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Abstract

In this easy introduction to higher gauge theory, we describe parallel trans-
port for particles and strings in terms of 2-connections on 2-bundles. Just
as ordinary gauge theory involves a gauge group, this generalization in-
volves a gauge ‘2-group’. We focus on 6 examples. First, every abelian
Lie group gives a Lie 2-group; the case of U(1) yields the theory of U(1)
gerbes, which play an important role in string theory and multisymplec-
tic geometry. Second, every group representation gives a Lie 2-group;
the representation of the Lorentz group on 4d Minkowski spacetime gives
the Poincaré 2-group, which leads to a spin foam model for Minkowski
spacetime. Third, taking the adjoint representation of any Lie group on
its own Lie algebra gives a ‘tangent 2-group’, which serves as a gauge 2-
group in 4d BF theory, which has topological topological gravity as a spe-
cial case. Fourth, every Lie group has an ‘inner automorphism 2-group’,
which serves as the gauge group in 4d BF theory with cosmological con-
stant term. Fifth, every Lie group has an ‘automorphism 2-group’, which
plays an important role in the theory of nonabelian gerbes. And sixth,
every compact simple Lie group gives a ‘string 2-group’. We also touch
upon higher structures such as the ‘gravity 3-group’ and the ‘supergravity
Lie 3-algebra’.

1 Introduction

Higher gauge theory is a generalization of gauge theory that describes parallel
transport, not just for point particles, but also for higher-dimensional extended
objects. It is a beautiful new branch of mathematics, with a lot of room left
for exploration. It has already been applied to string theory and loop quantum
gravity—or more specifically, spin foam models. This should not be surprising,



since while these rival approaches to quantum gravity disagree about almost
everything, they both agree that point particles are not enough: we need higher-
dimensional extended objects to build a theory sufficiently rich to describe the
quantum geometry of spacetime. Indeed, many existing ideas from string theory
and supergravity have recently been clarified by higher gauge theory [68] [69].
But we may also hope for applications of higher gauge theory to other less
speculative branches of physics, such as condensed matter physics.

Of course, for this to happen, more physicists need to learn higher gauge the-
ory. It would be great to have a comprehensive introduction to the subject which
started from scratch and led the reader to the frontiers of knowledge. Unfor-
tunately, cutting-edge work in this subject uses a wide array of mathematical
tools, such as n-categories, stacks, gerbes, Deligne cohomology, L., algebras,
Kan complexes, model categories, and (0o, 1)-categories—to name just a few.
While these tools are beautiful, important in their own right, and necessary for
a deep understanding of higher gauge theory, learning them takes time, and
explaining them all would be a major project.

Our goal here is far more modest. We shall sketch how to generalize the
theory of parallel transport from point particles to 1-dimensional objects, such
as strings. We shall do this starting with a bare minimum of prerequisites:
manifolds, differential forms, Lie groups, Lie algebras, and the traditional theory
of parallel transport in terms of bundles and connections. We shall give a small
taste of the applications to physics, and then point the reader to the literature
for more.

In Section B we start by explaining categories, functors, and how parallel
transport for particles can be seen as a functor taking any path in a manifold
to the operation of parallel transport along that path. In Section Bl we ‘add
one’ and explain how parallel transport for particles and strings can be seen as
‘2-functor’ between ‘2-categories’. This requires that we generalize Lie groups
to ‘Lie 2-groups’. In Section Bl we describe many examples of Lie 2-groups, and
sketch some of their applications:

e Section BTk shifted abelian groups, U(1) gerbes, and their role in string
theory and multisymplectic geometry.

e SectionEE2k the Poincaré 2-group and the spin foam model for 4d Minkowski
spacetime.

e Section tangent 2-groups, 4d BF theory and topological gravity.

e Section B4 inner automorphism 2-groups and 4d BF' theory with cosmo-
logical constant term.

e Section automorphism 2-groups, nonabelian gerbes, and the gravity
3-group.

e Section EEGl string 2-groups and the role of string structures in defining
spinors on loop space.

Finally, in Section Bl we discuss gauge transformations and nontrivial 2-bundles.



2 Categories and Connections
A category consists of objects, which we draw as dots:
o
and morphisms between objects, which we draw as arrows between dots:
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You should think of of objects as ‘things’ and morphisms as ‘processes’. The
main thing you can do in a category is take a morphism from z to y and a
morphism from y to z:
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and ‘compose’ them to get a morphism from x to z:
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The most famous example is the category Set, which has sets as objects and
functions as morphisms. Most of us know how to compose functions, and we
have a pretty good intuition of how this works. So, it can be helpful to think
of morphisms as being like functions. But as we shall soon see, there are some
very important categories where the morphisms are not functions.

Let us give the formal definition. A category consists of:

e A collection of objects, and

e for any pair of objects z,y, a set of morphisms f:z — y. Given a
morphism f:x — y, we call x its source and y its target.

e Given two morphisms f:x — y and g:y — =z, there is a composite
morphism gf:x — z. Composition satisfies the associative law:

(hg)f = h(gf).

e For any object z, there is an identity morphism 1,: z — x. These identity
morphisms satisty the left and right unit laws:

1yf:f:flac

for any morphism f:ax — y.



The hardest thing about category theory is getting your arrows to point the
right way. It is standard in mathematics to use fg to denote the result of doing
first g and then f. In pictures, this backwards convention can be annoying. But
rather than trying to fight it, let us give in and draw a morphism f:ax — y as
an arrow from right to left:

f
yo S o
Then composition looks a bit better:
f g fg
zo/_\oy/_\o:c = zo/_\ox

An important example of a category is the ‘path groupoid’ of a space X.
We give the precise definition below, but the basic idea is to take the diagrams
we have been drawing seriously! The objects are points in X, and morphisms

are paths:
~
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We also get examples from groups. A group is the same as a category with one
object where all the morphisms are invertible. The morphisms of this category
are just the elements of the group. We compose them using the multiplication
in the group.

In both these examples, a morphism f:x — y is not a function from x to y.
And these two examples have something else in common: they are important in
gauge theory! We can use a path category to describe the possible motions of
a particle through spacetime. We can use a group to describe the symmetries
of a particle. And when we combine these two examples, we get the concept of
connection — the basic field in any gauge theory.

How do we combine these examples? We do it using a map between cate-
gories. A map between categories is called a ‘functor’. A functor from a path
groupoid to a group will send every object of the path groupoid to the same
object of our group. After all, a group, regarded as a category, has only one
object. But this functor will also send any morphism in our path groupoid to
a group element. In other words, it will assign a group element to each path in
our space. This group element describes how a particle transforms as it moves
along that path.

But this is precisely what a connection does! A connection lets us compute
for any path a group element describing parallel transport along that path.
So, the language of categories and functors quickly leads us to the concept of
connection — but with an emphasis on parallel transport.

The following theorem makes these ideas precise. Let us first state the
theorem, then define the terms involved, and then give some idea of how it is
proved:



Theorem 1. For any Lie group G and any smooth manifold M, there is a
one-to-one correspondence between:

1. connections on the trivial principal G-bundle over M,
2. g-valued 1-forms on M, where g is the Lie algebra of G, and

8. smooth functors
hol: P1 (M) — G

where P1(M) is the path groupoid of M.

We assume you are familiar with the first two items. So, our goal is to explain
the third. We must start by explaining the path groupoid.

Suppose M is a manifold. Then the path groupoid P;(M) is roughly a
category in which objects are points of M and a morphism from x to y is a path
from z to y. We compose paths by gluing them end to end. So, given a path §
from z to y, and a path v from y to z:

ze ye Te

we would like v to be the path from x to z built from 7 and .

However, we need to be careful about the details to make sure that the
composite path ¢ is well-defined, and that composition is associative! Since we
are studying paths in a smooth manifold, we want them to be smooth. But the
path «vd may not be smooth: there could be a ‘kink’ at the point y.

There are different ways to get around this problem. One is to work with
piecewise smooth paths. But here is another approach: say that a path

~v:[0,1] = M

is lazy if it is smooth and also constant in a neighborhood of t =0 and ¢ = 1.
The idea is that a lazy hiker takes a rest before starting a hike, and also after
completing it. Suppose v and § are smooth paths and « starts where § ends.
Then we define their composite

~¥6:[0,1] - M
in the usual way:

0
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In other words, vd spends the first half of its time moving along ¢, and the
second half moving along +. In general the path vd may not be smooth at
t= % However, if v and § are lazy, then their composite is smooth — and it,
too, is lazy!

1
St<;
<t<1



So, lazy paths are closed under composition. Unfortunately, composition of
lazy paths is not associative. The paths (af)y and a(f7) differ by a smooth
reparametrization, but they are not equal. To solve this problem, we can take
certain equivalence classes of lazy paths as morphisms in the path groupoid.

