the earth relative to the ‘light medium,’ suggest
that the phenomena of electrodynamics as well as of mechanics possess
no properties corresponding to the idea of absolute rest. They suggest
rather that, as already been shown to the first order of small quantities,
the same laws of electrodynamics and optics hold for all frames of refer-
ence for which the equations of mechanics hold good. We will raise this
conjecture (the purport of which will hereafter be called the ‘Principle of
Relativity’) to the status of a postulate, and also introduce another pos-
tulate, which is only apparently irreconcilable with the former, namely,
that light is always propagated in empty space with a definite velocity
c which is independent of the state of motion of the emitting body.

From these postulates he derives formulas for the transformation of coordinates
from one frame of reference to another in uniform motion relative to the first, and
shows these transformations form a group.

Minkowski (1908)

In a famous address delivered at the 80th Assembly of German Natural Scientists
and Physicians on September 21, 1908, Hermann Minkowski declared:

The views of space and time which I wish to lay before you have sprung
from the soil of experimental physics, and therein lies their strength.
They are radical. Henceforth space by itself, and time by itself, are
doomed to fade away into mere shadows, and only a kind of union of
the two will preserve an independent reality.
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He formalized special relativity by treating space and time as two aspects of a
single entity: spacetime. In simple terms we may think of this as R4, where a point
x = (t, x, y, z) describes the time and position of an event. Crucially, this R4 is
equipped with a bilinear form, the Minkowski metric:

x · x′ = tt′ − xx′ − yy′ − zz′

which we use as a replacement for the usual dot product when calculating times
and distances. With this extra structure, R4 is now called Minkowski spacetime.
The group of all linear transformations

T : R4 → R4

preserving the Minkowski metric is called the Lorentz group, and denoted Ø(3, 1).

Heisenberg (1925)

In 1925, Werner Heisenberg came up with a radical new approach to physics in which
processes were described using matrices [8]. What makes this especially remarkable
is that Heisenberg, like most physicists of his day, had not heard of matrices! His
idea was that given a system with some set of states, say {1, . . . , n}, a process U
would be described by a bunch of complex numbers U ij specifying the ‘amplitude’
for any state i to turn into any state j. He composed processes by summing over
all possible intermediate states:

(V U)ik =
∑

j

V jk U
i
j .

Later he discussed his theory with his thesis advisor, Max Born, who informed him
that he had reinvented matrix multiplication.

Heisenberg never liked the term ‘matrix mechanics’ for his work, because he
thought it sounded too abstract. However, it is an apt indication of the algebraic
flavor of quantum physics.

Born (1928)

In 1928, Max Born figured out what Heisenberg’s mysterious ‘amplitudes’ actually
meant: the absolute value squared |U ij |2 gives the probability for the initial state i to
become the final state j via the process U . This spelled the end of the deterministic
worldview built into Newtonian mechanics [9]. More shockingly still, since ampli-
tudes are complex, a sum of amplitudes can have a smaller absolute value than those
of its terms. Thus, quantum mechanics exhibits destructive interference: allowing
more ways for something to happen may reduce the chance that it does!

Von Neumann (1932)

In 1932, John von Neumann published a book on the foundations of quantum
mechanics [10], which helped crystallize the now-standard approach to this theory.
We hope that the experts will forgive us for omitting many important subtleties
and caveats in the following sketch.

Every quantum system has a Hilbert space of states, H . A state of the system
is described by a unit vector ψ ∈ H . Quantum theory is inherently probabilistic: if
we put the system in some state ψ and immediately check to see if it is in the state
φ, we get the answer ‘yes’ with probability equal to |〈φ, ψ〉|2.

A reversible process that our system can undergo is called a symmetry. Math-
ematically, any symmetry is described by a unitary operator U : H → H . If we
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put the system in some state ψ and apply the symmetry U it will then be in the
state Uψ. If we then check to see if it is in some state φ, we get the answer ‘yes’
with probability |〈φ, Uψ〉|2. The underlying complex number 〈φ, Uψ〉 is called a
transition amplitude. In particular, if we have an orthonormal basis ei of H , the
numbers

U ij = 〈ej , Uei〉
are Heisenberg’s matrices!

Thus, Heisenberg’s matrix mechanics is revealed to be part of a framework
in which unitary operators describe physical processes. But, operators also play
another role in quantum theory. A real-valued quantity that we can measure by
doing experiments on our system is called an observable. Examples include energy,
momentum, angular momentum and the like. Mathematically, any observable is
described by a self-adjoint operator A on the Hilbert space H for the system in
question. Thanks to the probabilistic nature of quantum mechanics, we can obtain
various different values when we measure the observable A in the state ψ, but the
average or ‘expected’ value will be 〈ψ,Aψ〉.

If a group G acts as symmetries of some quantum system, we obtain a unitary
representation of G, meaning a Hilbert space H equipped with unitary operators

ρ(g) : H → H,

one for each g ∈ G, such that
ρ(1) = 1H

and
ρ(gh) = ρ(g)ρ(h).

Often the group G will be equipped with a topology. Then we want symmetry
transformation close to the identity to affect the system only slightly, so we demand
that our representations be strongly continuous: if gi → 1 in G, then ρ(gi)ψ → ψ
for all ψ ∈ H .

This turns out to have powerful consequences, such as the Stone–von Neumann
theorem: if ρ is a strongly continuous representation of R on H , then

ρ(s) = exp(−isA)

for a unique self-adjoint operator A on H . Conversely, any self-adjoint operator
gives a strongly continuous representation of R this way. In short, there is a cor-
respondence between observables and one-parameter groups of symmetries. This
links the two roles of operators in quantum mechanics: self-adjoint operators for
observables, and unitary operators for symmetries.

Wigner (1939)

We have already discussed how the Lorentz group Ø(3, 1) acts as symmetries of
spacetime in special relativity: it is the group of all linear transformations

T : R4 → R4

preserving the Minkowski metric. However, the full symmetry group of Minkowski
spacetime is larger: it includes translations as well. So, the really important group
in special relativity is the so-called ‘Poincaré group’:

P = Ø(3, 1)nR4

generated by Lorentz transformations and translations.
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Some subtleties appear when we take some findings from particle physics into
account. Though time reversal

(t, x, y, z) 7→ (−t, x, y, z)

and parity
(t, x, y, z) 7→ (t,−x,−y,−z)

are elements of P, not every physical system has them as symmetries. So it is better
to exclude such elements of the Poincaré group by working with the connected
component of the identity, P0. Furthermore, when we rotate an electron a full
turn, its state vector does not come back to where it stated: it gets multiplied by
-1. If we rotate it two full turns, it gets back to where it started. To deal with this,
we should replace P0 by its universal cover, P̃0. For lack of a snappy name, in what
follows we call this group the Poincaré group.

We have seen that in quantum mechanics, physical systems are described by
strongly continuous unitary representations of the relevant symmetry group. In rel-
ativistic quantum mechanics, this symmetry group is P̃0. The Stone-von Neumann
theorem then associates observables to one-parameter subgroups of this group. The
most important observables in physics—energy, momentum, and angular momentum—
all arise this way!

For example, time translation

gs : (t, x, y, z) 7→ (t+ s, x, y, z)

gives rise to an observable A with

ρ(gs) = exp(−isA).

and this observable is the energy of the system, also known as the Hamiltonian.
If the system is in a state described by the unit vector ψ ∈ H , the expected value of
its energy is 〈ψ,Aψ〉. In the context of special relativity, the energy of a system is
always greater than or equal to that of the vacuum (the empty system, as it were).
The energy of the vacuum is zero, so it makes sense to focus attention on strongly
continuous unitary representations of the Poincaré group with

〈ψ,Aψ〉 ≥ 0.

These are usually called positive-energy representations.
In a famous 1939 paper, Eugene Wigner [11] classified the positive-energy rep-

resentations of the Poincaré group. All these representations can be built as direct
sums of irreducible ones, which serve as candidates for describing ‘elementary parti-
cles’: the building blocks of matter. To specify one of these representations, we need
to give a number m ≥ 0 called the ‘mass’ of the particle, a number j = 0, 1

2 , 1, . . .
called its ‘spin’, and sometimes a little extra data.

For example, the photon has spin 1 and mass 0, while the electron has spin 1
2

and mass equal to about 9 · 10−31 kilograms. Nobody knows why particles have the
masses they do—this is one of the main unsolved problems in physics—but they all
fit nicely into Wigner’s classification scheme.

Eilenberg–Mac Lane (1945)

Eilenberg and Mac Lane [12] invented the notion of a ‘category’ while working on
algebraic topology. The idea is that whenever we study mathematical gadgets of any
sort—sets, or groups, or topological spaces, or positive-energy representations of the
Poincaré group, or whatever—we should also study the structure-preserving maps
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between these gadgets. We call the gadgets ‘objects’ and the maps ‘morphisms’.
The identity map is always a morphism, and we can compose morphisms in an
associative way.

Eilenberg and Mac Lane thus defined a category C to consist of:

• a collection of objects,

• for any pair of objects x, y, a set of Hom(x, y) of morphisms from x to y,
written f : x→ y,

equipped with:

• for any object x, an identity morphism 1x : x→ x,

• for any pair of morphisms f : x → y and g : y → z, a morphism gf : x → z
called the composite of f and g,

such that:

• for any morphism f : x→ y, the left and right unit laws hold: 1yf = f =
f1x.

• for any triple of morphisms f : w → x, g : x → y, h : y → z, the associative
law holds: (hg)f = h(gf).

Given a morphism f : x→ y, we call x the source of f and y the target of y.
Eilenberg and Mac Lane did much more than just define the concept of category.

They also defined maps between categories, which they called ‘functors’. These send
objects to objects, morphisms to morphisms, and preserve all the structure in sight.
More precisely, given categories C and D, a functor F : C → D consists of:

• a function F sending objects in C to objects in D, and

• for any pair of objects x, y ∈ Ob(C), a function F : Hom(x, y)→ Hom(F (x), F (y))

such that:

• F preserves identities: for any object x ∈ C, F (1x) = 1F (x);

• F preserves composition: for any pair of morphisms f : x → y, g : y → z in
C, F (gf) = F (g)F (f).

Many of the famous invariants in algebraic topology are actually functors, and
this is part of how we convert topology problems into algebra problems and solve
them. For example, the fundamental group is a functor

π1 : Top→ Grp.

In other words, not only does any topological space X have a fundamental group
π1(X), but also any continuous map f : X → Y gives a homomorphism π1(f) : π1(X)→
π1(Y ), in a way that gets along with composition. So, to show that the inclusion
of the circle in the disc S1 D2

i //

does not admit a retraction—that is, a map

S1D2
r //
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such that this diagram commutes:

S1 S1

D2

i

??��������

r

��
????????

1S1

//

we simply hit this question with the functor π1 and note that the homomorphism

π1(i) : π1(S1)→ π1(D2)

cannot have a homomorphism

π1(r) : π1(D2)→ π1(S1)

for which π1(r)π1(i) is the identity, because π1(S1) = Z and π1(D2) = 0.
However, Mac Lane later wrote that the real point of this paper was not to

define categories, nor to define functors between categories, but to define ‘natural
transformations’ between functors! These can be drawn as follows:

• •

F

��

G

BB
α

��C D

Given functors F,G : C → D, a natural transformation α : F ⇒ G consists of:

• a function α mapping each object x ∈ C to a morphism αx : F (x)→ G(x)

such that:

• for any morphism f : x→ y in C, this diagram commutes:

F (x)
F (f)

//

αx

��

F (y)

αy

��

G(x)
G(f)

// G(y)

The commuting square here conveys the ideas that α not only gives a morphism
αx : F (x) → G(x) for each object x ∈ C, but does so ‘naturally’—that is, in a way
that is compatible with all the morphisms in C.

The most immediately interesting natural transformations are the natural iso-
morphisms. When Eilenberg and Mac Lane were writing their paper, there were
many different recipes for computing the homology groups of a space, and they
wanted to formalize the notion that these different recipes give groups that are not
only isomorphic, but ‘naturally’ so. In general, we say a morphism g : y → x is an
isomorphism if it has an inverse: that is, a morphism f : x→ y for which fg and gf
are identity morphisms. A natural isomorphism between functors F,G : C → D
is then a natural transformation α : F ⇒ G such that αx is an isomorphism for all
x ∈ C. Alternatively, we can define how to compose natural transformations, and
say a natural isomorphism is a natural transformation with an inverse.

Invertible functors are also important—but here an important theme known as
‘weakening’ intervenes for the first time. Suppose we have functors F : C → D and
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G : D → C. It is unreasonable to demand that if we apply first F and then G, we get
back exactly the object we started with. In practice all we really need, and all we
typically get, is a naturally isomorphic object. So, we we say a functor F : C → D
is an equivalence if it has a weak inverse, that is, a functor G : D → C such that
there exist natural isomorphisms α : GF ⇒ 1C , β : FG⇒ 1D.

In the first applications to topology, the categories involved were mainly quite
large: for example, the category of all topological spaces, or all groups. In fact,
these categories are even ‘large’ in the technical sense, meaning that their collection
of objects is not a set but a proper class. But later applications of category theory
to physics often involved small categories.

For example, any group G can be thought of as a category with one object and
only invertible morphisms: the morphisms are the elements of G, and composition
is multiplication in the group. A representation of G on a Hilbert space is then the
same as a functor

ρ : G→ Hilb,

where Hilb is the category with Hilbert spaces as objects and bounded linear oper-
ators as morphisms. While this viewpoint may seem like overkill, it is a prototype
for the idea of describing theories of physics as functors, in which ‘abstract’ physical
processes (e.g. symmetries) get represented in a ‘concrete’ way (e.g. as operators).
However, this idea came long after the work of Eilenberg and Mac Lane: it was
born sometime around Lawvere’s 1963 thesis, and came to maturity in Atiyah’s
1988 definition of ‘topological quantum field theory’.

