
 

Polyhedral models of Felix Klein´s Quartic

Introduction

Basic facts

Curved models

Polyhedral models

Dual models

Conclusions

All pictures

References

Introduction

Felix Klein's quartic, also called Klein's curve, Klein's regular map or Klein's group PSL (2,7) is

one of the most famous mathematical objects, or, as A.M. Macbeath formulated ([L], p. 104): ``It

is a truly central piece of mathematics.'' 

Felix Klein discovered this finite group of order 168 in 1879 [K], and since then its properties

were investigated, generalized, applied and discussed in hundreds of papers. 

The recent book ``The eightfold way'' [L] contains several survey articles by prominent experts,

which collect and discuss the essentials of Klein's quartic from various aspects. This book was



issued on the occasion of the installation of a nice geometric model of Klein's quartic made of

Carrara marble by the artist H. Ferguson and put up at the campus of Berkeley. 

The idea to visualize Klein's quartic by geometric models is not new. Felix Klein himself gave a

planar and a 3-dimensional model in [K]. The planar one is the general and unsurpassable

Poincar\'{e} model (cf. [G] or [L] p. 115), wellknown from classical complex analysis. The 3-

dimensional one comes from the fact that Klein's quartic can be realized as a Riemannian manifold

or as a regular map on an oriented 2-manifold of genus 3 and with octahedral symmetry ([L] p.

127). It is not metrically ``correct'', but is shows the algebraic and combinatorial properties of

Klein's group PSL(2,7). The motivation for such 3-dimensional models is to find realizations as

close as possible to the Platonic solids, hence built up of planar (and convex) polygons and with

maximal possible symmetry. Polyhedral realizations of groups or regular maps can also be

considered as contributions to H.S.M. Coxeter's general concept of ``groups and geometry'' (cf.

e.g.[C] and [CM]). In this paper we describe and show the basic polyhedral realizations of Klein's

quartic, two of them ``old'' and two new. For this we need some basic properties of Klein's quartic,

which can be found in literature (cf. e.g.[K], [L], [CM], [MS] or [SW1]). 

Basic facts

Klein's quartic is the algebraic curve with equation 

in homogeneous coordinates. It can be realized as a regular map on an oriented 2-manifold of

genus 3; either with 24 heptagons, three meeting at each of its 56 vertices, or with 56 triangles,

seven meeting at each of its 24 vertices. The first one is usually written as , the second one

. Here the subscript 8 denotes the length of the Petrie polygons. 

A Petrie polygon is a skew polygon where every two but no three consecutive edges belong to the

same face of the polyhedron. On a regular map, all possible Petrie polygons have same length. For

Klein's map this is 8, and this explains the title ``The eightfold way''. So  and  are

the two dual versions or realizations of Klein's group; in the same way as the regular icosahedron

 and dodecahedron  are the two dual realizations of the icosahedral group with

Petrie polygons of length 10. 

The ordered triplets of vertices, edges and faces, briefly called flags of the icosahedron or

dodecahedron are all equivalent under the group actions, i.e. the group acts transitively on the

flags. As all group actions correspond to geometric symmetries, the icosahedron and dodecahedron

(and the other Platonic solids) are considered to be perfect or beautiful or divine. This analogy

(and other analogies) to the Platonic solids and their groups is the motivation to find 3-

dimensional models of Klein's group. The icosahedral rotation group has order 60, including

reflections one gets the full order 120. In the same way the full order of Klein's group is 336, but

we consider its subgroup of order 168 and index 2, as Klein himself did.

Curved models

Different from the Platonic solids not all group actions of Klein's group can be realized by a



geometric rotation or a reflection of the model. For regular maps of genus g >= 2 with p-gons and

q-valent vertices there is the famous Riemann-Hurwitz identity, which relates all relevant

numbers, in particular the genus g and the order A of the (automorphism) group: 

From p=3, q=7 (or vice versa) and A = 168 follows g=3. As a consequence follows that such

groups have maximal order 84(g-1), and Klein's group is the first one of these rare ``Hurwitz

groups''. 

The maximal geometric symmetry of Klein's group and hence of its geometric models is the

octahedral rotation group of order 24. As 168 = 7 · 24, the other 7 operations are ``hidden

symmetries''. 

So Klein's second model is 3-dimensional with octahedral symmetry, curved, with

selfintersections and non compact (cf. [K] or [L], p. 127). It can be described as ``three

hyperboloids whose axes meet at right angles, which is certanily appealing'' (J. Gray). 