We might try ‘homotopy classes’ of paths. Remember, a homotopy is a way
of interpolating between paths:

More precisely, a homotopy from the path 7: [0,1] — M to the path §:[0,1] —
M is a smooth map
¥:[0,1) — M

such that 3(0,¢) = v(¢) and X(1,t) = 6(t). We say two paths are homotopic,
or lie in the same homotopy class, if there is a homotopy between them.

There is a well-defined category where the morphisms are homotopy classes
of lazy paths. Unfortunately this is not right for gauge theory, since for most
connections, parallel transport along homotopic paths gives different results. In
fact, parallel transport gives the same result for all homotopic paths if and only
if the connection is flat.

So, unless we are willing to settle for flat connections, we need a more delicate
equivalence relation between paths. Here the concept of ‘thin” homotopy comes
to our rescue. A homotopy is thin if it sweeps out a surface that has zero area.
In other words, it is a homotopy % such that the rank of the differential d¥ is
less than 2 at every point. If two paths differ by a smooth reparametrization,
they are thinly homotopic. But there are other examples, too. For example,
suppose we have a path v:x — vy, and let v~ ':y — 2 be the reverse path,
defined as follows:

I =1 -1,
Then the composite path v~ 'y, which goes from z to itself:

v
-1

¥
ye or
is thinly homotopic to the constant path that sits at . The reason is that we
can shrink v~ 'y down to the constant path without sweeping out any area.
We define path groupoid P;(M) to be the category where:

e Objects are points of M.
e Morphisms are thin homotopy classes of lazy paths in M.

o If we write [y] to denote the thin homotopy class of the path ~, composition
is defined by

[v][6] = [vd].



e For any point x € M, the identity 1, is the thin homotopy class of the
constant path at x.

With these rules, it is easy to check that P;(M) is a category. The most
important point is that since the composite paths (a8)y and a(8y) differ by a
smooth reparametrization, they are thinly homotopic. This gives the associative
law when we work with thin homotopy classes.

But as its name suggests, P1(M) is better than a mere category. It is a
groupoid: that is, a category where every morphism +v:x — y has an inverse
~~liy — x satisfying

v ly=1, and vy l= 1,
In Py (M), the inverse is defined using the concept of a reverse path:

M =h"1

The rules for an inverse only hold in Py (M) after we take thin homotopy classes.
After all, the composites vy~ and v~y are not constant paths, but they are
thinly homotopic to constant paths. But henceforth, we will relax and write
simply ~ for the morphism in the path groupoid corresponding to a path -,
instead of [].

As the name suggests, groupoids are a bit like groups. Indeed, a group is
secretly the same as a groupoid with one object! In other words, suppose we
have group G. Then there is a category where:

e There is only one object, e.

e Morphisms from e to e are elements of G.

e Composition of morphisms is multiplication in the group G.
e The identity morphism 1, is the identity element of G.

This category is a groupoid, since every group element has an inverse. Con-
versely, any groupoid with one object gives a group. Henceforth we will freely
switch back and forth between thinking of a group in the traditional way, and
thinking of it as a one-object groupoid.

How can we use groupoids to describe connections? It should not be sur-
prising that we can do this, now that we have our path groupoid P;(M) and
our one-object groupoid G in hand. A connection gives a map from P1(M) to
G, which says how to transform a particle when we move it along a path. More
precisely: if G is a Lie group, any connection on the trivial G-bundle over M
yields a map, called the parallel transport map or holonomy, that assigns an
element of G to each path:

~
P S

hol: e e — hol(y)eG



In physics notation, the holonomy is defined as the path-ordered exponential of
some g-valued 1-form A, where g is the Lie algebra of G:

hol(v) = P exp < L A> €G.

The holonomy map satisfies certain rules, most of which are summarized in
the word ‘functor’. What is a functor? It is a map between categories that
preserves all the structure in sight!

More precisely: given categories C' and D, a functor F:C — D consists of:

e a map F sending objects in C' to objects in D, and

e another map, also called F, sending morphisms in C' to morphisms in D,
such that:

e given a morphism f:z — y in C, we have F(f): F(z) — F(y),

e [ preserves composition:

F(fg) = F(f)F(g)
when either side is well-defined, and

e [ preserves identities:
F(1:) = 1p()

for every object x of C.

The last property actually follows from the rest. The second to last — preserv-
ing composition — is the most important property of functors. As a test of
your understanding, check that if C and D are just groups (that is, one-object
groupoids) then a functor F:C — D is just a homomorphism.

Let us see what this definition says about a functor

hol: P1 (M) — G

where G is some Lie group. This functor hol must send all the points of M to
the one object of G. More interestingly, it must send thin homotopy classes of
paths in M to elements of G:

~
P e

hol: e e — hol(y)eG
It must preserve composition:
hol(~d) = hol(+) hol(9)

and identities:
hol(1,) =1€ G.



While they may be stated in unfamiliar language, these are actually well-
known properties of connections! First, the holonomy of a connection along a

path
hol(y) = Pexp (/ A) eqd
v

only depends on the thin homotopy class of . To see this, compute the variation
of hol(~y) as we vary the path v, and show the variation is zero if the homotopy
is thin. Second, to compute the group element for a composite of paths, we just
multiply the group elements for each one:

P exp <L6A) = Pexp </7A>7>exp </6A>

And third, the path-ordered exponential along a constant path is just the iden-

tity:
Pexp(/ A) =1ledG.

All this information is neatly captured by saying hol is a functor. And
Theorem [0 says this is almost all there is to being a connection. The only
additional condition required is that hol be smooth. This means, roughly, that
hol(v) depends smoothly on the path v — more on that later. But if we drop this
condition, we can generalize the concept of connection, and define a generalized
connection on a smooth manifold M to be a functor hol: P (M) — G.

Generalized connections have long played an important role in loop quan-
tum gravity, first in the context of real-analytic manifolds [3], and later for
smooth manifolds [T7, B6]. The reason is that if M is any manifold and G
is a connected compact Lie group, there is a natural measure on the space of
generalized connections. This means that you can define a Hilbert space of
complex-valued square-integrable functions on the space of generalized connec-
tions. In loop quantum gravity these are used to describe quantum states before
any constraints have been imposed. The switch from connections to generalized
connections is crucial here — and the lack of smoothness gives loop quantum
gravity its ‘discrete’ flavor.

But suppose we are interested in ordinary connections. Then we really want
hol(v) to depend smoothly on the path 7. How can we make this precise?

One way is to use the theory of ‘smooth groupoids’ [I6]. Any Lie group is
a smooth groupoid, but and so is the path groupoid of any smooth manifold.
We can define smooth functors between smooth groupoids, and then smooth
functors hol: P1(M) — G are in one-to-one correspondence with connections
on the trivial principal G-bundle over M. We can do even further, and define
smooth ‘anafunctors’ hol: P1 (M) — G, which correspond to connections on not
necessarily trivial principal G-bundles over M. For details, see the work of
Bartels [24], Schreiber and Waldorf [Z1].

But if this sounds like too much work, we can take the following shortcut.
Suppose we have a smooth function F:[0,1]™ x [0,1] — M, which we think of



as a parametrized family of paths. And suppose that for each fixed value of the
parameter s € [0, 1]™, the path ~, given by

V5(t) = F(s,1)
is lazy. Then our functor hol: P; (M) — G gives a function

01" - &
s —  hol(vs).

If this function is smooth whenever F' has the above properties, then the functor
hol: P1 (M) — G is smooth.

Starting from this definition one can prove the following lemma, which lies
at the heart of Theorem [T}

Lemma. There is a one-to-one correspondence between smooth functors
hol: P1 (M) — G and Lie(G)-valued 1-forms A on M.

The idea is that given a Lie(G)-valued 1-form A on M, we can define a
holonomy for any smooth path as follows:

hol(y) = P exp ( /7 A) ,

and then check that this defines a smooth functor hol: P; (M) — G. Conversely,
suppose we have smooth functor hol. Then we can define hol(y) for smooth
paths ~ that are not lazy, using the fact that every smooth path is thinly ho-
motopic to a lazy one. We can even do this for paths v: [0, s] — M where s # 1,
since any such path can be reparametrized to give a path of the usual sort.
Given a smooth path

~v:[0,1] = M

we can truncate it to obtain a path 7, that goes along v until time s:
vs: [0, 8] — M.

By what we have said, hol(s) is well-defined. Using the fact that hol: Py (M) —
G is a smooth functor, one can check that hol(y,) varies smoothly with s. So,
we can differentiate it and define a Lie(G)-valued 1-form A as follows:

d
A(U) = d_ShOI(’yS)‘s:O
where v is any tangent vector at a point x € M, and + is any smooth path with

10) ==,  (0)=v.