Feynman (1947)

After World War II, many physicists who had been working in the Manhattan
project to develop the atomic bomb returned to work on particle physics. In 1947, a
small conference on this subject was held at Shelter Island, attended by luminaries
such as Bohr, Oppenheimer, von Neumann, Weisskopf, and Wheeler. Feynman
presented his work on quantum field theory, but it seems nobody understood it
except Schwinger, who was later to share the Nobel prize with him and Tomonaga.
Apparently it was a bit too far-out for most of the audience.

Feynman described a formalism in which time evolution for quantum systems
was described using an integral over the space of all classical histories: a ‘Feynman
path integral’. These are notoriously hard to make rigorous. But, he also described a
way to compute these perturbatively as a sum over diagrams: ‘Feynman diagrams’.
For example, in QED, the amplitude for an electron to absorb a photon is given by:

'''''''

��

�K
�K
�K
�K

��

+

-----
��

	I
	I
	I

��

�Z
�U
�O
	I

�D

+ ''''''''

��


J

J

J

J

J

��

#c
�_

�V
�Q
M

J

�G
�C

+ · · · +

-----
��
�� 	I

	I
	I

��

��

�Y
�T
�O

J

�E
�^

�^
�^

�G
�G

�Y
�Y + · · ·

All these diagrams describe ways for an electron and photon to come in and an
electron to go out. Lines with arrows pointing downwards stand for electrons. Lines
with arrows pointing upwards stand for positrons: the positron is the ‘antiparticle’
of an electron, and Feynman realized that this could thought of as an electron
going backwards in time. The wiggly lines stand for photons. The photon is its
own antiparticle, so we do not need arrows on these wiggly lines.

Mathematically, each of the diagrams shown above is shorthand for a linear
operator

f : He ⊗Hγ → He
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where He is the Hilbert space for an electron, and Hγ is a Hilbert space for a photon.
We take the tensor product of group representations when combining two systems,
so He ⊗Hγ is the Hilbert space for an photon together with an electron.

As already mentioned, elementary particles are described by certain special rep-
resentations of the Poincaré group—the irreducible positive-energy ones. So, He and
Hγ are representations of this sort. We can tensor these to obtain positive-energy
representations describing collections of elementary particles. Moreover, each Feyn-
man diagram describes an intertwining operator: an operator that commutes
with the action of the Poincaré group. This expresses the fact that if we, say, rotate
our laboratory before doing an experiment, we just get a rotated version of the
result we would otherwise get.

So, Feynman diagrams are a notation for intertwining operators between positive-
energy representations of the Poincaré group. However, they are so powerfully
evocative that they are much more than a mere trick! As Feynman recalled later [13]:

The diagrams were intended to represent physical processes and the
mathematical expressions used to describe them. Each diagram signi-
fied a mathematical expression. In these diagrams I was seeing things
that happened in space and time. Mathematical quantities were being
associated with points in space and time. I would see electrons going
along, being scattered at one point, then going over to another point and
getting scattered there, emitting a photon and the photon goes there. I
would make little pictures of all that was going on; these were physical
pictures involving the mathematical terms.

Feynman first published papers containing such diagrams in 1949 [14,15]. How-
ever, his work reached many physicists through expository articles published even
earlier by one of the few people who understood what he was up to: Freeman
Dyson [16, 17]. For more on the history of Feynman diagrams, see the book by
Kaiser [18].

The general context for such diagrammatic reasoning came much later, from
category theory. The idea is that we can draw a morphism f : x → y as an arrow
going down:

x

y

f

��

but then we can switch to a style of drawing in which the objects are depicted not
as dots but as ‘wires’, while the morphisms are drawn not as arrows but as ‘black
boxes’ with one input wire and one output wire:

f •
��

x

��y

or f

��
x

��y

This is starting to look a bit like a Feynman diagram! However, to get really
interesting Feynman diagrams we need black boxes with many wires going in and
many wires going out. These mathematics necessary for this was formalized later,
in Mac Lane’s 1963 paper on monoidal categories (see below) and Joyal and Street
1980s work on ‘string diagrams’ [19].
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Yang–Mills (1953)

In modern physics the electromagnetic force is described by a U(1) gauge field. Most
mathematicians prefer to call this a ‘connection on a principal U(1) bundle’. Jargon
aside, this means that if we carry a charged particle around a loop in spacetime, its
state will be multiplied by some element of U(1)—that is, a phase—thanks to the
presence of the electromagnetic field. Moreover, everything about electromagnetism
can be understood in these terms!

In 1953, Chen Ning Yang and Robert Mills [20] formulated a generalization of
Maxwell’s equations in which forces other than electromagnetism can be described
by connections on G-bundles for groups other than U(1). With a vast amount of
work by many great physicists, this ultimately led to the ‘Standard Model’, a theory
in which all forces other than gravity are described using a connection on a principal
G-bundle where

G = U(1)× SU(2)× SU(3).

Though everyone would like to more deeply understand this curious choice of G, at
present it is purely a matter of fitting the experimental data.

In the Standard Model, elementary particles are described as irreducible positive-
energy representations of P̃0 × G. Perturbative calculations in this theory can be
done using souped-up Feynman diagrams, which are a notation for intertwining
operators between positive-energy representations of P̃0 ×G.

While efficient, the mathematical jargon in the previous paragraphs does little
justice to how physicists actually think about these things. For example, Yang and
Mills did not know about bundles and connections when formulating their theory.
Yang later wrote [21]:

What Mills and I were doing in 1954 was generalizing Maxwell’s theory.
We knew of no geometrical meaning of Maxwell’s theory, and we were
not looking in that direction. To a physicist, gauge potential is a concept
rooted in our description of the electromagnetic field. Connection is a
geometrical concept which I only learned around 1970.

Mac Lane (1963)

In 1963 Mac Lane published a paper describing the notion of a ‘monoidal category’
[22]. The idea was that in many categories there is a way to take the ‘tensor
product’ of two objects, or of two morphisms. A famous example is the category
Vect, where the objects are finite-dimensional vector spaces and the morphisms are
linear operators. This becomes a monoidal category with the usual tensor product
of vector spaces and linear maps. Other examples include the category Set with
the cartesian product of sets, or the category Hilb with the usual tensor product
of Hilbert spaces. We also get many examples from categories of representations of
groups. The theory of Feynman diagrams, for example, turns out to be based on
the symmetric monoidal category of positive-energy representations of the Poincaré
group!

In a monoidal category, given morphisms f : x → y and g : x′ → y′ there is a
morphism

f ⊗ g : x⊗ x′ → y ⊗ y′.
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We can also draw this as follows:

f •
�� x

�� y

•
�� x′

�� y′

g

This sort of diagram is sometimes called a ‘string diagram’; the mathematics of
these was formalized later [19], but we can’t resist using them now, since they are
so intuitive. Notice that the diagrams we could draw in a mere category were intrin-
sically 1-dimensional, because the only thing we could do is compose morphisms,
which we draw by sticking one on top of another. In a monoidal category the string
diagrams become 2-dimensional, because now we can also tensor morphisms, which
we draw by placing them side by side.

This idea continues to work in higher dimensions as well. The kind of category
suitable for 3-dimensional diagrams is called a ‘braided monoidal category’. In such
a category, every pair of objects x, y is equipped with an isomorphism called the
‘braiding’, which switches the order of factors in their tensor product:

Bx,y : x⊗ y → y ⊗ x.

We can draw this process of switching as a diagram in 3 dimensions:





��

��

x y

and the braidingBx,y satisfies axioms that are related to the topology of 3-dimensional
space.

All the examples of monoidal categories given above are also braided monoidal
categories. Indeed, many mathematicians would shamelessly say that given vector
spaces V and W , the tensor product V ⊗W is ‘equal to’ the tensor product W ⊗V .
But this is not really true; if you examine the fine print you will see that they are
just isomorphic, via this braiding:

BV,W : v ⊗ w 7→ w ⊗ v.

Actually, all the examples above are not just braided but also ‘symmetric’
monoidal categories. This means that if you switch two things and then switch
them again, you get back where you started:

Bx,yBy,x = 1x⊗y.

Because all the braided monoidal categories Mac Lane knew satisfied this extra
axiom, he only considered symmetric monoidal categories. In diagrams, this extra
axiom says that:

��x �� y = ��x �� y

In 4 or more dimensions, any knot can be untied by just this sort of process. Thus,
the string diagrams for symmetric monoidal categories should really be drawn in 4
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or more dimensions! But, we can cheat and draw them in the plane, as we have
above.

It is worth taking a look at Mac Lane’s precise definitions, since they are a bit
subtler than our summary suggests, and these subtleties are actually very interest-
ing.

First, he demanded that a monoidal category have a unit for the tensor product,
which he call the ‘unit object’, or ‘1’. For example, the unit for tensor product in
Vect is the ground field, while the unit for the Cartesian product in Set is the
one-element set. (Which one-element set? Choose your favorite one!)

Second, Mac Lane did not demand that the tensor product be associative ‘on
the nose’:

(x⊗ y)⊗ z = x⊗ (y ⊗ z),

but only up a specified isomorphism called the ‘associator’:

ax,y,z : (x ⊗ y)⊗ z → x⊗ (y ⊗ z).

Similarly, he didn’t demand that 1 act as the unit for the tensor product ‘on the
nose’, but only up to specified isomorphisms called the ‘left and right unitors’:

`x : 1⊗ x→ x, rx : x⊗ 1→ x.

The reason is that in real life, it is usually too much to expect equations between
objects in a category: usually we just have isomorphisms, and this is good enough!
Indeed this is a basic moral of category theory: equations between objects are bad;
we should instead specify isomorphisms.

Third, and most subtly of all, Mac Lane demanded that the associator and left
and right unitors satisfy certain ‘coherence laws’, which let us work with them as
smoothly as if they were equations. These laws are called the pentagon and triangle
identities.

Here is the actual definition. A monoidal category consists of:

• a category M .

• a functor called the tensor product ⊗ : M × M → M , where we write
⊗(x, y) = x⊗ y and ⊗(f, g) = f ⊗ g for objects x, y ∈M and morphisms f, g
in M .

• an object called the identity object 1 ∈M .

• natural isomorphisms called the associator:

ax,y,z : (x⊗ y)⊗ z → x⊗ (y ⊗ z),

the left unit law:
`x : 1⊗ x→ x,

and the right unit law:
rx : x⊗ 1→ x.

such that the following diagrams commute for all objects w, x, y, z ∈M :
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• the pentagon identity:

(w ⊗ x)⊗ (y ⊗ z)

w ⊗ (x ⊗ (y ⊗ z))

w ⊗ ((x ⊗ y)⊗ z)(w ⊗ (x⊗ y))⊗ z

((w ⊗ x) ⊗ y)⊗ z

aw,x,y⊗z

((PPPPPPPPPPPPPPP

1w⊗ax,y,z

GG������������
aw,x⊗y,z

//

aw,x,y⊗1z

��
////////////

aw⊗x,y,z

66nnnnnnnnnnnnnnn

governing the associator.

• the triangle identity:

(x⊗ 1)⊗ y ax,1,y //

rx⊗1y
&&LLLLLLLLLL

x⊗ (1⊗ y)

1x⊗`y
xxrrrrrrrrrr

x⊗ y

governing the left and right unitors.
The pentagon and triangle identities are the least obvious—but truly brilliant—

part of this definition. The point of the pentagon identity is that when we have a
tensor product of four objects, there are five ways to parenthesize it, and at first
glance the associator gives two different isomorphisms from w ⊗ (x ⊗ (y ⊗ z)) to
((w ⊗ x) ⊗ y) ⊗ z. The pentagon identity says these are in fact the same! Of
course when we have tensor products of even more objects there are even more
ways to parenthesize them, and even more isomorphisms between them built from
the associator. However, Mac Lane showed that the pentagon identity implies these
isomorphisms are all the same. Similarly, if we also assume the triangle identity, all
isomorphisms with the same source and target built from the associator, left and
right unit laws are equal.

With the concept of monoidal category in hand, one can define a braided
monoidal category to consist of:

• a monoidal category M , and

• a natural isomorphism called the braiding:

Bx,y : x⊗ y → y ⊗ x.

such that these two diagrams commute, called the hexagon identities:

(x⊗ y)⊗ z (y ⊗ x) ⊗ z

x⊗ (y ⊗ z) y ⊗ (z ⊗ x)

(y ⊗ z)⊗ x y ⊗ (z ⊗ x)

Bx,y⊗z //

ay,x,z

%%LLLLLLLL
a−1
x,y,z

99rrrrrrrr

Bx,y⊗z %%LLLLLLLL

ay,z,x
//

y⊗Bx,z

99rrrrrrrr
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x⊗ (y ⊗ z) x⊗ (z ⊗ y)

(x⊗ y)⊗ z (x ⊗ z)⊗ y

z ⊗ (x⊗ y) (z ⊗ x)⊗ y

x⊗By,z //

a−1
x,z,y

%%LLLLLLLL
ax,y,z

99rrrrrrrr

Bx⊗y,z %%LLLLLLLL

a−1
z,x,y

//

Bx,z⊗y

99rrrrrrrr

Then, we say a symmetric monoidal category is a braided monoidal category
M for which the braiding satisfies Bx,y = B−1

y,x for all objects x and y.
A monoidal, braided monoidal, or symmetric monoidal category is called strict

if ax,y,z, `x, and rx are always identity morphisms. In this case we have

(x⊗ y)⊗ z = x⊗ (y ⊗ z),

1⊗ x = x, x⊗ 1 = x.

Mac Lane showed in a certain precise sense, every monoidal or symmetric monoidal
category is equivalent to a strict one. The same is true for braided monoidal cate-
gories. However, the examples that turn up in nature, like Vect, are rarely strict.