It can easily be shown that any 3-dimensional model with maximal (i.e. octahedral) symmetry has

selfintersections, so in order to avoid selfintersections Ferguson's model has next lower symmetry,

i.e. tetrahedral rotation symmetry of order 12. 

Ferguson's model is the realization of Klein's map  on the standard model of an oriented

smooth surface of genus 3 with tetrahedral symmetry. It shows the 24 heptagons and hence it

corresponds to the regular dodecahedron . Ferguson's model is curved and so the

heptagons are nonplanar.

Polyhedral models

Figure 1 Figure 2

We come back to the natural question, if one can get a closer analogue to the Platonic solids and

find models with planar polygons as facets. This question was answered by E. Schulte and J.M.

Wills in 1985 [SW1] and 1987 [SW2], where they gave a polyhedral embedding with tetrahedral

symmetry (figure 1) and a polyhedral immersion with octahedral symmetry (figure 2). Both are

models of  with 56 triangles, hence they correspond to the icosahedron . 



The octahedral model has maximal symmetry and the advantage that the symmetry group acts

transitively on its 24 vertices. So the vertices are all alike. The vertices can be chosen that their

convex hull is the snub cube, hence one of the 13 Archimedean solids. As a consequence 32 of the

56 triangles are even regular. 

The three intersecting tunnels of this model correspond to Klein's three intersecting hyperboloids.

Altogether this polyhedral model is the simplest one to understand the structure of Klein's group

PSL (2,7). 

The tetrahedral model of  is even more attractive as it can be realized as an embedding, i.e.

without selfintersections. Each of the four holes have a strong twist and it is a priori not clear that

this can be done without selfintersections. The 24 vertices split into two orbits of 12 vertices under

the tetrahedral rotation group. The outer orbit of 12 vertices can be realized again by the vertices

of an Archimedean solid, namely the truncated tetrahedron. Several models from cardbord and

metal and computer films were made of this realization. (cf. also [BW] and Conway's comment

before the title). From its symmetry and embedding properties it corresponds to Ferguson's model,

but it is eight years older. H.S.M. Coxeter's comment (Dec. 3, 1984) on this model: ``....a

wonderful result''. 

The constructions and incidences can be found in detail in [SW1] and [SW2]. For more details cf.

[SSW] where one can find also models with integer coordinates.

Dual models

Figure 3a Figure 3b Figure 4

E. Schulte and J.M.Wills never tried to realize the dual map  neither with tetrahedral nor

with octahedral symmetry. It was intuitively clear that they are much more complicate and hence

less useful to understand Klein's group. With modern computer programs a construction of these

models is possible and the results are shown in figures 3 and 4. 

The complicated shape of these models underlines the simplicity of their duals. 

Figure 3 displays  with tetrahedral symmetry and figure 4 with octahedral symmetry.

Figure 3 is an immersion. Its 24 heptagons lie on two orbits (red and blue) of the tetrahedral

group. In figure 4 the heptagonal faces have selfintersections, as some of the classical Kepler-

Poinsot star bodies have. Because of the selfintersections both figures are too complicated to be

understood at once. It is worth mentioning that the bizarre model with octahedral symmetry is

face-transitive, i.e. all its faces are congruent. It is more complicated than its dual in figure 2,



which is built up of triangles. 

It might be surprising that the realizations of a pair of dual maps of the same group can be so

different. But the answer is quite simple: In the triangulations the facets are (of course) triangles,

hence the simplest polygons which are convex and free of selfintersections. All topological

complications as twists and curvature are hidden in the vertices whose shape is flexible. 

In the dual case with 3-valent vertices all complications have to be stored in the heptagons, which

makes the models star-shaped and bizarre. This phenomenon for nonconvex realizations of dual

maps is wellknown and described by Grünbaum and Shephard [GS]. For details of the

constructions of  we refer to [SSW].

Conclusions

The models of Klein's quartic with closest relation to the Platonic solids are the polyhedral

embedding of  with tetrahedral symmetry and the polyhedral immersion of  with

octahedral symmetry. Both are built up of planar triangles, so they correspond to the regular

icosahedron. Their convex hulls are Archimedean solids. The polyhedral realizations of the dual

map  are starshaped. They correspond to the regular dodecahedron and remind of the

classical Kepler--Poinsot polyhedra, Coxeter's regular complex polyhedra and other

generalizations. 

So these models can be considered as footnotes to Felix Klein's and H.S.M. Coxeter's general idea

to bring algebra and geometry closer together.
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