Of course, we need to check that A is well-defined and smooth. We also need to
check that if we start with a smooth functor hol, construct a 1-form A in this
way, and then turn A back into a smooth functor, we wind up back where we
started.

10



3 2-Categories and 2-Connections

Now we want to climb up one dimension, and talk about ‘2-connections’. Just
as connections tell us how particles transform as they move along paths, 2-
connections will tell us how strings transform as they sweep out surfaces. To
make this idea precise, we need to categorify everything we said in the previous
section. Instead of categories, we need ‘2-categories’. Instead of groups, we need
‘2-groups’. Instead of the path groupoid, we need the ‘path 2-groupoid’. And
instead of functors, we need ‘2-functors’. When we understand all these things,
the analogue of Theorem [ will look strikingly similar to the original version:

Theorem. For any Lie 2-group G and any smooth manifold M, there is a
one-to-one correspondence between.:

1. 2-connections on the trivial principal G-2-bundle over M,

2. pairs consisting of a smooth g-valued 1-form A and a smooth h-valued
2-form B on M, such that

dt(B) =dA+ AN A

where we use dt:h — g, the differential of the map t: H — G, to convert
B into a g-valued 2-form, and

8. smooth 2-functors
hol: Po(M) — G

where Po(M) is the path 2-groupoid of M.

What does this say? In brief: there is a way to extract from a Lie 2-group
G a pair of Lie groups G and H. Suppose we have a 1-form A taking values in
the Lie algebra of G, and a 2-form B valued in the Lie algebra of H. Suppose
furthermore that these forms obey the equation above. Then we can use them
to consistently define parallel transport, or ‘holonomies’, for paths and surfaces.
They thus define a ‘2-connection’.

That is the idea. But to make it precise, we need 2-categories.

3.1 2-Categories

A 2-category consists of:
e a collection of objects,

e for any pair of objects  and y, a set of morphisms f:x — y:
f

y.k—\.m

11



e for any pair of morphisms f, g:x — y, a set of 2-morphisms a: f = g:

We call f the source of o and g the target of a.
Morphisms can be composed just as in a category:
/ g fg
= T =

ze oy o = ye or

while 2-morphisms can be composed in two distinct ways, vertically:

f

Yo <—— oy = ye ﬂa’~a o
N S
j'//
f//
and horizontally:
f1 f2 fif2
A \U]al ye \U/OL2 or = ye ﬂ/al oay O
i f3 fifs

Finally, these laws must hold:

e Composition of morphisms is associative, and every object x has a mor-
phism

1e
L
Te o

serving as an identity for composition, just as in an ordinary category.

e Vertical composition is associative, and every morphism f has a 2-morphism

serving as an identity for vertical composition.

e Horizontal composition is associative, and the 2-morphism

1
T T

x
Te thz or
\_/
1y

serves as an identity for horizontal composition.

12



e Vertical and horizontal composition of 2-morphisms obey the interchange
law:

(@1 - o) o (ah - az) = (a) 0 ay) - (1 © 1)

so that diagrams of the form

xre

1 fa

7 £
define unambiguous 2-morphisms.

The interchange law is the truly new thing here. A category is all about
attaching 1-dimensional arrows end to end, and we need the associative law to
do that unambiguously. In a 2-category, we visualize the 2-morphisms as little
pieces of 2-dimensional surface:

We can attach these together in two ways: vertically and horizontally. For
the result to be unambiguous, we need not only associative laws but also the
interchange law. In what follows we will see this law turning up all over the
place.

3.2 Path 2-Groupoids

Path groupoids play a big though often neglected role in physics: the path
groupoid of a spacetime manifold describes all the possible motions of a point
particle in that spacetime. The path 2-groupoid does the same thing for particles
and strings.

First of all, a 2-groupoid is a 2-category where:

e Every morphism f:x — y has an inverse, f~!:y — z, such that:

fif=1, and ff'=1,.

-1

e Every 2-morphism «: f = g has a vertical inverse, a_,.

that:

.9 = f, such

—1 _ -1 _

Quert " =17 and  a-age =1y

It actually follows from this definition that every 2-morphism «: f = ¢ also has
a horizontal inverse, aﬁér: f~'= g7, such that:

-1 -1
o] = [e) =
o O 1;, and « A or 1

o

13



So, a 2-groupoid has every kind of inverse your heart could desire.

To define the path 2-groupoid of a smooth manifold, we can start with its
path groupoid as already defined and then throw in 2-morphisms. Just as the
morphisms were thin homotopy classes of lazy paths, the 2-morphisms will be
thin homotopy classes of ‘lazy surfaces’.

An example is the path 2-groupoid P2(M) of a smooth manifold M. This
is the 2-groupoid where:

e An object is a point of M.
e A morphism from z to y is a thin homotopy class of lazy paths from z to
Y.

e A 2-morphism between (equivalence classes of) lazy paths ~vg,71: 2 — y is
a thin homotopy class of lazy homotopies X: 9 = 7.

This requires some explanation. First, recall that a homotopy between lazy
paths 7, §:x — y is a smooth map ¥:[0,1]2 — M with

2(0,1) = 0(t)

3(1,t) =1(¢)
We say this homotopy is lazy if

e >(s,t) is independent of s near s = 0 and near s =1,
e X(s,t) is constant near ¢t = 0 and constant near ¢ = 1.

Any homotopy X yields a one-parameter family of paths ~y, given by
vs(t) = 3(s, t).

If ¥ is lazy, each of these paths is lazy. Furthermore, the path v, equals g for
a while when s is small, and 7; for a while when s is large. This allows us to
compose lazy homotopies both vertically and horizontally and obtain new lazy
homotopies.

SAY MORE ABOUT HOW!!!

DEFINE “LAZY SURFACE”!!!

3.3 2-Groups

Just as a group was a groupoid with one object, we define a 2-group to be a
2-groupoid with one object. This definition is so elegant that it may be hard to
understand at first! So, it will be useful to take a 2-group G and chop it into
four bite-sized pieces of data, giving a ‘crossed module’ (G, H,t, «). Indeed, 2-
groups were originally introduced in the guise of crossed modules by the famous
topologist J. H. C. Whitehead [77]. In 1950, with help from Mac Lane [51], he
used crossed modules to generalize the fundamental group of a space to what
we might now call the ‘fundamental 2-group’. But only later did it become clear

14



that a crossed module was another way of talking about a 2-groupoid with just
one object! For more of this history, and much more on 2-groups, see [13].

Let us start by seeing what it means to say a 2-group is a 2-groupoid with
one object. It means that a 2-group G has:

e one object:

e morphisms:

e and 2-morphisms:

(e

NS

The morphisms form a group under composition:

The 2-morphisms form a group under horizontal composition:

g1 g2 9192
\_/ \/

91 95 .9,
In addition, the 2-morphisms can be composed vertically:

g
;||
vl
o< 0 = [} o [ ]
\u/ ~v
«
1"
g
"
g

Vertical composition is also associative with identity and inverses. But the 2-
morphisms do not form a group under this operation, because a given pair may
not be composable: their source and target may not match up. Finally, vertical
and horizontal composition are tied together by the interchange law, which says
the two ways one can read this diagram are consistent.

"

91

15



Now let us create a crossed module (G, H,t, «) from a 2-group G. To do
this, first note that the morphisms of the 2-group form a group by themselves,
with composition as the group operation. So:

e Let GG be the set of morphisms in G, made into a group with composition
as the group operation:

How about the 2-morphisms? These also form a group, with horizontal com-
position as the group operation. But it turns out to be efficient to focus on a
subgroup of this:

e Let H be the set of all 2-morphisms whose source is the identity:

1o
‘\t(h)/
We make H into a group with horizontal composition as the group oper-
ation:
1o 1o 1o

t(h) t(h') t(hh')

Above we use hh' as an abbreviation for the horizontal composite h o h' of two
elements of H. We will use h~! to denote the horizontal inverse of an element
of H. We use t(h) to denote the target of an element h € H. The definition of
a 2-category implies that ¢t: H — G is a group homomorphism:

t(hh') = t(h)t(h').
This homomorphism is our third piece of data:

e A group homomorphism ¢: H — G sending each 2-morphism in H to its
target:

t(h)

The fourth piece of data is the subtlest. There is a way to ‘horizontally conju-
gate’ any element h € H by an element g € G, or more precisely by its identity

16



2-morphism 1,:

g 1 g™t
° i}lg ° Uh ° “/194 °
9 t(h) gt

The result is a 2-morphism in H which we call a(g)(h). In fact, a(g) is an
automorphism of H, meaning a one-to-one and onto function with

a(g)(hh') = alg)(h) a(g)(h').

Composing two automorphisms gives another automorphism, and this makes
the automorphisms of H into a group, say Aut(H). Even better, o gives a

group homomorphism
a:G — Aut(H).