Lawvere (1963)

The famous category theorist F. William Lawvere began his graduate work under
Clifford Truesdell, an expert on ‘continuum mechanics’, that very practical branch
of classical field theory which deals with fluids, elastic bodies and the like. In
the process, Lawvere got very interested in the foundations of physics, particularly
the notion of ‘physical theory’, and his research took a very abstract turn. Since
Truesdell had worked with Eilenberg and Mac Lane during World War II, he sent
Lawvere to visit Eilenberg at Columbia University, and that is where Lawvere wrote
his thesis.

In 1963, Lawvere finished a thesis was on ‘functorial semantics’ [23]. This is
a general framework for theories of mathematical or physical objects in which a
‘theory’ is described by a category C, and a ‘model’ of this theory is described
by a functor Z : C → D. Typically C and D are equipped with extra structure,
and Z is required to preserve this structure. The category D plays the role of an
‘environment’ in which the models live; often we take D = Set.

Variants of this idea soon became important in algebraic topology, especially
‘PROPs’ [24, 25] and ‘operads’ [26]. In the 1990s, operads became very important
both in mathematical physics [27] and the theory of n-categories [28].

But, still closer to Lawvere’s vision of functorial semantics are the definitions
of ‘conformal field theory’ and ‘topological quantum field theory’, propounded by
Segal and Atiyah in the late 1980s. Somewhat confusingly, they use the word
‘theory’ for what Lawvere called a ‘model’: namely, a structure-preserving functor
Z : C → D. But that is just a difference in terminology. The important difference
is that Lawvere focused on classical physics, and took C and D to be categories
with cartesian products. Segal and Atiyah focused on quantum physics, and took
C and D to be symmetric monoidal categories of a special sort, which we will soon
describe: ‘symmetric monoidal categories with duals’.

Bénabou (1967)

In 1967 Bénabou [29] introduced the notion of a ‘bicategory’, or as it is sometimes
now called, a ‘weak 2-category’. The idea is that besides objects and morphisms, a
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bicategory has 2-morphisms going between morphisms, like this:

•x • •f // • •

f

��

g

DD
α

��
x y

objects morphisms 2-morphisms

In a bicategory we can compose morphisms as in an ordinary category, but also we
can compose 2-morphisms in two ways: vertically and horizontally:

• •//

f

��

g

EE

α

��
β

��

• •

f

��

g

DD
α

��
• •

f ′

��

g′

DD
β

��

There are also identity morphisms and identity 2-morphisms, and various axioms
governing their behavior. Most importantly, the usual laws for composition of
morphisms—the left and right unit laws and associativity—hold only up to specified
2-isomorphisms. (A 2-isomorphism is a 2-morphism that is invertible with respect
to vertical composition.) For example, given morphisms f : w → x, g : x → y and
h : y → z, we have a 2-isomorphism called the ‘associator’:

ax,y,z : (x ⊗ y)⊗ z → x⊗ (y ⊗ z).

As in a monoidal category, this should satisfy the pentagon identity.
Bicategories are everywhere once you know how to look. For example, there is

a bicategory Cat in which:

• the objects are categories,

• the morphisms are functors,

• the 2-morphisms are natural transformations.

This example is unusual, because composition of morphisms happens to satisfy the
left and right unit laws and associativity on the nose, as equations. A more typical
example is Bimod, in which:

• the objects are rings,

• the morphisms from R to S are R − S-bimodules,

• the 2-morphisms are bimodule homomorphisms.

Here composition of morphisms is defined by tensoring: given an R − S-bimodule
M and an S − T -bimodule, we can tensor them over S to get an R− T -bimodule.
In this example the laws for composition hold only up to specified 2-isomorphisms.

Another class of examples comes from the fact that a monoidal category is
secretly a bicategory with one object! The correspondence involves a kind of ‘rein-
dexing’ as shown in the following table:

Monoidal Category Bicategory

— objects
objects morphisms

morphisms 2-morphisms
tensor product of objects composite of morphisms
composite of morphisms vertical composite of 2-morphisms

tensor product of morphisms horizontal composite of 2-morphisms
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In other words, to see a monoidal category as a bicategory with only one object, we
should call the objects of the monoidal category ‘morphisms’, and call its morphisms
‘2-morphisms’.

A good example of this trick involves the monoidal category Vect. Start with
Bimod and pick out your favorite object, say the ring of complex numbers. Then
take all those bimodules of this ring that are complex vector spaces, and all the
bimodule homomorphisms between these. You now have a sub-bicategory with just
one object—or in other words, a monoidal category! This is Vect.

The fact that a monoidal category is secretly just a degenerate bicategory even-
tually stimulated a lot of interest in higher categories: people began to wonder what
kinds of degenerate higher categories give rise to braided and symmetric monoidal
categories. The impatient reader can jump ahead to 1995, when the pattern un-
derlying all these monoidal structures and their higher-dimensional analogs became
more clear.

Penrose (1971)

In general relativity people had been using index-ridden expressions for a long time.
For example, suppose we have a binary product on a vector space V :

m : V ⊗ V → V.

A normal person would abbreviate m(v ⊗ w) as v · w and write the associative law
as

(u · v) · w = u · (v · w).

A mathematician might show off by writing

m(m⊗ 1) = m(1⊗m)

instead. But physicists would pick a basis ei of V and set

m(ei ⊗ ej) =
∑

k

mij
k e

k

or
m(ei ⊗ ej) = mij

k e
k

for short, using the ‘Einstein summation convention’ to sum over any repeated index
that appears once as a superscript and once as a subscript. Then, they would write
the associative law as follows:

mij
p m

pk
l = miq

l m
jk
q .

Mathematicians would mock them for this, but until Penrose came along there
was really no better completely general way to manipulate tensors. Indeed, before
Einstein introduced his summation convention in 1916, things were even worse. He
later joked to a friend [30]:

I have made a great discovery in mathematics; I have suppressed the
summation sign every time that the summation must be made over an
index which occurs twice....

In 1971, Penrose [31] introduced a new notation where tensors are drawn as
‘black boxes’, with superscripts corresponding to wires coming in from above, and
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subscripts corresponding to wires going out from below. For example, he might
draw m : V ⊗ V → V as:

m

i j

k

�����
22222

and the associative law as:

m

i j

p

�����
22222

m

k

l















///

= m

kj

q

22222

�����

m

i

l

444444444444

���

In this notation we sum over the indices labelling ‘internal wires’—by which we
mean wires that are the output of one box and an input of another. This is just
the Einstein summation convention in disguise: so the above picture is merely an
artistic way of drawing this:

mij
p m

pk
l = miq

l m
jk
q .

But it has an enormous advantage: no ambiguity is introduced if we leave out the
indices, since the wires tell us how the tensors are hooked together:

m
�����

22222

m














///

= m

22222

�����

m

444444444444

���

This is a more vivid way of writing the mathematician’s equation

m(m⊗ 1V ) = m(1V ⊗m)

because tensor products are written horizontally and composition vertically, instead
of trying to compress them into a single line of text.

In modern language, what Penrose had noticed here was that Vect, the cate-
gory of finite-dimensional vector spaces and linear maps, is a symmetric monoidal
category, so we can draw morphisms in it using string diagrams. But he probably
wasn’t thinking about categories: he was probably more influenced by the analogy
to Feynman diagrams.

Indeed, Penrose’s pictures are very much like Feynman diagrams, but simpler.
Feynman diagrams are pictures of morphisms in the symmetric monoidal category
of positive-energy representations of the Poincaré group! It is amusing that this
complicated example was considered long before Vect. But that is how it often
works: simple ideas rise to consciousness only when difficult problems make them
necessary.

Penrose also considered some examples more complicated than Vect but sim-
pler than full-fledged Feynman diagrams. For any compact Lie group G, there is
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a symmetric monoidal category Rep(G). Here the objects are finite-dimensional
strongly unitary representations of G—that’s a bit of a mouthful, so we will just
call them ‘representations’. The morphisms are intertwining operators between
representations: that is, operators f : H → H ′ with

f(ρ(g)ψ) = ρ′(g)f(ψ)

for all g ∈ G and ψ ∈ H , where ρ(g) is the unitary operator by which g acts on H ,
and ρ′(g) is the one by which g acts onH ′. The category Rep(G) becomes symmetric
monoidal category with the usual tensor product of group representations:

(ρ⊗ ρ′)(g) = ρ(g)⊗ ρ(g′).

As a category, Rep(G) is easy to describe. Every object is a direct sum of finitely
many irreducible representations: that is, representations that are not themselves
a direct sum in a nontrivial way. So, if we pick a collection Ei of irreducible
representations, one from each isomorphism class, we can write any object H as

H ∼=
⊕

i

H i ⊗Ei

where the H i is the finite-dimensional Hilbert space describing the multiplicity with
which the irreducible Ei appears in H :

H i = hom(Ei, H)

Then, we use Schur’s Lemma, which describes the morphisms between irreducible
representations:

• When i = j, the space hom(Ei, Ej) is 1-dimensional: all morphisms from Ei
to Ej are multiples of the identity.

• When i 6= j, the space hom(Ei, Ej) is 0-dimensional: all morphisms from E
to E′ are zero.

So, every representation is a direct sum of irreducibles, and every morphism between
irreducibles is a multiple of the identity (possibly zero). Since composition is linear
in each argument, this means there’s only one way composition of morphisms can
possibly work. So, the category is completely pinned down as soon as we know the
set of irreducible representations.

One nice thing about Rep(G) is that every object has a dual. If H is some
representation, the dual vector space H∗ also becomes a representation, with

(ρ∗(g)f)(ψ) = f(ρ(g)ψ)

for all f ∈ H∗, ψ ∈ H . In our string diagrams, we use little arrows to distinguish
between H and H∗: a downwards-pointing arrow labelled by H stands for the object
H , while an upwards-pointing one stands for H∗. For example, this:

OO H

is the string diagram for the identity morphism 1H∗ . This notation is meant to
remind us of Feynman’s idea of antiparticles as particles going backwards in time.



A PREHISTORY OF n-CATEGORICAL PHYSICS 23

The dual pairing
eH : H∗ ⊗H → C

f ⊗ v 7→ f(v)

is an intertwining operator, as is the operator

iH : C → H ⊗H∗
c 7→ c 1H

where we think of 1H ∈ hom(H,H) as an element of H ⊗H∗. We can draw these
operators as a ‘cup’:

��
SS

H H stands for

H∗ ⊗H

C

eH
��

and a ‘cap’:

TT
��H H stands for

C

H ⊗H∗
iH

��

Note that if no edges reach the bottom (or top) of a diagram, it describes a morphism
to (or from) the trivial representation of G on C—since this is the tensor product
of no representations.

The cup and cap satisfy the zig-zag identities:

PP�� �� = ��

��OO PP
= OO

These identities are easy to check. For example, the first zig-zag gives a morphism
from H to H which we can compute by feeding in a vector ψ ∈ H :

H
PP�� ��

eH

iH

ψ

ei ⊗ ei ⊗ ψ

ei ⊗ ψi = ψ

_

��

_

��

So indeed, this is the identity morphism. But, the beauty of these identities is that
they let us straighten out a portion of a string diagram as if it were actually a piece
of string! Algebra is becoming topology.
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Furthermore, we have:

�� OO

OO ��

H

= dim(H)

This requires a little explanation. A ‘closed’ diagram—one with no edges coming
in and no edges coming out—denotes an intertwining operator from the trivial
representation to itself. Such a thing is just multiplication by some number. The
equation above says the operator on the left is multiplication by dim(H). We can
check this as follows:

�� OO

OO ��

H

1

ei ⊗ ei

ei ⊗ ei

δii = dim(H)

_
��

_
��

_
��

So, a loop gives a dimension. This explains a big problem that plagues Feynman
diagrams in quantum field theory—namely, the ‘divergences’ or ‘infinities’ that show
up in diagrams containing loops, like this:

��
MM

��

or more subtly, like this:

�O
�O

�O
�O

��
PP

These infinities come from the fact that most positive-energy representations of the
Poincaré group are infinite-dimensional. The reason is that this group is noncom-
pact. For a compact Lie group, all the irreducible strongly continuous representa-
tions are finite-dimensional.

So far we have been discussing Rep(G) quite generally. In his theory of ‘spin
networks’ [32, 33], Penrose worked out all the details for SU(2): the group of 2× 2
unitary complex matrices with determinant 1. This group is important in physics
because it is the universal cover of the 3d rotation group. Taking the double cover
lets us handle particles like the electron, which doesn’t come back to its original
state after one full turn—but does after two!

The group SU(2) is the subgroup of the Poincaré group whose corresponding ob-
servables are the components of angular momentum. Unlike the Poincaré group, it
is compact! As already mentioned, we can specify an irreducible positive-energy rep-
resentation of the Poincaré group by choosing a mass m ≥ 0, a spin j = 0, 1

2 , 1,
3
2 , . . .

and sometimes a little extra data. Irreducible unitary representations of SU(2) are
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simpler: for these, we just need to choose a spin. The group SU(2) has one irre-
ducible unitary representation of each dimension. Physicists call the representation
of dimension 2j + 1 the ‘spin-j’ representation, or simply ‘j’ for short.

Every representation of SU(2) is isomorphic to its dual, and in fact there is a
god-given isomorphism

] : j → j∗

for each j. Using this, we can stop writing little arrows on our string diagrams. For
example, we get a new ‘cup’

j j
j ⊗ j

j∗ ⊗ j

C

]⊗1
��

ej
��

and similarly a new cap. These satisfy an interesting relation:

j

= (−1)2j+1

j

Physically, this means that when we give a spin-j particle a full turn, its state
transforms trivially when j is an integer:

ψ 7→ ψ

but it picks up a sign when j is an integer plus 1
2 :

ψ 7→ −ψ.

Particles of the former sort are called bosons; those of the latter sort are called
fermions.

The funny minus sign for fermions also shows up when we build a loop with our
new cup and cap:

= (−1)2j+1 (2j + 1)

We get not the usual dimension of the spin-j representation, but the dimension
times a sign depending on whether this representation is bosonic or fermionic! This
is sometimes called the superdimension, since its full explanation involves what
physicists call ‘supersymmetry’. Alas, we have no time to discuss this here: we
must hasten on to Penrose’s theory of spin networks!

Spin networks are a nice notation for morphisms between tensor products of
irreducible representations of SU(2). The key underlying fact is that:

j ⊗ k ∼= |j − k| ⊕ |j − k|+ 1 ⊕ · · · ⊕ j + k

Thus, the space of intertwining operators hom(j ⊗ k, l) has dimension 1 or 0 de-
pending on whether or not l appears in this direct sum. We say the triple (j, k, l)
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is admissible when this space has dimension 1. This happens when the triangle
inequalities are satisfied:

|j − k| ≤ l ≤ j + k

and also j + k + l ∈ Z.
For any admissible triple (j, k, l) we can choose a nonzero intertwining operator

from j ⊗ k to l, which we draw as follows:

•

j k

l

�������

???????

Using the fact that a closed diagram gives a number, we can normalize these inter-
twining operators so that the ‘theta network’ takes a convenient value, say:

• •

j

k

l

= 1

When the triple (j, k, l) is not admissible, we define

•

j k

l

�������

???????

to be the zero operator, so that

• •

j

k

`

= 0

We can then build more complicated intertwining operators by composing and
tensoring the ones we have described so far. For example, this diagram shows an
intertwining operator from the representation 2⊗ 3

2 ⊗ 1 to the representation 5
2 ⊗ 2:

•
5
2
•

•

7
2

2 3
2 1

5
2 2

11111















'''''

'''''

�����
:::::

A diagram of this sort is called a spin network. The resemblance to a Feynman
diagram is evident. A spin network with no edges coming in from the top and no
edges coming out at the bottom is called closed. A closed spin network determines
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an intertwining operator from the trivial representation of SU(2) to itself, and thus
a complex number.

Penrose noted that spin networks satisfy a bunch of interesting rules. For exam-
ple, we can deform a spin network in various ways without changing the operator
it describes. We have already seen the zig-zag identity, which is an example of this.
Other rules involve changing the topology of the spin network. The most important
of these is the binor identity for the spin- 1

2 representation:

1
2

1
2

=

1
2

1
2

1
2

1
2

+

1
2

1
2

We can use this to prove something we have already seen:

1
2

=

1
2

+

1
2

= −

1
2

Physically, this says that turning a spin- 1
2 particle around 360 degrees multiplies its

state by −1.
There are also interesting rules involving the spin-1 representation, which imply

some highly nonobvious results. For example, every trivalent planar graph with no
edge-loops and all edges labelled by the spin-1 representation:

•

•

•

•
•

•

•

•

•

•

1

1
1

#####
1

1

1

1

1

1

1

1

1
1

1

1 YYYYYYYY

evaluates to a nonzero number [34]. But, Penrose showed this fact is equivalent to
the four-color theorem!

By now, Penrose’s diagrammatic approach to the finite-dimensional representa-
tions of SU(2) has been generalized to many compact compact simple Lie groups. A
good treatment of this material is the book by Cvitanovic [35]. Much of the work in
this book was done in the 1970’s. However, the huge burst of work on diagrammatic
methods for algebra came later, in the 1980’s, with the advent of ‘quantum groups’.

Ponzano–Regge (1968)

Sometimes history turns around and goes back in time, like an antiparticle. This
seems like the only sensible explanation of the revolutionary work of Ponzano and
Regge [36], who applied Penrose’s theory of spin networks before it was invented
to relate tetrahedron-shaped spin networks to gravity in 3 dimensional spacetime.
Their work eventually led to a theory called the Ponzano–Regge model, which allows
for an exact solution of many problems in 3d quantum gravity [37].

In fact, Ponzano and Regge’s paper on this topic appeared in the proceedings
of a conference on spectroscopy, because the 6j symbol is important in chemistry.
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But for our purposes, the 6j symbol is just the number obtained by evaluating this
spin network:

�

� �

�

i

p

q

k
j

l

depending on six spins i, j, k, l, p, q.
In the Ponzano–Regge model of 3d quantum gravity, spacetime is made of tetra-

hedra, and we label the edges of tetrahedra with spins to specify their lengths. To
compute the amplitude for spacetime to have a particular shape, we multiply a
bunch of amplitudes (that is, complex numbers): one for each tetrahedron, one for
each triangle, and one for each edge. The most interesting ingredient in this recipe
is the amplitude for a tetrahedron. This is given by the 6j symbol.

But, we have to be a bit careful! Starting from a tetrahedron whose edge lengths
are given by spins:

i

p

l

q

j
k

we compute its amplitude using the ‘Poincaré dual’ spin network, which has:

• one vertex at the center of each face of the original tetrahedron;

• one edge crossing each edge of the original tetrahedron.

It looks like this:

i

p

l

q

j
k

Its edges inherit spin labels from the edges of the original tetrahedron:

�

� �

�

i

p

q

k
j

l

Voilà! The 6j symbol!
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It is easy to get confused, since the Poincaré dual of a tetrahedron just hap-
pens to be another tetrahedron. But, there are good reasons for this dualization
process. For example, the 6j symbol vanishes if the spins labelling three edges
meeting at a vertex violate the triangle inequalities, because then these spins will
be ‘inadmissible’. For example, we need

|i− j| ≤ p ≤ i+ j

or the intertwining operator

•

i j

p

�������

???????

will vanish, forcing the 6j symbols to vanish as well. But in the original tetrahedron,
these spins label the three sides of a triangle:

i j

p

����������� 33333333333

So, the amplitude for a tetrahedron vanishes if it contains a triangle that violates
the triangle inequalities!

This is exciting because it suggests that the representations of SU(2) some-
how know about the geometry of tetrahedra. Indeed, there are other ways for a
tetrahedron to be ‘impossible’ besides having edge lengths that violate the trian-
gle inequalities. The 6j symbol does not vanish for all these tetrahedra, but it is
exponentially damped—very much as a particle in quantum mechanics can tunnel
through barriers that would be impenetrable classically, but with an amplitude that
decays exponentially with the width of the barrier.

In fact the relation between Rep(SU(2)) and 3-dimensional geometry goes much
deeper. Regge and Ponzano found an excellent asymptotic formula for the 6j sym-
bol that depends entirely on geometrically interesting aspects of the corresponding
tetrahedron: its volume, the dihedral angles of its edges, and so on. But, what is
truly amazing is that this asymptotic formula also matches what one would want
from a theory of quantum gravity in 3 dimensional spacetime!

More precisely, the Ponzano–Regge model is a theory of ‘Riemannian’ quantum
gravity in 3 dimensions.l Gravity in our universe is described with a Lorentzian
metric on 4-dimensional spacetime, where each tangent space has the Lorentz group
acting on it. But, we can imagine gravity in a universe where spacetime is 3-
dimensional and the metric is Riemannian, so each tangent space has the rotation
group SO(3) acting on it. The quantum description of gravity in this universe
should involve the double cover of this group, SU(2) — essentially because it should
describe not just how particles of integer spin transform as they move along paths,
but also particles of half-integer spin. And it seems the Ponzano–Regge model is
the right theory to do this.

A rigorous proof of Ponzano and Regge’s asymptotic formula was given only in
1999, by Justin Roberts [38]. Physicists are still finding wonderful surprises in the
Ponzano–Regge model. For example, if we study it on a 3-manifold with a Feynman
diagram removed, with edges labelled by suitable representations, it describes not
only ‘pure’ quantum gravity but also matter! The series of papers by Freidel and
Louapre explain this in detail [39–41].

Besides its meaning for geometry and physics, the 6j symbol also has a purely
category-theoretic significance: it is a concrete description of the associator in
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Rep(SU(2)). The associator gives a linear operator

ai,j,k : (i⊗ j)⊗ k → i⊗ (j ⊗ k).

The 6j symbol is a way of expressing this operator as a bunch of numbers. The
idea is to use our basic intertwining operators to construct operators

S : (i⊗ j)⊗ k → l, T : l→ i⊗ (j ⊗ k),

namely:

S =

•

i j

p

�������

2222222

•

k

l

















////// T =

•

kj

q

�������

2222222

•

i

l

















//////

Using the associator to bridge the gap between (i ⊗ j) ⊗ k and i ⊗ (j ⊗ k), we
can compose S and T and take the trace of the resulting operator, obtaining a
number. These numbers encode everything there is to know about the associator
in the monoidal category Rep(SU(2)). Moreover, these numbers are just the 6j
symbols:

tr(Tai,j,kS) =
�

� �

�

i

p

q

k
j

l

This can be proved by gluing the pictures for S and T together and warping the
resulting spin network until it looks like a tetrahedron! We leave this as an exercise
for the reader.

The upshot is a remarkable and mysterious fact: the associator in the monoidal
category of representations of SU(2) encodes information about 3-dimensional quan-
tum gravity! This fact will become less mysterious when we see that 3-dimensional
quantum gravity is almost a topological quantum field theory, or TQFT. In our
discussion of Barrett and Westbury’s 1992 paper on TQFTs, we will see that a
large class of 3d TQFTs can be built from monoidal categories. And, in our discus-
sion of ‘spin foam models’, we will see why monoidal categories, which are special
2-categories, naturally give 3-dimensional TQFTs. What seems like a mismatch in
numbers here is actually a good thing.

Grothendieck (1983)

In his 600–page letter to Daniel Quillen entitled Pursuing Stacks, Alexandre Grothendieck
fantasized about n-categories for higher n—even n =∞—and their relation to ho-
motopy theory. The rough idea of an∞-category is that it should be a generalization
of a category which has objects, morphisms, 2-morphisms and so on:
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objects morphisms 2-morphisms 3-morphisms · · ·

• • •// • •��DD��
• •�� EE

�% y�

_*4 Globes

Grothendieck believed that among the ∞-categories there should be a special
class, the ‘∞-groupoids’, in which all j-morphisms (j ≥ 1) are invertible in a suitably
weakened sense. He also believed that every space X should have a ‘fundamental
∞-groupoid’, Π∞(X), in which:

• the objects are points of X ,

• the morphisms are paths in X ,

• the 2-morphisms are paths of paths in X ,

• the 3-morphisms are paths of paths of paths in X ,

• etc.

Moreover, Π∞(X) should be a complete invariant of the homotopy type of X , at
least for nice spaces like CW complexes. In other words, two nice spaces should have
equivalent fundamental ∞-groupoids if and only if they are homotopy equivalent.

The above brief description of Grothendieck’s dream is phrased in terms of
a ‘globular’ approach to n-categories, where the n-morphisms are modeled after
n-dimensional discs. However, he also imagined other approaches based on j-
morphisms with different shapes, such as simplices:

objects morphisms 2-morphisms 3-morphisms · · ·

• • •//
• •

•

//
��

222222FF������ •
•

•

•

++VVVVVV
DD			

!!DDDDDEE







��

))))))))

22 Simplices

In fact, simplicial ∞-groupoids had already been developed in a 1957 paper by
Daniel Kan [42]; these are now called ‘Kan complexes’. In this framework Π∞(X)
is indeed a complete invariant of the homotopy type of any nice space X . So,
the real problem is to define ∞-categories in the simplicial and other approaches,
and then define ∞-groupoids as special cases of these, and prove their relation to
homotopy theory.

Great progress towards fulfilling Grothendieck’s dream has been made in recent
years. We cannot possibly do justice to the enormous body of work involved, so
we simply offer a quick thumbnail sketch. Starting around 1977, Ross Street be-
gan developing a simplicial approach to ∞-categories [43] based on ideas from the
physicist John Roberts [44]. Thanks in large part to the recently published work of
Dominic Verity, this approach has begun to really take off [45,46].

In 1995, Baez and Dolan initiated another approach to n-categories, the ‘opetopic’
approach [47]:
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objects morphisms 2-morphisms 3-morphisms · · ·

• • •//
• •

•

• ... •

•

//

OO

EE���
// //

��
222

���� • •

• •

//
��

++II��

//
::uuuuu _*4

• •

• •

//
��

++II��

//

Opetopes

The idea here is that an (n + 1)-dimensional opetope describes a way of gluing
together n-dimensional opetopes. The opetopic approach was improved and clari-
fied by various authors [28, 48–51], and by now it has been developed by Michael
Makkai [52] into a full-fledged foundation for mathematics. We have already men-
tioned how in category theory it is considered a mistake to assert equations betwen
objects: instead, one should specify an isomorphism between them. Similarly, in
n-category theory it is a mistake to assert an equation between j-morphisms for
any j < n: one should instead specify an equivalence. In Makkai’s approach to the
foundations of mathematics based on ∞-categories, equality plays no role, so this
mistake is impossible to make. Instead of stating equations one must always specify
equivalences.

Also starting around 1995, Zouhair Tamsamani [53,54] and Carlos Simpson [55]
developed a ‘multisimplicial’ approach to n-categories. And, in a 1998 paper,
Michael Batanin [56] initiated a globular approach to weak ∞-categories. There
are also other approaches! The relation between them is poorly understood. Luck-
ily, there are some good overviews of the subject [57, 58], and even an ‘illustrated
guidebook’ for those who like to visualize things [59].

String theory (1980’s)

In the 1980’s there was a huge outburst of work on string theory. There is no
way to summarize it all here, so we shall content ourselves with a few remarks
about its relation to n-categorical physics. For a general overview the reader can
start with the introductory text by Zweibach [60], and then turn to the book by
Green, Schwarz and Witten [61], which was written in the 1980s, or the book by
Polchinski [62], which covers more recent developments.

String theory goes beyond ordinary quantum field theory by replacing 0-dimensional
point particles by 1-dimensional objects: either circles, called ‘closed strings’, or in-
tervals, called ‘open strings’. So, in string theory, the essentially 1-dimensional
Feynman diagrams depicting worldlines of particles are replaced by 2-dimensional
diagrams depicting ‘string worldsheets’:

???????
��

�������
??

�O
�O
�O
�O 7→

This is a hint that as we pass from ordinary quantum field theory to string the-
ory, the mathematics of categories is replaced by the mathematics of 2-categories.
However, this hint took a while to be recognized.