Concretely, this means that in addition to the above equation, we have
a(gg’) = alg)alg).

Checking these two equations is a nice way to test your understanding of 2-
categories. A group homomorphism a: G — Aut(H) is also called an action
of the group G on the group H. So, the fourth and final piece of data in our
crossed module is:

e An action o of G on H given by:

g 1, 9! 1
° 1o ° U’h ° ulg e = o \ll/a(g)(h) )
g

t(h) g™t t(a(g)(h))

A crossed module (G, H, t, @) must also satisfy two more equations which follow
from the definition of a 2-group. First, examining the above diagram, we see
that ¢ is G-equivariant, by which we mean:

o t(a(g)h) = g(t(h))g~* for all g € G and h € H.
Second, the Peiffer identity holds:
e a(t(h))h' = hh'h~1! for all h,h' € H.

The Peiffer identity is the least obvious thing about a crossed module. It
follows from the interchange law, and it is worth seeing how. First, we have:

Pl ;/1\ /1\ /17\
= ° h ° h ° Bt °
b el e e e
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where — beware! — we are now using h~' to mean the horizontal inverse of
h, since this is its inverse in the group H. We can pad out this equation by
vertically composing with some identity morphisms:

1le 1le 1,
1 . -1
o .m.m.m
i) i) )

This diagram describes an unambiguous 2-morphism, thanks to the interchange
law. So, we can do the horizontal compositions first and get:

-
MR~ = e L. .
ﬂa(t(h))(h’)
t(hh'h™1)

But vertically composing with an identity 2-morphism has no effect. So, we
obtain the Peiffer identity:

R ™Y = a(t(h))(R).
All this leads us to define a crossed module (G, H,t, «) to consist of:
e a group G,
e a group H,
e a homomorphism ¢: H — G, and
e an action a: G — Aut(H)
such that:

e { is G-equivariant:

for all g € G and h € H, and
e the Peiffer identity holds for all h,h' € H:

a(t(h)h' = hi'h L.

18



In fact, we can recover a 2-group G from its crossed module (G, H,t,a), so
crossed modules are just another way of thinking about 2-groups. The trick to
seeing this is to notice that 2-morphisms in G are the same as pairs (g,h) €
G x H. Such a pair gives this 2-morphism:

1

\\_/

t(h) g

We leave it to the reader to check that every 2-morphism in G is of this form.
Note that this 2-morphism goes from g to t(h)g. So, when we construct a
2-group from a crossed module, we get a 2-morphism

(g,h):g — t(h)g

from any pair (g,h) € G x H. Horizontal composition of 2-morphisms then
makes G x H into a group, as follows:

(gv h) © (glv hl) =

1e g 1e g’

>~ =7
t(h) 9 t(h') g
1o g 1 g ! g g
TN
. hL e 1 @ noe |l,-1e 1, @ 10 =
T e e
t(h) g t(hl) qfl g g
1o 1o 99’
o n o alg)(n') = Jror >0 =
t(h) t(a(g)(h')) 99’
le ,
99
/\ , ,
b ha(g)(h') 4 lggr ~® = , ha h")).
i e e

t(ha(g) () %

So, the group of 2-morphisms of G is the semidirect product G x H, defined
using the action «.

Following this line of thought, the reader can check the following:

Theorem 2. Given a crossed module (G, H,t, ), there is a unique 2-group G
where:

e the group of morphisms is G,
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e a 2-morphism a:g = ¢’ is the same as a pair (g,h) € G x H with ¢’ =
t(h)g,

e the vertical composite of (g,h) and (g',h’), when they are composable, is
given by
(ga h) : (g/v h/) = (glv h’h/)a

e the horizontal composite of (g,h) and (g',h’) is given by

(g,h) o (¢', ') = (99", ha(g)(R")).

Conversely, given a 2-group G, there is a unique crossed module (G, H,t,«)
where:

e (G is the group of morphisms of G,

o H is the group of 2-morphisms with source equal to 1,,

o t: H — G assigns to each 2-morphism in H its target,

e the action o of G on H is given by

a(glh=1g0hol,-1.

Indeed, these two processes set up an equivalence between 2-groups and
crossed modules, as described more formally elsewhere [I3, B4]. Tt thus makes
sense to define a Lie 2-group to be a 2-group for which the groups G and H
in its crossed module are Lie groups, with the maps ¢ and « being smooth. (In
this context we use Aut(H) to mean the group of smooth automorphisms of H.
This is a Lie group in its own right.)

In Section Bl we will use Theorem B to construct many examples of Lie 2-
groups. But first we should finish explaining 2-connections.

3.4 2-Connections

Just as a connection was revealed to be a smooth functor
hol: P1 (M) — G

for some Lie group G, a 2-connection will turn out to be a smooth 2-functor
hol: Po(M) — G

for some Lie 2-group G. But for this to make sense, we need to define a ‘2-
functor’, and say what it means for such a thing to be smooth.

The definition of 2-functor is utterly straightforward: it is map between 2-
categories that preserves everything in sight. So, given 2-categories C' and D, a
2-functor F:C' — D consists of:
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e a map F sending objects in C' to objects in D,
e another map called F' sending morphisms in C' to morphisms in D,
e a third map called F' sending 2-morphisms in C' to 2-morphisms in D,
such that:
e given a morphism f:2z — y in C, we have F(f): F(z) — F(y),
e F preserves composition for morphisms, and identity morphisms:
F(fg)=F(f)F(g)
F(1z) = 1p@),
e given a 2-morphism «: f = ¢ in C, we have F(a): F(f) = F(g),

e F preserves vertical and horizontal composition for 2-morphisms, and
identity 2-morphisms:

F(a-B)=F(a)- F(B3)
F(aof) = F(a)o F(f).
F(1p) = 1p(s)

There is a general theory of smooth 2-groupoids and smooth 2-functors [I6,
72]. But here we prefer to take a more elementary approach. We already know
that for any Lie 2-group G, the morphisms form a Lie group. In the next section
we say that the 2-morphisms also form a Lie group, with horizontal composition
as the group operation. Given this, we can say that for any smooth manifold
M, a 2-functor

hol: Po(M) — G

is smooth if:

e For any smoothly parametrized family of lazy paths v, (s € [0,1]") the
morphism hol(ys) depends smoothly on s, and

e For any smoothly parametrized family of lazy surfaces X5 (s € [0,1]™) the
morphism hol(X;) depends smoothly on s.

With these definitions in hand, we are finally ready to understand the basic
result about 2-connections. It is completely analogous to Theorem [k

Theorem 3. For any Lie 2-group G and any smooth manifold M, there is a
one-to-one correspondence between:

1. 2-connections on the trivial principal G-2-bundle over M,
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2. pairs consisting of a smooth g-valued 1-form A and a smooth h-valued
2-form B on M, such that

dt(B)=dA+ AN A

where we use dt: ) — g, the differential of the map t: H — G, to convert
B into a g-valued 2-form, and

3. smooth 2-functors
hol: Po(M) — G

where Po(M) is the path 2-groupoid of M.

Item 1. mentions ‘2-connections’ and ‘2-bundles’, which we have not defined.
But since we are only talking about 2-connections on trivial 2-bundles, we do
not really need these general concepts yet. For now, we can take item 3. as
the definition of item 1. Then the content of the theorem lies in the differential
form description of smooth 2-functors hol: Po(M) — G. This is what we need
to understand.

A 2-functor of this sort must assign holonomies both to paths and sur-
faces. As you might expect, the 1-form A is primarily responsible for defin-
ing holonomies along paths, while the 2-form B is responsible for defining
holonomies for surfaces. But this is a bit of an oversimplification. When com-
puting the holonomy of a surface, we need to use A as well as B!

Another surprising thing is that A and B need to be related by an equation
for the holonomy to be a 2-functor. If we ponder how the holonomy of a surface
is actually computed, we can see why this is so. We shall not be at all rigorous
here — the details can be found in the work of Schreiber and Waldorf [72]. We
just want to give a rough intuitive idea of how to compute a holonomy for a
surface, and where the equation dt(B) = dA + A A A comes from. Of course

dA+ANA=F

is just the curvature of the connection A. This is a big clue.

Suppose we are trying to compute the holonomy for a surface starting from
a g-valued 1-form A and an h-valued 2-form B. Then following the ideas of
calculus, we can try to chop the surface into many small pieces, compute a
holonomy for each one, and multiply these together somehow. It is easy to chop
a surface into small squares. Unfortunately, the definition of 2-category doesn’t
seem to know anything about squares! But this is not a serious problem. For
example, we can interpret this square:

>

o——> 0

o—> 0
Q

B
L
-
k



as a 2-morphism «: fg = hk. We can then compose a bunch of such 2-
morphisms:

Ay ey
Ay ey

o—— 0 —> 0
o——> 0 —> 0
o—> 0 —> 0
o—— 0 —> 0

with the help of a trick called ‘whiskering’.