To compute an operator from a Feymnan diagram, only the topology of the
diagram matters, including the specification of which edges are inputs and which are
outputs. In string theory we need to equip the string worldsheet with a conformal
structure, which is a recipe for measuring angles. More precisely: a conformal
structure is an equivalence class of Riemannian metrics, where two metrics counts
as equivalent if they give the same answers whenever we use them to compute angles
between tangent vectors.
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A conformal structure is precisely what we need to do complex analysis on an
oriented 2-dimensional manifold. The power of complex analysis is what makes
string theory so much more tractable than theories of higher-dimensional mem-
branes. This special fact about 2 dimensions should have implications throughout
2-category theory, but the details remain mysterious.

Joyal–Street (1985)

Around 1985, Joyal and Street introduced braided monoidal categories [1, 74]. As
we have seen, these are just like Mac Lane’s symmetric monoidal categories, but
without the law

Bx,y = B−1
y,x.

The point of dropping this law becomes clear if we draw the isomorphism Bx,y : x⊗
y → y ⊗ x as a little braid:





��

��

x y

Then its inverse is naturally drawn as







 ��

y x

since then the equation Bx,yB
−1
x,y = 1 makes topological sense:

�� ��

��

�� ��

y x

y x

= �� ��

y x

y x

and similarly for B−1
x,yBx,y = 1:

�� ��

��

��

��

x y

x y

= �� ��

x y

x y

In fact, these equations are familiar in knot theory, where they describe ways of
changing a 2-dimensional picture of a knot (or braid, or tangle) without changing it
as a 3-dimensional topological entity. Both these equations are called the second
Reidemeister move.

On the other hand, the law Bx,y = B−1
y,x would be drawn as





��

��

x y

=







 ��

x y

and this is not a valid move in knot theory: in fact, using this move all knots become
trivial. So, it make some sense to drop it, and this is just what the definition of
braided monoidal category does.
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Joyal and Street constructed a category Braid, where the objects are natural
numbers, a morphism f : n→ n is an n-strand braid:

��

�� �� �� ��

��

�� ��

and composition is defined by stacking one braid on top of another. This is also a
monoidal category, where tensoring morphisms is defined by setting braids side by
side. It is also a braided monoidal category, where for example the braiding

B2,3 : 2⊗ 3→ 3⊗ 2

looks like this:
��

��

��

��

��

��

��

��

��

��

Joyal and Street showed that Braid is the ‘free braided monoidal category on one
object’. This and other results of theirs justify the use of string diagrams as a
technique for doing calculations in braided monoidal categories. They published a
paper on this in 1991, aptly titled ‘The Geometry of Tensor Calculus’ [19].

Let us explain more precisely what it means that Braid is the free braided
monoidal category on one object. For starters, Braid is a braided monoidal category
containing a special object, namely the natural number 1: every other object is
isomorphic to a tensor product of copies of this one. Since 1 is not the unit for
the tensor product, let us avoid notational confusion by calling this special object
∗ instead of 1. Geometrically we can think of this object as a single point.

But when we say Braid is the free braided monoidal category on this object,
we are saying much more. Intuitively, it means two things. First, every object and
morphism in Braid can be built from 1 using operations built into the definition
of ‘braided monoidal category’. Second, every equation that holds in Braid follows
from the definition of ‘braided monoidal category’.

To make this precise, consider a simpler but related example. The group of inte-
gers Z is the free group on one element, namely the number 1. Intuitively speaking
this means that every integer can be built from the integer 1 using operations built
into the definition of ‘group’, and every equation that holds in Z follows from the
definition of ‘group’. For example, (1 + 1) + 1 = 1 + (1 + 1) follows from the
associative law.

To make these intuitions precise it is good to use the idea of a ‘universal prop-
erty’. Namely: for any group G containing an element g there exists a unique
homomorphism

ρ : Z→ G

such that
ρ(1) = g.

The uniqueness clause here says that every integer is built from 1 using the group
operations: that is why knowing what ρ does to 1 determines ρ uniquely. The
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existence clause says that every equation between integers follows from the defini-
tion of a group: if there were extra equations, these would block the existence of
homomorphisms to groups where these equations failed to hold.

So, when we say that Braid is the ‘free’ braided monoidal category on the object
1, we mean something roughly like this: for every braided monoidal category X ,
and every object x ∈ X , there is a unique map of braided monoidal categories

Z : Braid→ X

such that
Z(∗) = x.

This will not be not precise until we say what is a map of braided monoidal
categories. The correct concept here is that of a ‘braided monoidal functor’. We
also need to weaken the universal property. To say that Z is ‘unique’ means that any
two candidates sharing the desired property are equal. But we should not demand
equality between braided monoidal functors. Instead, we should say that any two
candidates are isomorphic. For this we need the concept of ‘braided monoidal
natural isomorphism’.

Given these concepts, the correct theorem is as follows. For every braided
monoidal category X , and every object x ∈ X , there exists a braided monoidal
functor

Z : Braid→ X

such that
Z(∗) = x.

Moreover, given two such braided monoidal functors, there is a braided monoidal
natural isomorphism between them.

Now we just need to define the relevant concepts. The definitions are a bit scary
at first sight, but they illustrate the idea of ‘weakening’ in a very nice way. They will
be important not just for describing the universal property of the category Braid,
but for the concept of ‘topological quantum field theory’ introduced in Atiyah’s
1988 paper.

To begin with, a functor F : C → D between monoidal categories is monoidal
if it is equipped with:

• a natural isomorphism Φx,y : F (x) ⊗ F (y)→ F (x⊗ y), and

• an isomorphism φ : 1D → F (1C)

such that:

• the following diagram commutes for any objects x, y, z ∈ C:

(F (x) ⊗ F (y))⊗ F (z) F (x⊗ y)⊗ F (z) F ((x⊗ y)⊗ z)

F (x)⊗ (F (y)⊗ F (z)) F (x)⊗ F (y ⊗ z) F (x⊗ (y ⊗ z))

-Φx,y ⊗1F (z)

?

aF (x),F (y),F (z)

-Φx⊗y,z

?

F (ax,y,z)

-1F (x)⊗Φy,z -Φx,y⊗z
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• the following diagrams commute for any object x ∈ C:

1⊗ F (x) F (x)

F (1)⊗ F (x) F (1⊗ x)

-`F (x)

?

φ⊗1F (x)

-Φ1,x

6
F (`x)

F (x)⊗ 1 F (x)

F (x)⊗ F (1) F (x⊗ 1)

-rF (x)

?

1F (x)⊗φ

-Φx,1

6
F (rx)

Note that we do not require F to preserve the tensor product or unit ‘on the nose’.
Instead, it is enough that it preserve them up to specified isomorphisms, which must
in turn satisfy some equations called ‘coherence laws’. This is typical of weakening.

A functor F : C → D between braided monoidal categories is braided monoidal
if it is monoidal and it makes the following diagram commute for all x, y ∈ C:

F (x)⊗ F (y) F (y)⊗ F (x)

F (x⊗ y) F (y ⊗ x)

-BF (x),F (y)

?

Φx,y

?

Φy,x

-F (Bx,y)

This condition says that F preserves the braiding as best it can, given the fact that
it only preserves tensor products up to a specified isomorphism. A symmetric
monoidal functor is just a braided monoidal functor that happens to go between
symmetric monoidal categories. No extra condition is involved here.

Having defined monoidal, braided monoidal and symmetric monoidal functors,
let us next do the same for natural transformations. Recall that a monoidal functor
F : C → D is really a triple (F,Φ, φ) consisting of a functor F , a natural isomor-
phism Φx,y : F (x)⊗F (y)→ F (x⊗y), and an isomorphism φ : 1D → F (1C). Suppose
that (F,Φ, φ) and (G,Γ, γ) are monoidal functors from the monoidal category C to
the monoidal category D. Then a natural transformation α : F ⇒ G is monoidal
if the diagrams

F (x) ⊗ F (y) G(x) ⊗G(y)

F (x⊗ y) G(x⊗ y)

-αx⊗αy

?

Φx,y

?

Γx,y

-αx⊗y

and

1D

F (1C) G(1C)
?

φ

Q
Q
Q
Q
Q
QQs

γ

-α1C
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commute. There are no extra condition required of braided monoidal or sym-
metric monoidal natural transformations.

The reader, having suffered through these definitions, is entitled to see an ap-
plication right away. At the end of our discussion of Mac Lane’s 1963 paper on
monoidal categories, we said that in a certain sense every monoidal category is
equivalent to a strict one. Now we can make this precise. Suppose C is a monoidal
category. Then there is a strict monoidal category D that is monoidally equiv-
alent to C. That is: there are monoidal functors F : C → D, G : D → C and
monoidal natural isomorphisms α : FG⇒ 1D, β : GF ⇒ 1C .

This result allows us to assume without loss of generality that our monoidal
categories are strict, even though most monoidal categories found in nature are not.
The same sort of result is also true for braided monoidal and symmetric monoidal
categories. A very similar result is also true for bicategories. However, the pattern
breaks down when we get to tricategories: not every tricategory is equivalent to a
strict one! At this point the necessity for weakening becomes clear.

Jones (1985)

In 1985, Vaughan Jones [83] discovered a new invariant of knots and links, now
called the ‘Jones polynomial’. To everyone’s surprise he defined this using some
mathematics with no previously known connection to knot theory: the operator
algebras developed in the 1930s by Murray and von Neumann [10] as part of gen-
eral formalism for quantum theory. Shortly thereafter, the Jones polynomial was
generalized by many authors [84], obtaining a large family of so-called ‘quantum
invariants’ of links.

Of all these new link invariants, the easiest to explain is the ‘Kauffman bracket’
[85]. The Kauffman bracket can be thought of as a simplified version of the Jones
polynomial. It is also a natural development of Penrose’s 1971 work on spin net-
works.

As we have seen, Penrose gave a recipe for computing a number from any spin
network. The case relevant here is a spin network with vertices at all, with every
edge labelled by the spin 1

2 . For spin networks like this we can compute the number
by repeatedly using these two rules:

= +

and this formula for the ‘unknot’:

= −2

The Kauffman bracket satisfies modified versions of the above identities, de-
pending on a parameter A:

= A + A−1
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and

= −(A2 +A−2)

Penrose’s original recipe is unable to detecting linking or knotting, since it also
satisfies this identity:

=

coming from the fact that Rep(SU(2)) is a symmetric monoidal category.
The Kauffman bracket arises from a more interesting braided monoidal category:

the category of representations of the ‘quantum group’ associated to SU(2). This
entity depends on a parameter q, related to A by q = A4. When q = 1, its category
of representations is symmetric and the Kauffman bracket reduces to Penrose’s
original recipe. At other values of q, its category of representations is typically not
symmetric.

In fact, all the quantum invariants of links discovered around this time turned
out to come from braided monoidal categories—in fact, categories of representations
of quantum groups! When q = 1, these quantum groups reduce to ordinary groups,
their categories of representations become symmetric, and the quantum invariants
of links become boring.

Freyd–Yetter (1986)

Shortly after Freyd heard Street give a talk on braided monoidal categories and the
category of braids, Freyd and Yetter gave a similar description of the category of
tangles [75]. A morphism in here is a ‘tangle’, a generalization of a braid that allows
strands to double back, and also allows closed loops. Here is a tangle f : 3→ 5:

*******UU

Freyd and Yetter gave a purely algebraic description of their category of tangles.
Their result was later polished and perfected by Street’s student Shum [76], and we
shall describe this version, but in our own language.

Shum considered a category of tangles where each strand is equipped with an
orientation (a smooth field of unit tangent vectors) and a framing (a smooth field
of unit normal vectors). There is a precisely defined but also intuitive notion of
when two such tangles count as topologically the same—in this case we say they
are ‘isotopic’.

We can draw an orientation on a tangle by putting a little arrow on each edge.
We have already seen what the orientation is good for: the orientation allows us to
distinguish between particles and antiparticles, or representations and their duals.
What about the framing? Often we use the ‘blackboard framing’, the one that
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points at right angles to the page towards the reader. With this choice the following
framed tangles are not isotopic, so they define different morphisms in 1Tang2:

��

6= ��

If we think of these tangles as worldlines of particles in 3-dimensional spacetime,
this allows us to distinguish between a particle that rotates a full turn and a particle
that just sits there.

There is a category where the objects are natural numbers and the morphisms
are isotopy classes of framed oriented tangles. For reasons what will become clear
later we shall call this category 1Tang2. The reason for this curious notation is
that the the tangles themselves have dimension 1, but they live in a space (or
if you prefer, a spacetime) of dimension 1 + 2 = 3. The number 2 is called the
‘codimension’.

Shum’s theorem says that 1Tang2 is the ‘free braided monoidal category with
duals on one object’.

this is the ‘free braided compact monoidal category on one object’. Here a
monoidal category C is compact if every object x ∈ C has a dual: that is, an
object x∗ together with morphisms called the unit:

TT
��

=

C

x⊗ x∗
ix
��

and the counit:

��
SS

=

x∗ ⊗ x

C

ex
��

satisfying the zig-zag identities:

PP�� �� = ��

��OO PP = OO

We have already seen these in our discussion of Penrose’s work. Indeed, some classic
examples of compact symmetric monoidal categories include the category of finite-
dimensional vector spaces, where x∗ is the usual dual of the vector space x, and
the category of finite-dimensional representations of a group, where x∗ is the dual
of the representation x. But the zig-zag identities clearly hold in the category of
tangles, too, and this example is not symmetric.



A PREHISTORY OF n-CATEGORICAL PHYSICS 40

Drinfel’d (1986)

In 1986, Vladimir Drinfel’d won the Fields medal for his work on quantum groups
[63]. This was the culmination of a long line of work on exactly solvable problems
in low-dimensional physics, which we can only briefly sketch.

Back in 1926, Heisenberg [64] considered a simplified model of a ferromagnet
like iron, consisting of spin- 1

2 particles—electrons in the outermost shell of the iron
atoms—sitting in a cubical lattice and interacting only with their nearest neigh-
bors. In 1931, Bethe [65] proposed an ansatz which let him exactly solve for the
eigenvalues of the Hamiltonian in Heisenberg’s model, at least in the even simpler
case of a 1-dimensional crystal. This was subsequently generalized by Onsager [66],
C. N. and C. P. Yang [67], Baxter [68] and many others.

The key turns out to be something called the ‘Yang–Baxter equation’. It’s easiest
to understand this in the context of 2-dimensional quantum field theory. Consider
a Feynman diagram where two particles come in and two go out:

B

////
��

������

������
////��

This corresponds to some operator

B : H ⊗H → H ⊗H

where H is the Hilbert space of states of the particle. It turns out that the physics
simplifies immensely, leading to exactly solvable problems, if:

????
��

������
��

��??????
��

���������

��

??????
��

��
?????????

��

��������

B

B

B =
������

????
��

��

��
������
��

?????????

��

�����������
��

??????
��

B

B

B

This says we can slide the lines around in a certain way without changing the
operator described by the Feynman diagram. In terms of algebra:

(B ⊗ 1)(1⊗B)(B ⊗ 1) = (1⊗B)(B ⊗ 1)(1⊗B).

This is the Yang–Baxter equation; it makes sense in any monoidal category.
In their 1985 paper, Joyal and Street noted that given any object x in a braided

monoidal category, the braiding

Bx,x : x⊗ x→ x⊗ x

is a solution of the Yang–Baxter equation. If we draw this equation using braids,
it looks like this:

%%%%%%
=
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In knot theory, this is called the third Reidemeister move. Joyal and Street
also showed that given any solution of the Yang–Baxter equation in any monoidal
category, we can build a braided monoidal category.

Mathematical physicists enjoy exactly solvable problems, so after the work of
Yang and Baxter a kind of industry developed, devoted to finding solutions of the
Yang–Baxter equation. The Russian school, led by Faddeev, Sklyanin, Takhtajan
and others, were expecially successful [69]. Eventually Drinfel’d discovered how to
get solutions of the Yang–Baxter equation from any simple Lie algebra.

First, he showed that the universal enveloping algebra Ug of any simple Lie
algebra g can be ‘deformed’ in a manner depending on a parameter q, giving a one-
parameter family of ‘Hopf algebras’ Uqg. Since Hopf algebras are mathematically
analogous to groups and in some physics problems the parameter q is related to
Planck’s constant ~ by q = e~, the Hopf algebras Uqg are called ‘quantum groups’.
These is by now an extensive theory of these [70–72]. We shall say a bit more about
it in our discussion of a 1989 paper by Reshetikhin and Turaev.

Second, he showed that given any representation of Uqg on a vector space V ,
we obtain an operator

B : V ⊗ V → V ⊗ V
satisfying Yang–Baxter equation.

Drinfel’d’s work led to a far more thorough understanding of exactly solvable
problems in 2d quantum field theory [73]. It was also the first big explicit intrusion
of category theory into physics. As we shall see, Drinfel’d’s constructions can be
nicely explained in the language of braided monoidal categories. This led to the
widespread adoption of this language, which was then applied to other problems in
physics. Everything beforehand only looks category-theoretic in retrospect.

Segal (1988)

In an attempt to formalize some of the key mathematical structures underlying
string theory, Graeme Segal [77] proposed axioms describing a ‘conformal field the-
ory’. Roughly, these say that it is a symmetric monoidal functor

Z : 2CobC → Hilb

with some nice extra properties. Here 2CobC is the category whose morphisms are
string worldsheets, like this:

x

y

f

��

A bit more precisely, we should think of an object 2CobC as a union of parametrized
circles. A morphism f : x → y is a 2-dimensional compact oriented manifold with
boundary, equipped with a conformal structure, a parametrization of each bound-
ary circle, and a specification of which boundary circles are ‘inputs’ and which are
‘outputs’. The source x of f is the union of all the ‘input’ circles, while the target
y is the union of all the ‘output’ circles. For example, in the picture above x is a
disjoint union of two circles, while y is a single circle. (We are glossing over many
subtleties here. For example, we we also need to include degenerate surfaces, to
serve as identity morphisms.)
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2CobC is a symmetric monoidal category, where the tensor product is disjoint
union. Similarly, Hilb is a symmetric monoidal category. A basic rule of quantum
physics is that the Hilbert space for a disjoint union of two physical systems should
be the tensor product of their Hilbert spaces. This suggests that a conformal field
theory, viewed as a functor Z : 2CobC → Hilb, should preserve tensor products—at
least up to a specified isomorphism. So, we should demand that Z be a monoidal
functor. A bit more reflection along these lines leads us to demand that Z be a
symmetric monoidal functor.

There is more to the full definition of a conformal field theory than merely a sym-
metric monoidal functor Z : 2CobC → Hilb. For example, we also need a ‘positive
energy’ condition reminiscent of the condition we already met for representations of
the Poincaré group. Indeed there is a profusion of different ways to make the idea
of conformal field theory precise, starting with Segal’s original definition. But the
different approaches are nicely related, and the subject of conformal field theory is
full of deep results, interesting classification theorems, and applications to physics
and mathematics. A good introduction is the book by Di Francesco, Mathieu and
Senechal [78].

Atiyah (1988)

Shortly after Segal proposed his definition of ‘conformal field theory’, Atiyah [79]
modified it by dropping the conformal structure and allowing cobordisms of an
arbitrary fixed dimension. He called the resulting structure a ‘topological quantum
field theory’, or ‘TQFT’ for short. In modern language, an n-dimensional TQFT
is a symmetric monoidal functor

Z : nCob→ Vect.

Here nCob is the category whose objects are compact oriented (n− 1)-dimensional
manifolds and whose morphisms are oriented n-dimensional cobordisms between
these. Taking the disjoint union of manifolds makes nCob into a monoidal category,
and because we are interested in abstract cobordisms (not embedded in any ambient
space) this monoidal structure will be symmetric. The unit object for this monoidal
category is the empty manifold. The braiding in nCob looks like this:

S ⊗ S′

S′ ⊗ S

BS,S′

��

The study of topological quantum field theories quickly leads to questions in-
volving duals. In our explanation of the work of Freyd and Yetter, we mentioned
‘compact’ monoidal categories, where every object has a dual. nCob is compact,
with the dual x∗ of an object x being the same manifold equipped with the opposite
parametrization. Similarly, FinHilb is compact with the usual notion of dual for
Hilbert spaces.

However, nCob and FinHilb also have ‘duals for morphisms’, which is a very
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different concept. For example, given a cobordism

S

S′

M

��

we can reverse the orientation of M and switch its source and target to obtain a
cobordism going ‘backwards in time’:

S′

S

M†

��

Similarly, given a linear operator T : H → H ′ between finite-dimensional Hilbert
spaces, we can define an operator T † : H ′ → H by

〈T †φ, ψ〉 = 〈φ, Tψ〉

for all vectors ψ ∈ H,φ ∈ H ′.
Isolating the common properties of these constructions, we say a category has

duals for morphisms if for any morphism f : x→ y there is a morphism f † : y → x
such that

(f †)† = f, (fg)† = g†f †, 1† = 1.

We then say morphism f is unitary if f † is the inverse of f . In the case of Hilb
this is just a unitary operator in the usual sense.

As we have seen, symmetries in quantum physics are described not just by group
representations on Hilbert spaces, but by unitary representations. This is a tiny
hint of the importance of ‘duals for morphisms’ in physics. We can always think of
a group G as a category with one object and with all morphisms invertible. This
becomes a category with duals for morphisms by setting g† = g−1 for all g ∈ G. A
representation of G on a Hilbert space is the same as a functor ρ : G → Hilb, and
this representation is unitary precisely when

ρ(g†) = ρ(g)†.

Similarly, it turns out that the physically most interesting TQFTs are the unitary
ones, namely those with

Z(M †) = Z(M)†.

The same sort of unitarity condition shows up in many other contexts in physics.

Dijkgraaf (1989)

Shortly after Atiyah defined TQFTs, Robbert Dijkgraaf gave a purely algebraic
characterization of 2d TQFTs in terms of commutative Frobenius algebras [80].

Recall that a 2d TQFT is a symmetric monoidal functor Z : 2Cob→ Vect. An
object of 2Cob is a compact oriented 1-dimensional manifold—a disjoint union of
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copies of the circle S1. A morphism of 2Cob is a 2d cobordism between such mani-
folds. Using Morse theory one can decompose an arbitrary 2-dimensional cobordism
M into elementary building blocks that contain only a single critical point. These
are called the birth of a circle, the upside-down pair of pants, the death of
a circle and the pair of pants:

Every 2d cobordism is built from these by composition, tensoring, and the other
operations present in any symmetric monoidal category. So, we say that 2Cob is
‘generated’ as a symmetric monoidal category by the object S1 and these mor-
phisms. Moreover, we can list a complete set of relations that these generators
satisfy:

= = = (1)

= = = (2)

= = (3)

= (4)

2Cob is completely described as a symmetric monoidal category by means of these
generators and relations.

Applying the functor Z to the circle gives a vector space A = Z(S1), and
applying it to the cobordisms shown below gives these linear maps:

i : C→ A m : A⊗A→ A ε : A→ C ∆: A→ A⊗A
This means that our 2-dimensional TQFT is completely determined by choosing
a vector space A and linear maps i,m, ε,∆ satisfying the relations drawn as pic-
tures above. In his thesis, Dijkgraaf [80] pointed out that this data amounts to a
‘commutative Frobenius algebra’.

For example, Equation 1:

A⊗A⊗A

A⊗A

A

1A⊗m
��

µ
��

=

A⊗A⊗A

A⊗A

A

m⊗1A
��

m
��
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says that the map m defines an associative multiplication on A. The second relation
says that the map i gives a unit for the multiplication on A. This makes A into an
algebra. The upside-down versions of these relations appearing in 2 say that A is
also a coalgebra. An algebra that is also a coalgebra where the multiplication and
comultiplication are related by equation 3 is called a Frobenius algebra. Finally,
equation 4 is the commutative law for multiplication.

After noting that a commutative Frobenius algebra could be defined in terms of
an algebra and coalgebra structure, Abrams [81] was able to prove that the category
of 2-dimensional cobordisms is equivalent to the category of commutative Frobenius
algebras, making precise the sense in which a 2-dimensional topological quantum
field theory ‘is’ a commutative Frobenius algebra. In modern language, the essence
of this result amounts to the fact that 2Cob is the symmetric monoidal category
freely generated by a commutative Frobenius algebra. This means that anytime you
can find an example of a commutative Frobenius algebra in the category Vect,
you immediately get a symmetric monoidal functor Z : 2Cob → Vect, hence a 2-
dimensional topological quantum field theory. This perspective is explained in great
detail in the book by Kock [82].

Doplicher–Roberts (1989)

In 1989, Sergio Doplicher and John Roberts published a paper [91] showing how to
reconstruct a compact topological group G from its category of finite-dimensional
strongly continuous unitary representations, Rep(G). They then used this to show
one could start with a fairly general quantum field theory and compute its gauge
group, instead of putting the group in by hand [92].

To do this, they actually needed some extra structure on Rep(G). For our
purposes, the most interesting thing they needed was its structure as a ‘symmetric
monoidal category with duals’. Let us define this concept.

In our discussion of Atiyah’s 1988 paper on TQFTs, we said that a category has
‘duals for morphisms’ if for each morphism f : x→ y there is a morphism f † : y → x
satisfying

(f †)† = f, (fg)† = g†f †, 1† = 1.

In general, when a category with duals for morphisms is equipped with some extra
structure, it makes sense to demand that the isomorphisms appearing in the defi-
nition of this structure be unitary. So, we say a monoidal category has duals for
morphisms if its underlying category does and moreover the associators ax,y,z and
the left and right unitors `x and rx are unitary. We say a braided or symmetric
monoidal category has duals for morphisms if all this is true and in addition the
braiding Bx,y is unitary. Both nCob and Hilb are symmetric monoidal categories
with duals for morphisms.

Besides duals for morphisms, we can discuss duals for objects. In our discussion
of Freyd and Yetter’s 1986 paper on tangles, we said a monoidal category has ‘duals
for objects’, or is ‘compact’, if for each object x there is an object x∗ together with
a unit ix : 1→ x⊗ x∗ and counit ex : x∗ ⊗ x→ 1 satisfying the zig-zag identities.

We say a braided or symmetric monoidal category has duals if it has duals for
objects, duals for morphisms, and the ‘balancing’ bx : x → x is unitary for every
object x. The balancing is an isomorphism that we can construct by combining
duals for objects, duals for morphisms, and the braiding (although balancings were
originally defined more generally [74, 76, 86]). In terms of diagrams, it looks like a
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360◦ twist:
x

In a symmetric monoidal category with duals, b2
x = 1x. In physics this leads to

the boson/fermion distinction mentioned earlier, since a boson is any particle that
remains unchanged when rotated a full turn, while a fermion is any particle whose
phase gets multiplied by −1 when rotated a full turn.

Both nCob and Hilb are symmetric monoidal categories with duals, and both
are ‘bosonic’ in the sense that b2x = 1x for every object. The same is true for Rep(G)
for any compact group G.

Reshetikhin–Turaev (1989)

We have mentioned how Jones discovery in 1985 of a new invariant of knots led to a
burst of work on related invariants. Eventually it was found that all these so-called
‘quantum invariants’ of knots can be derived in a systematic way from quantum
groups. A particularly clean treatment using braided monoidal categories can be
found in a paper by Nikolai Reshetikhin and Vladimir Turaev [86]. This is a good
point to summarize a bit of the theory of quantum groups in its modern form.