Whiskering is a way to compose a 1-morphism and a 2-morphism. Suppose
we want to compose a 2-morphism « and a morphism f that sticks out like a
whisker on the left:

f g
\7/ \_//
g

We call the result f o a, or a left whiskered by f. Similarly, if we have a
whisker sticking out on the right:

ze ‘Ha ye <f— Te

g f
\_// \7/
g ;

and call the result oo f, or « right whiskered by f.

With the help of whiskering, we can compose 2-morphisms shaped like ar-
bitrary polygons. For example, suppose we want to horizontally compose two
squares:

o———=>0
@



To do this, we can left whisker § by f, obtaining this 2-morphism:

fopB: fflg = flK

Then we can right whisker a by &/, obtaining

aok: fIK = hkk'

>

o——> 0

oe——> 0
~

Then we can vertically compose these to get the desired 2-morphism:

(o k) - (goB): ff'g = hkK

oe——— 0
~
N\
o—— O
s

The same sort of trick lets us vertically compose squares. By iterating these
procedures we can define more complicated composites, like this:

7
7

NN
NN

o—— 0 —> 0

7
7

o—> 0 —> 0
o—> 0 —> 0
o—> 0 —> 0

Of course, one may wonder if these more complicated composites are unambigu-
ously defined! Luckily they are, thanks to associativity and the interchange law.
This is a nontrivial result, called the ‘pasting theorem’ [64].

By this method, we can reduce the task of computing hol(X) for a large
surface . to the task of computing it for lots of small squares. Ultimately, of
course, we should take a limit as the squares become smaller and smaller. But
for our nonrigorous discussion, it is enough to consider a very small square like
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this:

/.

°
2

We can think of this square as a 2-morphism
i =7

where 7; is the path that goes up and then across, while vo goes across and
then up. We wish to compute

hol(3): hol(y1) = hol(y2).

On the one hand, hol(X) will involve the 2-form B. On the other hand, its
source and target depend only on the 1-form A:

hol(y1) = P exp <L A> . hol(y) = Pexp <L A> .

So, the 2-morphism hol(X) cannot have the right source and target unless A
and B are related by an equation!

Let us try to guess this equation. Recall from Theorem Plthat a 2-morphism
a:g1 = g2 in G is determined by an element h € H with go = t(h)g;. Using
this, we may think of hol(X): hol(v1) — hol(vy2) as determined by an element

h € H with
Pexp (/WA) — 1(h) P exp (/%A>,
{(h) = P exp </8E A> (1)

where the loop 0¥ = v2y; ! goes around the square ¥. For a very small square,
we can approximately compute the right hand side using Stokes’ theorem:

pexp</i?EA)zexp(/SF).

On the other hand, there is an obvious guess for the approximate value of h,
which is supposed to be built using the 2-form B:

hzexp(/ZB).

For this guess to yield equation (), at least to first order in the size of our

square, we need
t(exp (/ B)) A exp (/ F) .
b b
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But this will be true if
dt(B) = F.

And this is the equation that relates A and B!
What have we learned here? First, for any surface X: v = 2, the holonomy
hol(X) is determined by an element h € H with

Pexp (/A) — t(h) Pexp (/ A)

In the limit where ¥ shrinks to an infinitesimal surface, this element h depends

only on B:
h = exp (/ B).
s

But for a finite-sized surface, this formula is no good, since it involves adding
up B at different points, which is not a gauge-invariant thing to do. For a finite-
sized surface, h depends on A as well as B, since we compute it by chopping
this surface into small squares and whiskering them with paths — and the
holonomies along these paths are computed using A.

4 Examples and Applications

Now let us give some examples of Lie 2-groups, and see higher gauge theory
can do with these examples. We will build these examples using crossed mod-
ules. Throughout what follows, G is a Lie 2-group whose corresponding crossed
module is (G, H, t, a).

4.1 Shifted Abelian Groups

Any group G automatically gives a 2-group where H is trivial. Then higher
gauge theory reduces to ordinary gauge theory. But to see what is new about
higher gauge theory, let us instead suppose that G is the trivial group. Then
t and « are forced to be trivial, and ¢ is automatically G-equivariant. On the
other hand, the Peiffer identity

a(t(h))h' = hh'h ™!

is not automatic: it holds if and only if H is abelian!

There is also a nice picture proof that H must be abelian when G is trivial.
We simply move two elements of H around each other using the interchange
law:




As a side-benefit, we see that horizontal and vertical composition must be equal
when G is trivial. This proof is called the ‘Eckmann—Hilton argument’, since
Eckmann and Hilton used it to show that the second homotopy group of a space
is abelian [36].

So, we can build a 2-group where:

e (G is the trivial group,

e H is any abelian Lie group,
e « is trivial, and

e { is trivial.

This is called the shifted version of H, and denoted bH.

In applications to physics, we often see H = U(1). A principal bU(1)-2-
bundle is usually called a U(1) gerbe, and a 2-connection on such a thing is
usually just called a connection. By Theorem B a connection on a trivial U(1)
gerbe is just an ordinary real-valued 2-form B. Its holonomy is given by:

Y
hol:  e“ e — 1

hol: .@. —  exp (z’/EB> € U(1).

The book by Brylinski [28] gives a rather extensive introduction to U(1)
gerbes and their applications. Here let us just mention two places where these
entities show up in physics. One is ‘multisymplectic geometry’; the other is
‘2-form electromagnetism’. The two are closely related.

First, let us remember how 1-forms show up in symplectic geometry and
electromagnetism. Suppose we have a point particle moving in some manifold
M. At any time its position is a point ¢ € M and its momentum is a cotangent
vector p € Ty M. As time passes, its position and momentum trace out a curve

~:[0,1] = T*M.
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The action of this path is given by
S(v) = / (pig" — H(q,p)) dt
¥

where H:T*M — R is the Hamiltonian. But now suppose the Hamiltonian
is zero! Then there is still a nontrivial action, due to the first term. We can

rewrite it as follows:
st)= [
¥

o = p;dq"

where the 1-form

is a canonical structure on the cotangent bundle. We can think of « as connec-
tion on a trivial U(1)-bundle over T*M. Physically, this connection describes
how a quantum particle changes phase even when the Hamiltonian is zero! The
change in phase is computed by exponentiating the action. So, we have:

hol(y) = exp / ).

Next, suppose we carry our particle around a small loop v which bounds a
disk D. Then Stokes’ theorem gives

Here the 2-form _
w =da =dp; Ndq*

is the curvature of the connection «. It makes T*M into a symplectic man-
ifold, that is, a manifold with a closed 2-form w satisfying the nondegeneracy
condition

Vo w(u,v) =0 = u=0.

The subject of symplectic geometry is vast and deep, but sometimes this simple
point is neglected: the symplectic structure describes the change in phase of a
quantum particle as we move it around a loop:

i) =exp (i [ ).

Perhaps this justifies calling a symplectic manifold a ‘phase space’, though his-
torically this seems to be just a coincidence.

It may seem strange to talk about a quantum particle tracing out a loop
in phase space, since in quantum mechanics we cannot simultaneously know a
particle’s position and momentum. However, there is a long line of work, begin-
ning with Feynman, which computes time evolution by an integral over paths
in phase space [35]. This idea is also implicit in geometric quantization, where

28



the first step is to equip the phase space with a principal U(1)-bundle having a
connection whose curvature is the symplectic structure. (Our discussion so far
is limited to trivial bundles, but everything we say generalizes to the nontrivial
case).

Next, consider a charged particle in an electromagnetic field. Suppose that
we can describe the electromagnetic field using a vector potential A which is
a connection on trivial U(1) bundles over M. Then we can pull A back via
the projection m: T*M — M, obtaining a 2-form 7*A on phase space. In the
absence of any other Hamiltonian, the particle’s action as we move it along a
path v in phase space will be

S(y) = /a+e7r*A
v

if the particle has charge e. In short, the electromagnetic field changes the
connection on phase space from a to a+ e w*A. Similarly, when the path v is a
loop bounding a disk D, we have

S(v) :/ w+en'F
D

where F' = dA is the electromagnetic field strength. So, electromagnetism also
changes the symplectic structure on phase space: w becomes w4 em*F. For more
on this, see Guillemin and Sterberg [52], who also treat the case of nonabelian
gauge fields.