The first thing to realize is that a quantum group is not a group: it is a spe-
cial sort of algebra. What quantum groups and groups have in common is that
their categories of representations have similar properties. The category of finite-
dimensional representations of a group is a symmetric monoidal category with duals
for objects. The category of finite-dimensional representations of a quantum group
is a braided monoidal category with duals for objects.

As we saw in our discussion of Freyd and Yetter’s 1986 paper, the category
1Tang2 of tangles in 3 dimensions is the free braided monoidal category with duals
on one object ∗. So, if Rep(A) is the category of finite-dimensional representations
of a quantum group A, any object V ∈ Rep(A) determines a braided monoidal
functor

Z : 1Tang2 → Rep(A).

with
Z(∗) = V.

This functor gives an invariant of tangles: a linear operator for every tangle, and in
particular a number for every knot or link.

So, what sort of algebra has representations that form a braided monoidal cate-
gory with duals for objects? This turns out to be one of a family of related questions
with related answers. The more extra structure we put on an algebra, the nicer its
category of representations becomes:
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algebra category

bialgebra monoidal category

quasitriangular bialgebra braided monoidal category

triangular bialgebra symmetric monoidal category

Hopf algebra monoidal category
with duals for objects

quasitriangular braided monoidal category
Hopf algebra with duals for objects

triangular symmetric monoidal category
Hopf algebra with duals for objects

Algebras and their categories of representations

For each sort of algebra A in the left-hand column, its category of representations
Rep(A) becomes a category of the sort listed in the right-hand column. In particular,
a quantum group is a kind of ‘quasitriangular Hopf algebra’.

In fact, the correspondence between algebras and their categories of representa-
tions works both ways. Under some mild technical assumptions, we can recover A
from Rep(A) together with the ‘forgetful functor’ F : Rep(A) → Vect sending each
representation to its underlying vector space. The theorems guaranteeing this are
called ‘Tannaka–Krein reconstruction theorems’ [87]. They are reminiscent of the
Doplicher–Roberts reconstruction theorem, which allows us to recover a compact
topological group G from its category of representations. However, they are easier
to prove, and they came earlier.

So, someone who strongly wishes to avoid learning about quasitriangular Hopf
algebras can get away with it, at least for a while, as long as they know enough
about braided monoidal categories with duals. The latter subject is ultimately
more fundamental. Nonetheless, it is very interesting to see how the correspondence
between algebras and their categories of representations works. So, let us sketch
how any bialgebra has a monoidal category of representations, and then give some
examples coming from groups and quantum groups.

First, recall that an algebra is a vector space A equipped with an associative
multiplication

m : A⊗A → A
a⊗ b 7→ ab

together with an element 1 ∈ A satisfying the left and right unit laws: 1a = a = a1
for all a ∈ A. We can draw the multiplication using a string diagram:

m

�E
�E
�E

�Y
�Y

�Y

�O
�O

We can also describe the element 1 ∈ A using the unique operator i : C → A that
sends the complex number 1 to 1 ∈ A. Then we can draw this operator using a
string diagram:

i

�O
�O
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In this notation, the associative law looks like this:

m

�E
�E
�E

�Y
�Y

�Y

m

�E
�E
�E
�E
�E
�E
�E
�E

W�
W�

�O
�O
�O
�O

=

m

�Y
�Y

�Y

�E
�E
�E

m

�Y
�Y

�Y
�Y

�Y
�Y

�Y
�Y

G�
G�

�O
�O
�O
�O

while the left and right unit laws look like this:

i

m

�E
�E
�E
�E
�E
�E
�E
�E

W�
W�

�O
�O
�O
�O

=

�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

=

i

m

�Y
�Y

�Y
�Y

�Y
�Y

�Y
�Y

G�
G�

�O
�O
�O
�O

A representation of an algebra is a lot like a representation of a group, except
that instead of writing ρ(g)v for the action of a group element g on a vector v, we
write ρ(a⊗ v) for the action of an algebra element a on a vector v. More precisely,
a representation of an algebra A is a vector space V equipped with an operator

ρ : A⊗ V → V

satisfying these two laws:

ρ(1⊗ v) = v, ρ(ab⊗ v) = ρ(a⊗ ρ(b⊗ v)).

Using string diagrams can draw ρ as follows:

ρ
�����

�Y
�Y

�Y

Note that wiggly lines refer to the object A, while straight ones refer to V . Then
the two laws obeyed by ρ look very much like associativity and the left unit law:

m

�E
�E
�E

�Y
�Y

�Y

ρ














W�
W�

=

ρ

�Y
�Y

�Y

�����

ρ

�Y
�Y

�Y
�Y

�Y
�Y

�Y
�Y

���
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i

ρ














W�
W�

=

To make the representations of an algebra into the objects of a category, we must
define morphisms between them. Given two algebra representations, say ρ : A⊗V →
V and ρ′ : A⊗ V ′ → V ′, we define an intertwining operator f : V → V ′ to be a
linear operator such that

f(ρ(a⊗ v)) = ρ′(a⊗ f(v)).

This closely resembles the definition of an intertwining operator between group
representations.

With these definitions, we obtain a category Rep(A) with finite-dimensional
representations of A as objects and intertwining operators as morphisms. However,
unlike group representations, there is no way in general to define the tensor product
of algebra representations! For this, we need A to be a ‘bialgebra’. To understand
what this means, first recall from our discussion of Dijkgraaf’s 1992 paper that a
coalgebra is just like an algebra, only upside-down. More precisely, it is a vector
space equipped with a comultiplication:
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and left/right counit laws:
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A bialgebra is a vector space equipped with an algebra and coalgebra structure
that are compatible in a certain way. We have already seen that a Frobenius alge-
bra is both an algebra and a colgebra, with the multiplication and comultiplication
obeying the compatibility conditions in Equation 3. A bialgebra obeys different
compatibility conditions: abstractly, they say that the coalgebra operations are
algebra homomorphisms—or equivalently, the algebra operations are coalgebra ho-
momorphisms. These equations can also be drawn using string diagrams, but it is
probably more enlightening to note that they are precisely the conditions we need
to make the category of representations of an algebra A into a monoidal category.
The idea is that the comultiplication ∆: A→ A⊗A lets us ‘duplicate’ an element
A so it can act on both factors in a tensor product of representations, say V ⊗ V ′:

INSERT PICTURE HERE!!!

This gives Rep(A) a tensor product. Similarly, we use the counit to ‘delete’ an
element of A, so it can act in a rather trivial way on C. This makes C into the unit
object for the tensor product.

As we have seen, the category of finite-dimensional representations of a Lie
group is also a monoidal category. In fact, there is a way to turn any simply-
connected Lie group G into a bialgebra A = Ug with the same monoidal category
of representations! Any Lie group G has a Lie algebra g, and when G is simply
connected we can recover G from its Lie algebra. This Lie algebra in turn gives rise
to a bialgebra Ug called its ‘universal enveloping algebra’. And, at least when G is
simply connected, Rep(Ug) is equivalent to Rep(G) as a monoidal category.

So, as far as its representations are concerned, any simply-connected Lie group
can be reinterpreted as a bialgebra: its universal enveloping algebra. But a big
advantage of universal enveloping algebras is that we can sometimes ‘deform’ them
to obtain new bialgebras that don’t correspond to groups.

The most important case is when G is a simply-connected complex simple Lie
group. Then there is a one-parameter family of bialgebras called ‘quantum groups’
and denoted Uqg, with the property that Uqg ∼= Ug when the complex parameter q
is equal to 1. These quantum groups are not only bialgebras, but in fact ‘quasitri-
angular Hopf algebras’. This is just an intimidating way of saying that Rep(Uqg)
is not merely a monoidal category, but in fact a braided monoidal category with
duals for objects. And this, in turn, is just an intimidating way of saying that
any representation of Uqg gives a tangle invariant. Reshetikhin and Turaev’s paper
explained exactly how this works.

The reader will note that we’ve switched to working with complex simple Lie
groups instead of compact ones. However, as far as their finite-dimensional repre-
sentations go, this makes no difference. In particular, there is a simply connected
complex Lie group SL(2) with the same category of representations as our old friend
SU(2). So, all these categories are equivalent:

Rep(SU(2)) ' Rep(SL(2)) ' Rep(Usl(2))

where sl(2) is the Lie algebra of SL(2).
Putting everything together, these results mean that we get a braided monoidal

category with duals for objects, Rep(Uqsl(2)), which reduces to Rep(SU(2)) at
q = 1. This is why Uqsl(2) is often called ‘quantum SU(2)’, especially in the
physics literature.

Quantum SU(2) has a 2-dimensional representation called the spin- 1
2 represen-

tation, which reduces to the usual spin- 1
2 representation of SU(2) at q = 1. Using

this object to get a tangle invariant, we obtain the Kauffman bracket—or with a
little extra fiddling, the original Jones polynomial. So, Reshetikhin and Turaev’s
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paper massively generalized the Jones polynomial and set it into its proper context:
the representation theory of quantum groups.

In our discussion of Kontsevich’s 1993 paper we will sketch how to actually get
our hands on quantum groups.

Witten (1989)

In the 1980s there was a lot of work on the Jones polynomial invariant of knots [88],
leading up to the work we just sketched: a very beautiful description of this invariant
in terms of the category of representations of quantum SU(2). Most of the early
work on the Jones polynomial used 2-dimensional pictures of knots and tangles—
the string diagrams we have been discussing here. This is slightly unsatisfying in
some ways: researchers wanted an intrinsically 3-dimensional description of Jones
polynomial.

In his paper ‘Quantum Field Theory and the Jones Polynomial’ [89], Witten
gave such a description using a gauge field theory in 3d spacetime, called Chern–
Simons theory. He also described how the category of representations of SU(2)
could be deformed into the category of representations of quantum SU(2) using
a conformal field theory called the Wess–Zumino–Witten model, which is closely
related to Chern–Simons theory.

Rovelli–Smolin (1990)

In their paper ‘Loop representation for quantum general relativity’ [93], Rovelli and
Smolin initiated an approach to quantizing gravity which eventually came to rely
heavily on Penrose’s spin networks, and to reduce to the Ponzano–Regge model in
the case of 3-dimensional quantum gravity.

Kapranov–Voevodsky (1991)

Around 1991, Kapranov and Voevodksy made available a preprint in which they
defined ‘braided monoidal 2-categories’ and ‘2-vector spaces’ [94]. They also studied
a higher-dimensional analogue of the Yang–Baxter equation called the ‘Zamolod-
chikov tetrahedron equation’. Recall from our discussion of Joyal and Street’s 1985
paper that any solution of the Yang–Baxter equation gives a braided monoidal cate-
gory. Kapranov and Voevodsky argued that similarly, any solution of the Zamolod-
chikov tetrahedron equation gives a braided monoidal 2-category.

The basic idea of a braided monoidal 2-category is straightforward: it is like a
braided monoidal category, but with a 2-category replacing the underlying category.
This lets us ‘weaken’ equational laws involving 1-morphisms, replacing them by
specified 2-isomorphisms. To obtain a useful structure we also need to impose
equational laws on these 2-isomorphisms—so-called ‘coherence laws’. This is the
tricky part, which is why the original definition of Kapranov and Voevodsky later
went through a number of small fine-tunings [95–97].

However, their key insight was striking and robust. As we have seen, any object
in a braided monoidal category gives an isomorphism

B = Bx,x : x⊗ x→ x⊗ x
satisfying the Yang–Baxter equation

(B ⊗ 1)(1⊗B)(B ⊗ 1) = (1⊗B)(B ⊗ 1)(1⊗B)

which in pictures corresponds to the third Reidemeister move. In a braided monoidal
2-category, the Yang–Baxter equation holds only up to a 2-isomorphism

Y : (B ⊗ 1)(1⊗B)(B ⊗ 1)⇒ (1⊗B)(B ⊗ 1)(1⊗B)
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which in turn satisfies the Zamolodchikov tetrahedron equation:

[Y ◦ (1⊗ 1⊗B)(1⊗B ⊗ 1)(B ⊗ 1⊗ 1)][(1⊗B ⊗ 1)(B ⊗ 1⊗ 1) ◦ Y ◦ (B ⊗ 1⊗ 1)]

[(1⊗B ⊗ 1)(1⊗ 1⊗B) ◦ Y ◦ (1⊗ 1⊗B)][Y ◦ (B ⊗ 1⊗ 1)(1⊗B ⊗ 1)(1⊗ 1⊗B)]

=

[(B ⊗ 1⊗ 1)(1⊗B ⊗ 1)(1⊗ 1⊗B) ◦ Y ][(B ⊗ 1⊗ 1) ◦ Y ◦ (B ⊗ 1⊗ 1)(1⊗B ⊗ 1)]

[(1⊗ 1⊗B) ◦ Y ◦ (1⊗ 1⊗ B)(1⊗B ⊗ 1)][(1⊗ 1⊗B)(1⊗B ⊗ 1)(B ⊗ 1⊗ 1) ◦ Y ].

If we think of Y as the surface in 4-space traced out by the process of performing
the third Reidemeister move:

Y :

%%%%%%
⇒

then the Zamolodchikov tetrahedron equation says the surface traced out by first
performing the third Reidemeister move on a threefold crossing and then sliding the
result under a fourth strand is isotopic to that traced out by first sliding the threefold
crossing under the fourth strand and then performing the third Reidemeister move.
So, this octagon commutes:
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Just as the Yang–Baxter equation relates two different planar projections of 3
lines in R3, the Zamolodchikov tetrahehdron relates two different projections onto
R3 of 4 lines in R4. This suggests that solutions of the Zamolodchikov equation
can give invariants of ‘2-tangles’ (roughly, surfaces embedded in 4-space) just as
solutions of the Yang–Baxter equation can give invariants of tangles (roughly, curves
embedded in 3-space). Indeed, this was later confirmed [98–100].

Drinfel’d’s work on quantum groups naturally gives solutions of the Yang–Baxter
equation in the category of vector spaces. This suggested to Kapranov and Voevod-
sky the idea of looking for solutions of the Zamolodchikov tetrahedron equation
in some 2-category of ‘2-vector spaces’. They defined 2-vector spaces using the
following analogy:
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C Vect
+ ⊕
× ⊗
0 {0}
1 C

Analogy between ordinary linear algebra and higher linear algebra

So, just as a finite-dimensional vector space may be defined as a set of the form
Cn, they defined a 2-vector space to be a category of the form Vectn. And just as
a linear operator T : Cn → Cm may be described using an m×n matrix of complex
numbers, they defined a linear functor between 2-vector spaces to be an m × n
matrix of vector spaces! Such matrices indeed act to give functors from Vectn to
Vectm. We can also add and multiply such matrices in the usual way, but with ⊕
and ⊗ taking the place of + and ×.

Finally, there is a new layer of structure: given two linear functors S, T : Vectn →
Vectm, Kapranov and Voevodsky defined a linear natural transformation α : S ⇒
T to be an m× n matrix of linear operators

αij : Sij → Tij

going between the vector spaces that are the matrix entries for S and T . This new
layer of structure winds up making 2-vector spaces into the objects of a 2-category.

Kapranov and Voevodsky called this 2-category 2Vect. They defined a concept
of ‘monoidal 2-category’ and defined a tensor product for 2-vector spaces mak-
ing 2Vect into a monoidal 2-category. The Zamolodchikov tetrahedron equation
makes sense in any monoidal 2-category, and any solution gives a braided monoidal
2-category. Conversely, any object in a braided monoidal 2-category gives a so-
lution of the Zamolodchikov tetrahedron equation. These results hint that the
relation between quantum groups, solutions of the Yang–Baxter equation, braided
monoidal categories and 3d topology is not a freak accident: all these concepts may
have higher-dimensional analogues! To reach these higher-dimensional analogues,
it seems we need to take concepts and systematically ‘boost their dimension’ by
making the following replacements:

elements objects

equations isomorphisms
between elements between objects

sets categories

functions functors

equations natural isomorphisms
between functions between functors

Analogy between set theory and category theory

Turaev–Viro (1992)

The topologists Turaev and Viro [101] constructed an invariant of 3-manifolds—
which we now know is part of a full-fledged 3d TQFT—from the category of repre-
sentations of quantum SU(2). At the time they did not know about the Ponzano–
Regge model of quantum gravity. However, their construction amounts to taking
the Ponzano–Regge model and curing it of its divergent sums by replacing the group
SU(2) by the corresponding quantum group.
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Fukuma–Hosono–Kawai (1992)

Fukuma, Hosono and Kawai found a way to construct two-dimensional topological
quantum field theories from semisimple algebras [102]. Though they did not put it
this way, their idea amounts to expressing any 2-dimensional cobordism

in terms of a Feynman diagram. To do this, one starts by choosing a triangulation
of this cobordism:

This picture already looks a bit like a Feynman diagram, but that is a distraction.
Rather, one takes the Poincaré dual of this triangulation, drawing a graph with

• one vertex in the center of each triangle of the original triangulation;

• one edge for each edge of the original triangulation.

We may interpret the resulting graph as a Feynman diagram:

Fukuma, Hosono and Kawai gave what amounts to a recipe for evaluating this Feyn-
man diagram and getting an operator Z(M) : Z(S)→ Z(S ′) that is independent of
the choice of triangulation.



A PREHISTORY OF n-CATEGORICAL PHYSICS 55

The key idea of their construction is this. If we fix an associative algebra A,
each triangle in a triangulated surface corresponds to a Feynman diagram for mul-
tiplication in A, by Poincaré duality:
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In this notation, the associative law:
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can be redrawn as follows:
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This is the so-called 2-2 Pachner move, one of two moves that suffice to go between
any two triangulations of a compact 2-manifold. The other is the 1-3 Pachner move:
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LLLLLL
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The Fukuma–Hosono–Kawai model is invariant under this move as well, thanks to
the semisimplicity of the algebra. So, using a semisimple algebra A to evaluate our
Feynman diagram ensures that the operator we get from a 2-dimensional cobordism
is triangulation-independent.

How is this state sum construction related to the description in terms of commu-
tative Frobenius algebras? The state sum assigns to a circle S1 triangulated with
n edges the vector space A⊗n. Given two different triangulations, say S and S ′, of
the same 1-manifold we can always find a triangulated cobordism M : S → S ′. For
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example:

A⊗4 ∼= Z̃(S)

A⊗3 ∼= Z̃(S′)

S

S′

M

��

where M is homeomorphic to S1 × [0, 1], with S and S′ as its two ends. This
cobordism gives an operator Z̃(M) : Z̃(S) → Z̃(S′), and because this operator is
independent of the triangulation of the interior of M , we obtain a canonical operator
from Z̃(S) to Z̃(S′) given by taking the simplest triangulation. In physics jargon,
this operator acts as a projection onto the space of ‘physical states’. In other words,
this operator projects tensor products A⊗n onto the center of the algebra A, which
is a commutative algebra, say C.

To see how this works, consider the simplest triangulated cobordism between
the circle S1

Z̃(S′)

Z̃(S′)

pS

��

p =

a

The operator p maps A onto C since if a ∈ C we can show pa = a:

a

=

a

=

a

=

a

=

a

We used the fact that a is in the center of A in the second step. Conversely, for
any a ∈ A, we can show that pa ∈ C by showing that pa commutes with any other
element of A. In terms of diagrams, this means we need to show:

a

=

a
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The proof is as follows:

a

=

a

=

a

=

a

=

a

=

a

=

a

Hence, the state sum construction produces a commutative Frobenius algebra given
by the center of the semisimple algebra A.

Fukuma, Hosono and Kawai’s construction of a TQFT from a semisimple algebra
showed that certain nice monoids—namely semisimple algebras—give 2d TQFTs.
It then became clear that certain nice monoidal categories give 3d TQFTs. Just
as the associative law provides invariance under the 2-2 Pachner move, which is a
way of going between triangulations of a 2-manifold, the pentagon identity provides
invariance under the 2-3 move, which is a way of going between triangulations of
a 3-manifold. This idea was noticed by Louis Crane in his influential but never
published paper ‘Categorical physics’ [103]. It was worked out in detail by Barrett
and Westbury.

Barrett–Westbury (1992)

Barrett and Westbury showed that the Turaev–Viro models only need a nice monoidal
category, not a braided monoidal category [104, 105]. At first it may seem strange
that we need a 2-dimensional entity—a monoidal category, which is a special sort
of 2-category—to get an invariant in 3-dimensional topology. Soon we shall give
the conceptual explanation. But first let us sketch how the Barrett–Westbury con-
struction works.

Just as the Fukuma–Hosono–Kawai construction builds 2d TQFTs from semisim-
ple algebras, the Barrett–Westbury construction uses ‘semisimple 2-algebras’. These
are like semisimple algebras, but with vector spaces replaced by 2-vector spaces.

Recall from our discussion of Kapranov and Voevodsky’s 1991 paper that a 2-
vector space is a category equivalent to Vectn for some n. We may define a 2-algebra
to be a 2-vector space equipped with a multiplication—or more precisely, a 2-vector
space that is also a monoidal category, where the tensor product distributes over
direct sums.
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traces out the shaded surface Poincaré dual to a tetrahedron:



A PREHISTORY OF n-CATEGORICAL PHYSICS 58

iiiiiiiiii

UUUUUUUUUU

����������

6666666666

����������������

iiiiiiiiiiiiiiii

666666

66

666666

=

iiiiiiiiiii

UUUUUUUUUUU

�����������

66666666666

�����������������

iiiiiiiiiiiiiiiii

UUUUUU

UUUUUUUUU666666

666

666666
VVVVVVVVVVV

							

DDDDDDDDDDD












))))))))))))))

=
yyyyyyyy

333333333

YYYYYYYYY
������

VVVVVVVVVVV
							

DDDDDDDDDDD












))))))))))))))

The 2-3 move can be understood as going between two sequences of applications
of the 2-2 move:
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This is related to the associator identity as the following diagram illustrates:

(
k(hg)

)
f

(
(kh)g

)
f

(kh)(gf)

k
(
(h(gf)

)
k
(
(hg)f

)
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[AL: Do we want to include spin-foams?] J

Witten–Reshetikhin–Turaev (1992)

Kontsevich (1993)

In his famous paper of 1993, Kontsevich [90] arrived at a deeper understanding of
quantum groups, based on ideas of Witten, but making less explicit use of the path
integral approach to quantum field theory.

In a nutshell, the idea is this. Fix a compact simply-connected Lie group G and
finite-dimensional representations ρ1, . . . , ρn. Then there is a way to attach a vector
space Z(z1, . . . zn) to any choice of distinct points z1, . . . , zn in the plane, and a way
to attach a linear operator

Z(f) : Z(z1, . . . , zn)→ Z(z′1, . . . , z
′
n)

to any n-strand braid going from the points (z1, . . . , zn) to the points z′1, . . . , z
′
n.

The trick is to imagine each strand of the braid as the worldline of a particle in 3d
spacetime. As the particles move, they interact with each other via a gauge field
satisfying the equations of Chern–Simons theory. So, we use parallel transport to
describe how their internal states change. As usual in quantum theory, this process
is described by a linear operator, and this operator is Z(f). Since Chern–Simons
theory describe a gauge field with zero curvature, this operator depends only on
the topology of the braid. So, with some work we get a braided monoidal category
from this data. With more work we can get operators not just for braids but also
tangles—and thus, a braided monoidal category with duals for objects. Finally,
using a Tannaka–Krein reconstruction theorem, we can show this category is the
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category of finite-dimensional representations of a quasitriangular Hopf algebra: the
‘quantum group’ associated to G.

Ooguri–Crane-Yetter (????)

4d TQFTs from braided monoidal categories: Oguri-Crane-Yetter model [106,107].

Lawrence (1993)

Lawrence: extended TQFTs [108].

Crane–Frenkel (1994)

In 1994, Louis Crane and Igor Frenkel wrote a paper entitled ‘Four dimensional
topological quantum field theory, Hopf categories, and the canonical bases’ [111].
In this paper they sketched the algebraic structures that one would expect to provide
state sum TQFTs in n dimensions.

n = 4 trialgebras

BBBBBBBBB Hopf categories

|||||||||

BBBBBBBBB monoidal 2-categories

|||||||||

n = 3 Hopf algebras

BBBBBBBBB monoidal categories

|||||||||

n = 2 associative algebras

Later Hopf categories defined and studied by Neuchl [112], and trialgebras by
Pfeiffer [113].

Categorifying quantum groups...

Freed (1994)

In 1994, Freed published a paper [109] which exhibited how higher-dimensional
algebraic structures arise naturally from the Lagrangian formulation of topological
quantum field theory. 2-Hilbert spaces [110].

Baez–Dolan (1995)

In [114], Baez and Dolan cooked up the periodic table....

Explain Tangle Hypothesis The Tangle Hypothesis: The free k-tuply monoidal
n-category with duals on one generator is nTangk: top-dimensional morphisms are
n-dimensional framed tangles in n+ k dimensions.

n-categories with duals...

Mackaay (1999)

Mackaay got 4D TQFT’s from nice monoidal 2-categories, of which braided monoidal
categories are a degenerate case [115].

Explain how spherical 2-categories are a further categorification
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THE PERIODIC TABLE

n = 0 n = 1 n = 2
k = 0 sets categories 2-categories
k = 1 monoids monoidal monoidal

categories 2-categories
k = 2 commutative braided braided

monoids monoidal monoidal
categories 2-categories

k = 3 ‘’ symmetric sylleptic
monoidal monoidal
categories 2-categories

k = 4 ‘’ ‘’ symmetric
monoidal

2-categories
k = 5 ‘’ ‘’ ‘’

k = 6 ‘’ ‘’ ‘’

Khovanov (1999)

In 1999 there was a major breakthrough in categorifying quantum invariants. Mikhail
Khovanov found a categorification of the Jones polynomial [116]. This categorifica-
tion is a lifting of the Jones polynomial to a graded homology theory for links whose
graded Euler characteristic is the unnormalized Jones polynomial. This new link
invariant is a strictly stronger link invariant [117], but more importantly this invari-
ant is ‘functorial’. Khovanov homology associates to each link diagram a graded
chain complex, and to each link cobordism between two tangle diagrams one gets a
chain map between the respective complexes [118,119].

Khovanov has shown that this construction provides an invariant of 2-tangles.
NEXT: constructing a braided monoidal 2-category from Khovanov homology!!!

Moore–Segal (2001)

[AL: Maybe say more about topological strings or how these cobordisms are like
the topological version of string worldsheets. Say that Moore-Segal have used these
TQFTs to begin to explain explain the K-theory classification boundary conditions
in topological strings.]

Considerations in boundary conformal field theory, going back to the work of
Cardy and Lewellen [122, 123], led Moore and Segal [124, 125] to axiomatically
consider open-closed topological quantum field theories. These are just like (closed)
2-dimensional topological quantum field theories, where in addition to having the
objects of the cobordism category consisting of 1-dimensional closed manifolds,
one also considers 1-manifolds with boundary–open strings! The cobordisms going
between such objects allow for a much richer topology than was present in the closed
case. Here are the generators of 2Cobext, the open closed cobordism category

µA ∆A ηA εA µC ∆C ηC εC ı ı∗
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Moore and Segal showed that this cobordism category could also be described alge-
braically using Frobenius algebras. Since their work others [126,127] have sharpened
some of their results and found further applications of their work in conformal field
theory. In addition to the physical applications, their work also has exciting math-
ematical applications [129].

It has been shown by Lauda and Pfeiffer [130] that 2Cobext is the symmetric
monoidal category freely generated by what they call a knowledgeable Frobenius
algebra. This implies that the category of open-closed cobordisms is equivalent
to the category of such algebraic structures. Using this result Lauda and Pfeiffer
have also extended the state sum construction of Fukuma, Hosono, and Kawai to
open-closed cobordisms [131].
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