All of this has an analog where particles are replaced by strings. It has been
known for some time that just as the electromagnetic vector potential naturally
couples to point particles, there is a 2-form field B called the ‘Kalb-Ramond’
field which naturally couples to strings. The action for this coupling is obtained
simply by integrating B over the string worldsheet. In 1999, Freed and Witten
48] showed that the B field should be seen as a connection on a U(1) gerbe—or
what we would call a 2-connection on a U(1)-2-bundle. However, they avoided
actually using the word ‘gerbe’. The role of gerbes was later made explicit by
Carey, Johnson and Murray [29], and even more so by Gawedski and Reis [48].

In short, electromagnetism has a ‘higher version’. What about symplectic
geometry? This has a higher version called ‘multisymplectic geometry’, which
dates back to 1935 work by DeDonder [34] and Weyl [6]. The idea here is that
an n-dimensional classical field theory has a kind of finite-dimensional phase
space equipped with a closed (n + 2)-form w which is nondegenerate in the
following sense:

Yor, ..o Upg1 w(u,v1,...,0,) =0 =  wu=0.

For a nice introduction to multisymplectic geometry, see the papery by Gotay,
Isenberg, Marsden, and Montgomery [0

The link between multisymplectic geometry and higher electromagnetism
was made in a paper by Baez, Hoffnung and Rogers [[1]. Everything is closely
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analogous to the story for point particles. For a classical bosonic string prop-
agating on Minkowski spacetime of any dimension, say M, there is a finite-
dimensional manifold X which serves as a kind of ‘phase space’ for the string.
There is a projection m: X — M, and there is a god-given way to take any map
from the string’s worldsheet to M and lift it to an embedding of the worldsheet
in X. So, let us write ¥ for the string worldsheet considered as a surface in X.

The phase space X is equipped with a closed nondegenerate 3-form, w. But
in fact, w = da for some 2-form «. Even when the string’s Hamiltonian is zero,
there is a term in the action of the string coming from the integral of a:

S(x) = /E a.

We may also consider a charged string coupled to a Kalb—Ramond field. This
begins life as a 2-form B on M, but we may pull it back to a 2-form 7*B on X,
and then

S(X) = /a+e7T*B.
%l

In particular, suppose X is a 2-sphere bounding a 3-ball D in X. Then by
Stokes’ theorem we have

S(X) = /w—i—eﬂ*G
g

where the 3-form
G =dB

is the Kalb—-Ramond analog of the electromagnetic field strength, and e is the
string’s charge. So, the Kalb—Ramond field modifies the multisymplectic struc-
ture on the phase space of the string.

The reader will note that we have coyly refused to describe the phase space
X. For this, see the paper by Baez, Hoffnung and Rogers [I1]. This paper also
explains how to generalize Poisson brackets from symplectic geometry to multi-
symplectic geometry. Just as Poisson brackets in symplectic geometry make the
functions on phase space into a Lie algebra, Poisson brackets in multisymplectic
geometry make a certain collection of 1-forms on phase space into a categorified
analog of a Lie algebra, called a ‘Lie 2-algebra’. Lie 2-algebras are also impor-
tant in higher gauge theory in the same way that Lie algebras are important for
gauge theory. In particular, every Lie 2-group has a Lie 2-algebra [1].

4.2 The Poincaré 2-Group

Suppose we have a representation « of a Lie group G on a vector space H. We
can regard H as an abelian Lie group, and « as an action of G on this abelian
Lie group. So, we can build a 2-group G where:

e ( is any Lie group,

e [ is any vector space
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e « is the adjoint representation, and
e { is trivial.

In particular, note that the Peiffer identity holds. In this way, we see that
any group representation gives a crossed module—so group representations are
secretly 2-groups!

For example, if we let G be the Lorentz group and let « be its obvious
representation on R*:

G =850(3,1)
H=R*
we obtain the so-called Poincaré 2-group, which has the Lorentz group as its
group of morphisms, and the Poincaré group as its group of 2-morphisms [T3].

What is the Poincaré 2-group good for? It is not clear, but there are some
clues. Just as we can study representations of groups on vector spaces, we can
study representations of 2-groups on ‘2-vector spaces’ [6, 23, B3, @1]. The rep-
resentations of a group are the objects of a category, and this sort of category
can be used to build ‘spin foam models’ of background-free quantum field theo-
ries [B]. This endeavor has been most successful with 3d quantum gravity [46],
but everyone working on this subject dreams of doing something similar for 4d
quantum gravity [67]. Going from groups to 2-groups ‘boosts the dimension by
one’: indeed, the representations of a 2-group are the objects of a 2-category.
So, Crane and Sheppeard attempted to build a 4-dimensional spin foam model
starting from the 2-category of representations of the Poincaré 2-group hoping
that this would be related to 4d quantum gravity [31].

This has not come to pass, at least not yet—but this spin foam model does
have interesting connections to 4d physics. The spin foam model of 3d quan-
tum gravity automatically includes point particles, and Baratin and Freidel
have shown that it reduces to the usual theory of Feynman diagrams in 3d
Minkowski spacetime in the limit where the gravitational constant G yewion g0€S
to zero [20]. This line of thought led Baratin and Freidel to construct a spin
foam model that is equivalent to the usual theory of Feynman diagrams in 4d
Minkowski spacetime [21]. At first the mathematics underlying this model was
a bit mysterious—but it now seems clear that this model is based on the rep-
resentation theory of the Poincaré 2-group! For a preliminary report on this
fascinating research, see the paper by Baratin and Wise [22].

In short, it appears that the 2-category of representations of the Poincaré
2-group gives a background-free description of quantum field theory on 4d
Minkowski spacetime. Unfortunately, while spin foam models in 3 dimensions
can be obtained by quantizing gauge theories, we do not see how to obtain this
4d spin foam model by quantizing a higher gauge theory. Indeed, we know of
no classical field theory in 4 dimensions whose solutions are 2-connections on a
principal G-2-bundle where G is the Poincaré 2-group.

However, if we replace the Poincaré 2-group by a closely related 2-group,
this puzzle does have a nice solution. Namely, if we take

G =S0(3,1)
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H =5s0(3,1)

and take « to be the adjoint representation, we obtain the ‘tangent 2-group’ of
the Lorentz group. As we shall see, 2-connections for this 2-group arise naturally
as solutions of a 4d field theory called ‘topological gravity’.

4.3 Tangent 2-Groups

We have seen that any group representation gives a 2-group. But any Lie group
G has a representation on its own Lie algebra: the adjoint representation. This
lets us build a 2-group from the crossed module where:

e ( is any Lie group,

e H is g regarded as a vector space and thus an abelian Lie group,
e « is the adjoint representation, and

e { is trivial.

We call this the tangent 2-group 7 G of the Lie group G. Why? We have
already seen that for any Lie 2-group, the group of all 2-morphisms is the
semidirect product G x H. In the case at hand, this semidirect product is just
G x g, with G acting on g via the adjoint representation. But as a manifold,
this semidirect product is nothing other than the tangent bundle T'G of the Lie
group G. So, the tangent bundle T'G becomes a group, and this is the group of
2-morphisms of 7G.

By TheoremBl a 2-connection on a trivial 7 G-2-bundle consists of a g-valued
1-form A and a g-valued 2-form B such that the curvature FF = dA+ AN A
satisfies

F =0,

since dt(B) = 0 in this case. Where can we find such 2-connections? We can
find them as solutions of a field theory called 4-dimensional BF theory!

BF theory is a classical field theory that works in any dimension. So, take an
n-dimensional oriented manifold M as our spacetime. The fields in BF theory
are a connection A on the trivial principal G-bundle over M, together with a
g-valued (n — 2)-form B. The action is given by

S(A7B):/ (B A F).

Setting the variation of this action equal to zero, we obtain the following field
equations:
dB+[A,B]=0, F=0.

In dimension 4, B is a g-valued 2-form—and thanks to the second equation, A
and B fit together to define a 2-connection on the trivial 7 G-2-bundle over M.

It may seem dull to study a gauge theory where the equations of motion
imply the connection is flat. But there is still room for some fun. We see this
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already in 3-dimensional BF theory, where B is a g-valued 1-form rather than a
2-form. This lets us package A and B into a connection on the trivial T'G-bundle
over M. The field equations

dB+[A,B]=0, F=0

then say precisely that this connection is flat.

When the group G is the Lorentz group SO(2,1), TG is the corresponding
Poincaré group. With this choice of G, 3d BF' theory is a version of 3d general
relativity. In 3 dimensions, unlike the more physical 4d case, the equations
of general relativity say that spacetime is flat in the absence of matter. And
at first glance, 3d BF theory only describes general relativity without matter.
This explains why the equations of motion give a flat connection.

Nonetheless, we can consider 3d BF' theory on a manifold from which the
worldline of a point particle has been removed. The connection (A, B) will be
flat away from the particle’s worldline, but it can have a nontrivial holonomy
around a loop ~ that encircles the worldline:

-l

gl

This holonomy says what happens when we parallel transport an object around
our point particle. The holonomy is an element of Poincaré group. This turns
out to describe the mass and spin of our particle. So, massive spinning point
particles are lurking in the formalism of 3d BF theory.

Even better, this theory predicts an upper bound on the particle’s mass,
roughly the Planck mass. This is true even classically. This may seem strange,
but unlike in 4 dimensions, where we need ¢, Gyewton and A to build a quantity
with dimensions of length, in 3-dimensional spacetime we can do this using only
¢ and Gyewion—=50, ironically, the ‘Planck mass’ does not depend on Planck’s
constant.

Furthermore, in this theory, particles have ‘exotic statistics’, meaning that
the interchange of identical particles is governed by the braid group instead of
the symmetric group. These exotic statistics reduce to ordinary Bose or Fermi
statistics in the Gyewion — 0 limit.

There is thus a wealth of interesting phenomena to be studied in 3d BF
theory. See the paper by Baez, Crans and Wise [9] for a quick overview, and
the work of Freidel, Louapre and Baratin for a deep treatment of the details
[20], 6]

The case of 4d BF theory is just as interesting, and not as fully explored.
In this case the field equations imply that A and B define a 2-connection on
the trivial 7 G-2-bundle over M. But in fact they say more: they say precisely
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that this 2-connection is flat. By this we mean two things. First, the holonomy
hol(v) along a path « does not change when we change this path by a homotopy.
Second, the holonomy hol(X) along a surface ¥ does not change when we change
this surface by a homotopy. The first fact here is equivalent to the equation
F = 0. The second is equivalent to the equation dB + [A, B] = 0.

When the group G is the Lorentz group SO(3, 1), 4d BF theory is sometimes
called ‘topological gravity’. We can think of it as a simplified version of general
relativity that acts more like gravity in 3 dimensions. In particular, we can
copy what we did in 3 dimensions, and consider 4d BF' theory on a manifold
from which the worldlines of particles and the worldsheets of strings have been
removed. Some of what we will do here works for more general groups G, but
let us take G = SO(3,1) just to be specific.

First consider strings. Take a 2-dimensional manifold X embedded in a 4-
dimensional manifold M, and think of X as the worldsheet of a string. Suppose
we can find a small loop 7 that encircles ¥ in such a way that ~ is contractible
in M but not in M — X. If we do 4d BF theory on the spacetime M — X, the
holonomy

hol(y) € SO(3,1)

will not change when we apply a homotopy to . This holonomy describes the
‘mass density’ of our string [9, [I9].

Next, consider particles. Take a curve C' embedded in M, and think of C as
the worldline of a particle. Suppose we can find a small 2-sphere ¥ in M — C
that is contractible in M but not M — C. We can think of this 2-sphere as a
2-morphism 3:1, = 1, in the path 2-groupoid of M. If we do 4d BF' theory
on the spacetime M — C, the holonomy

hol(¥) € s0(3,1)

will not change when we apply a homotopy to X. So, this holonomy describes
some information about the particle—but so far as we know, the physical mean-
ing of this information has not been worked out.

What if we had a field theory whose solutions were flat 2-connections for the
Poincaré 2-group? Then we would have

hol(¥) € R*

and there would be a tempting interpretation of this quantity: namely, as the
energy-momentum of our point particle. So, the puzzle posed at the end of the
previous section is a tantalizing one.

One may rightly ask if the ‘strings’ described above bear any relation to those
of string theory. If they are merely surfaces cut out of spacetime, they lack the
dynamical degrees of freedom normally associated to a string. Certainly they
do not have an action proportional to their surface area, as for the Polyakov
string. Indeed, one may ask if ‘area’ even makes sense in 4d BF theory. After
all, there is no metric on spacetime: the closest substitute is the so(3, 1)-valued
2-form B.
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Some of these problems may have solutions. For starters, when we remove
a surface X from our 4-manifold M, the action

S(A, B) = /fo (B A F)

is no longer gauge-invariant: a gauge transformation changes the action by a
boundary term which is an integral over X. We can remedy this by introducing
fields that live on X, and adding a term to the action which is an integral over X
involving these fields. There are a number of ways to do this [T4, @2, 43, [6T]. For
some, the integral over X is proportional to the area of the string worldsheet in
the special case where the B field arises from a cotetrad (that is, an R*-valued
1-form) as follows:
B=eAe

where we use the isomorphism A2R* 2 50(3,1). In this case there is close rela-
tion to the Nambu—Goto string, which has been carefully examined by Fairbairn,
Noui and Sardelli [43].

This is especially intriguing because when B takes the above form, the BF
action becomes the usual Palatini action for general relativity:

S(4,e) :/Mtr(e/\e/\F)

where ‘tr’ is a suitable nondegenerate bilinear form on so(3,1). Unfortunately,
solutions of Palatini gravity typically fail to obey the condition dt(B) = F
when we take B = e A e. So, we cannot construct 2-connections in the sense of
Theorem B from these solutions! To treat general relativity in 4 dimensions as
a higher gauge theory, we need other ideas. We describe one such idea at the
end of Section EEQ

4.4 Inner Automorphism 2-Groups
There is also a Lie 2-group where:

e (G is any Lie group,

e H=aG,

e ¢ is the identity map,

e « is conjugation:
a(g)h = ghg™".
Following Roberts and Schreiber [66] we call this the inner automorphism
2-group of G, and denote it by ZNVAN(G). We explain this terminology in the
next section.

A 2-connection on the trivial ZNV N (G)-2-bundle over a manifold consists of
a g-valued 1-form A and a g-valued 2-form B such that

B=F
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since dt is now the identity. Intriguingly, 2-connections of this sort show up as
solutions of a slight variant of 4d BF theory. In a move that he later called his
biggest blunder, Einstein took general relativity and threw an extra term into
the equations: a ‘cosmological constant’ term, which gives the vacuum nonzero
energy. We can do the same for topological gravity, or indeed 4d BF theory for
any group G. After all, what counts as a blunder for Einstein might count as a
good idea for lesser mortals such as ourselves.

So, fix a 4-dimensional oriented manifold M as our spacetime. As in ordinary
BF theory, take the fields to be a connection A on the trivial principal G-bundle
over M, together with a g-valued 2-form B. The action for BF theory ‘with
cosmological constant’ is defined to be

S(A, B) :/ (BAF—2BAB).
M 2

Setting the variation of the action equal to zero, we obtain these field equations:
dB+[A,B]=0, F =\B.

When A\ = 0, these are just the equations we saw in the previous section. But
let us consider the case A\ # 0. Then these equations have a drastically different
character! The Bianchi identity dF' + [A, F] = 0, together with FF = AB,
automatically implies that dB + [A, B] = 0. So, to get a solution of this theory
we simply take any connection A, compute its curvature F' and set B = F'/\.

This may seem boring: a field theory where any connection is a solution.
But in fact it has an interesting relation to higher gauge theory. To see this,
it helps to change variables and work with the field 3 = AB. Then the field
equations become

Any solution of these equations gives a 2-connection on the trivial principal
INN(G)-2-bundle over M!

There is also a tantalizing relation to the cosmological constant in general
relativity. If the B field arises from a cotetrad as explained in the previous
section:

B=eAe,

then the above action becomes

A
S= [ tr(eAeNF—=eNeAele).
M 2

When we choose the bilinear form ‘tr’ correctly, this is the action for general
relativity with a cosmological constant proportional to A.

There is some evidence [4] that BF theory with nonzero cosmological con-
stant can be quantized to obtain the so-called Crane—Yetter model [30), 32],
which is a spin foam model based on the category of representations of the
quantum group associated to G. Indeed, in some circles this is taken almost
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as an article of faith. But a rigorous argument, or even a fully convincing
argument, seems to be missing. So, this issue deserves more study.

The A — 0 limit of BF theory is fascinating but highly singular, since for
A # 0 a solution is just a connection A, while for A = 0 a solution is a flat
connection A together with a B field such that dB + [4,B] = 0. At least
in some rough intuitive sense, as A — 0 the group H in the crossed module
corresponding to ZMN(G) ‘expands and flattens out’ from the group G to its
tangent space g. Thus, ZNN(G) degenerates to the tangent 2-group 7G. It
would be nice to make this precise using a 2-group version of the theory of group
contractions.

4.5 Automorphism 2-Groups

The inner automorphism group of the previous section is close related to the
automorphism 2-group AUT (H), defined using the crossed module where:

e G =Aut(H),
e H is any Lie group,

e t: H — Aut(H) sends any group element to the operation of conjugating
by that element,

o a: Aut(H) — Aut(H) is the identity.

We use the term ‘automorphism 2-group’ because AUT (H) really is the 2-group
of symmetries of H. Lie groups form a 2-category, any object in a 2-category
has a 2-group of symmetries, and the 2-group of symmetries of H is naturally
a Lie 2-group, which is none other than AUT (H). See [13] for details.

A principal AUT (H)-2-bundle is usually called a ‘nonabelian gerbe’. Non-
abelian gerbes are a major test case for ideas in higher gauge theory. Indeed,
almost the whole formalism of 2-connections was worked out first by Breen and
Messing [Z7] in the special case of nonabelian gerbes. The one aspect they did
not consider is the one we have focused on here: parallel transport. Thus, they
did not impose the equation dét(B) = F, which we need to obtain holonomies
that satisfy the conditions of Theorem . Nonetheless, the quantity F — dt(B)
plays an important role in their formalism: they call it the fake curvature.

The relation between the automorphism 2-group and the inner automor-
phism 2-group is nicely explained in the work of Roberts and Schreiber [66]. As
they discuss, for any group G there is an exact sequence of 2-groups

1— Z(G) = INN(G) - AUT(G) — OUT (G) — 1

where Z(G) is the center of G and OUT (G) is the group of outer automorphisms
of G, both regarded as 2-groups with only identity 2-morphisms.

Roberts and Schreiber go on to consider an analogous sequence of 3-groups
constructed starting from a 2-group. Among these, the ‘inner automorphism
3-group’ of a 2-group plays a special role, which might make it important in
understanding general relativity as a higher gauge theory.
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As we have already seen in Section EE3, Palatini gravity in 4d spacetime
involves an s0(3,1)-valued 1-form A and a s0(3,1)-valued 2-form B = e Ae.
This is precisely the data we expect for a connection on a principal G-2-bundle
where G is the tangent 2-group of the Lorentz group, except that the 2-form B
fails to obey the equation dt(B) = F, as required by Theorem EEQ Is there a
way around this problem?

One possibility is to follow Breen and Messing [27], who, as we note, omit the
condition dt(B) = F' in their work on connections on nonabelian gerbes. This
denies them the advantages of computing holonomies for surfaces, but they still
have a coherent theory which may offer some new insights into general relativity.

On the other hand, Schreiber [Z0] has argued that for any Lie 2-group G, the
3-group ZNN(G) allows us to define a version of parallel transport for particles,
strings and 2-branes starting from an arbitrary g-valued 1-form A and h-valued
2-form B. The condition dt(B) = F' is not required. So, to treat 4d Palatini
gravity as a higher gauge theory, perhaps we can treat the basic fields as a 3-
connection on an ZNN (7SO(3,1))-3-bundle. To entice the reader into pursuing
this line of research, we optimistically dub this 3-group ZNN(7SO(3,1)) the
gravity 3-group.

Martins and Picken [59] have already made some important progress toward
studying this question. Namely, they have defined a path 3-groupoid Ps(M)
for a smooth manifold M, and they have described 3-connections on the trivial
G-3-bundle over M as 3-functors

hol: P3(M) — G.

Here G is an arbitrary Lie 3-group. They show how to construct these functors
from a 1-form, a 2-form, and a 3-form taking values in three Lie algebras associ-
ated to G. Combining their work with the work of Roberts and Schreiber, one
can show that when G is the gravity 3-group, a flat 3-connection on the trivial
G-bundle over M is an s0(3, 1)-valued 1-form A together with an so(3, 1)-valued
2-form B.

4.6 String 2-Groups

The Lie 2-groups discussed so far are easy to construct. The string 2-group is
considerably more difficult. Ultimately it forces upon us a deeper conception
of what a Lie 2-group really is, and a more sophisticated approach to higher
gauge theory. Treated in proper detail, these topics would carry us far beyond
the limits of this quick introduction. But it would be a shame not to mention
them at all.

Suppose we have a central extension of a Lie group G by an abelian Lie
group A. In other words, suppose we have a short exact sequence of Lie groups

1-A-HLG =1

where the image of A lies in the center of H. Then we can construct an action
«a of G on H as follows. The map t: H — G describes H as a fiber bundle
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over (7, so choose a section of this bundle: that is, a function s: G — H with
t(s(g)) = g, not necessarily a homomorphism. Then set

a(g)h = s(g)hs(g)~".

Since A is included in the center of H, « is independent of the choice of s. We
do not need a global smooth section s to check that a(g) depends smoothly on
g: it suffices that there exist a local smooth section in a neighborhood of each
g € G, and indeed this is always true.

Given all this, we can check that ¢ is G-equivariant and that the Peiffer
identity holds. So, we obtain a Lie 2-group where:

e (G is any Lie group,

e H is any Lie group,

e t: H — G makes H into a central extension of G,

e « is given by a(g)h = s(g)hs(g) ! where s: G — H is any section.

We call this the central extension 2-group C(H LA G).

To get concrete examples, we need central extensions of Lie groups. For any
choice of G and A, we can always take H = G x A and use the ‘trivial’ central
extension

1-A—-AxG—-G—1.

But for more interesting examples, we need nontrivial central extensions. These
tend to arise from problems in quantization. For example, suppose V is a finite-
dimensional symplectic vector space: that is, a vector space equipped with
nondegenerate antisymmetric bilinear form

w:V xV —=R.

Then we can make H = V @ R into a Lie group called the Heisenberg group,
with the product

(u,a)(v,b) = (u+v,a+ b+ w(u,v)).

The Heisenberg group plays a fundamental role in quantum mechanics, because
we can think of V' as the phase space of a classical point particle. If we let
G stand for V regarded as an abelian Lie group, then elements of G describe
translations in phase space: that is, translations of both position and momen-
tum. The Heisenberg group H describes how these translations commute only
‘up to a phase’ when we take quantum mechanics into account: the phase is
given by exp(iw(u,v)). There is a homomorphism ¢: H — G that forgets this
phase information, given by
t(u,a) = u.

This exhibits H as a central extension of G. We thus obtain a central extension
2-group C(H AN G), called the Heisenberg 2-group of the symplectic vector
space V.
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The applications of Heisenberg 2-groups seem largely unexplored, and should
be worth studying. So far, much more work has been put into understanding 2-
groups arising from central extensions of loop groups. The reason is that central
extensions of loop groups play a basic role in string theory and conformal field
theory, as nicely explained by Pressley and Segal [65].

Suppose that G is a connected and simply-connected compact simple Lie
group G. Define the loop group QG to be the set of all smooth paths v: [0, 1] —
G that start and end at the identity of G. This becomes a group under point-
wise multiplication, and in fact it is a kind of infinite-dimensional Lie group:
technically, a Fréchet Lie group [60].

For each integer k, called the level, the loop group has a central extension

1 - U(1) — %G 06 — 1.

These extensions are all different, and all nontrivial except for £ = 0. In physics,
they arise because the 2d gauge theory called the Wess—Zumino-Witten model
has an ‘anomaly’. The loop group G acts as gauge transformations in the
classical version of this theory. However, when we quantize the theory, we
obtain a representation of QG only ‘up to a phase’. This can be understood
as a representation of the central extension Qk/??, where k depends on Planck’s
constant.

Starting from this central extension we can construct a central extension
2-group called the level-k loop 2-group of G, L;(G). This is an infinite-
dimensional Lie 2-group, meaning that it comes from a crossed module where
the groups involved are infinite-dimensional Lie groups, and all the maps are
smooth. Moreover, it fits into an exact sequence

1 — £,(G0 — STRINGL(G) — G — 1

where the middle term, the level-k string 2-group of G, has very interesting
properties [§].

The string 2-group STRINGL(G) is a Fréchet Lie 2-group, and thus in
particular a topological 2-group. There is a way to take any topological 2-
group and squash it down to a topological group [8, [I8]. Applying this trick
to STRING(G) when k = 1, we obtain a topological group whose homotopy
groups match those of G—except for the third homotopy group, which has been
made trivial. In the special case where G = Spin(n), this topological group is
called the ‘string group’, since it plays a role in defining spinors on loop space
[78]. The string group also plays a role in Stolz and Teichner’s work on elliptic
cohomology, which involves a notion of parallel transport over surfaces [74].
There is a lot of sophisticated mathematics involved here, but ultimately much
of it should arise from the way string 2-groups describe the parallel transport
of strings! The work of Sati, Schreiber and Stasheff [69] provides good evidence
for this, as does the work of Waldorf [75].

The problem of constructing a Lie 2-group with a given Lie 2-algebra, ulti-
mately pushes us into using a more general concept of Lie 2-group than the one
described here A9, B3]. There is no trouble getting a Lie 2-group from a ‘strict’
Lie 2-algebra, where.... MORE!!!
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5 Gauge Transformations and Nontrivial 2-Bundles

So far we have implicitly been looking at 2-connections on trivial 2-bundles.
This is fine locally. But there are also interesting issues involving nontrivial
2-bundles, and these are important when we work globally.

MORE!M!
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