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1. Introduction

Society is increasingly complex and connected
through the internet and social media, planetary
climate and ecological challenges, transnational
organization and global supply chains. To navi-
gate and thrive in this networked world, we rely
on scientific advances to help us manage this
complexity by enabling robust communication,
cooperation, and collaboration.

Within about the past decade, a growing num-
ber of researchers have realized that the aspects
of category theory that make it useful in certain
pure mathematical contexts also make it use-
ful for the study of the underlying structure of
physical and conceptual systems. From this re-
alization, a new field has emerged called Applied
Category Theory (ACT). Some major themes
currently found in the ACT literature include
compositionality, functorial semantics, and im-
plementing these structures into user-friendly soft-
ware. Indeed, engineers and scientists should
benefit from the fruits of ACT, ideally without
having to first study category theory which is
why producing user-friendly software is a north
star of ACT research. In this note, we provide a
bird’s eye view of these major themes, describe
a road map to relevant literature, and highlight
the essence and intuition of the central ideas as
well as the payoffs that a category theoretic ap-
proach can bring. Into this narrative, we fit a
brief description of specific research projects to
be undertaken by participants of the 2022 Math-
ematical Research Community in Applied Cate-
gory Theory.

2. Compositionality

To a category theorist, it is not the mathemati-
cal objects, but the morphisms between objects
that are held to be fundamental. This viewpoint
necessarily lifts composition to the fore of math-
ematical operations. When considering exam-
ples of a morphism, many may conjure functions
between sets, homomorphisms between rings, or
continuous maps between spaces. These exam-
ples are certainly important, however, morphisms
can truly be anything satisfying the axioms for
a category. One main thread of research in ap-
plied category theory is to model open systems
by arranging them as morphisms in some cate-
gory. “Open” here means that the systems are
equipped with an interface that can interact with
other compatible systems.

2.1. Structured Cospans. One method of en-
coding open systems as morphisms is to consider
them as ‘cospans’ [5]. The idea is to create a cat-
egory where we interpret each object as a system
of some sort, and then define a cospan to be an
object S with two morphisms into it

X > 5«Y

that select which parts of S serve as inputs and
outputs. Composition of cospans,

X — S« Y followed by Y = T «+ Z,

is given by a purely categorical construction known
as a pushout, which connects the outputs of S to
the inputs of T". In applied category theory we
often need structured cospans

X—-U(A) «Y

where the object A lives in a different category
from X and Y, related by a functor U. For ex-
ample, X and Y could be sets, and A could be
a graph.

The structured cospan approach has been ap-
plied to chemical reaction networks [9], Markov
processes [6] (see Figure 1, and electrical circuits
[7, 10]. Petri nets, typically found in chemistry
and computer science, are a graphical formalism
to describe distributed systems. These too can
be realized as structured cospans thus offering
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FiGure 1. Open Markov Process
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F1GURE 2. Open SIR Model as a
Petri Net
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a way to categorically build complex processes
[8]. Figure 2 shows an open Petri net as a struc-
tured cospan encoding a simple model of infec-
tious disease. Here S stands for a population of
‘susceptible’ people, I stands for ‘infected’ and
R stands for ‘resistant’.

It turns out that standard ways to manipulate a
system—for example connecting outputs of one
system to the inputs of another, turning an out-
put into an input, considering multiple systems
as a single system—are all realized with purely
category theoretic operations. The payoff is that
many different systems can be described in the
same language: category theory. With different
systems on equal footing, comparisons are more
readily available. Rigorous, not simply heuristic,
diagrammatic languages exist to assist in reason-
ing about systems of various kinds, and a struc-
tural analysis of systems may commence.

2.2. Open Reaction Networks. Reaction net-
works are a widely used method of describing
chemical reactions. There is a standard method
of turning a reaction network into a collection
of differential equations describing the time evo-
lution of the concentration of various chemicals
in solution. Starting in the 1970s, mathematical
chemists formulated a number of deep theorems

[17] and conjectures [1] saying how the qualita-
tive behavior of these differential equations de-
pend on topological features of the reaction net-
work.

More recently, structured cospans have been used
to describe “open” reaction networks— where
chemicals can flow in and out—as morphisms
in a category [9]. We can build larger reaction
networks by composing smaller open ones, and
the map sending an open reaction network to its
differential equation is a functor. In the 2022
MRC in Applied Category Theory, participants
will use this framework to study the qualitative
behavior of chemical reactions.

2.3. Lenses. Lenses offer another method to con-
nect systems together and are particularly use-
ful to model a scenario involving a bidirectional
flow of information between connected systems.
A helpful, if rough, approximation of a lens is
two interacting systems, each encoded as a set
of states X, Y together with one map f: X —
Y that “sends information forward” and a sec-
ond map b: X XY — X that “sends informa-
tion backwards”. To illustrate, imaging that X
is the set of behaviors of an individual named
James and Y is the set of behaviors of the Cate-
gory Cafe, James’ favorite coffee house. The for-
ward function captures how the Category Cafe
behaves f(x) € Y in reaction to each of James’
behavior x € X. For instance, perhaps x
‘James orders a coffee’ maps to f(z) = ‘an em-
ployee pours a coffee’. The backwards function
captures how each state of the cafe y affects each
of James’ behavior b(—,y): X — X. If y = ‘the
cafe is busy’, then b(—,y): X — X might up-
date z1 = ‘orders a coffee’ to b(x1,y) = ‘leaves
the cafe’, hold z2 = ‘uses the restroom’ constant
s0 b(x2,y) = x2 and, update x3 = ‘sit and check
emails’ to b(z3,y) = ‘stand in the corner and
wait until customers leave’.

While this toy example imparts the flavor of a
lens, it does not impart the lens’ full majesty
when the appropriate rigor and generality is con-
sidered. Indeed, lenses are so useful that people
continue to rediscover them in seemingly uncon-
nected situations. Godel’s Dialectica interpreta-
tion [18], a model of intuitionistic arithmetic, of-
fers an early discovery of lenses, though without



the term. Later de Paiva placed Gddel’s logi-
cal framework into a category whose morphisms
are generalized lenses [21]. This Dialectica con-
struction has come to establish much of the cur-
rent understanding about lenses. Contemporary
lens applications include database theory [14],
a structural perspective on functional learning
[12], domain theory [23], and open game theory
[16] with an emphasis on economic models. This
same structure appearing in so many places ex-
cited category theorists who in turn began to
study lenses on their own terms, starting with
the category of lenses in the category of sets. The
objects of this category are sets and the mor-
phisms (f,b): X — Y are lenses, so a pair of
functions f: X — Y and b: X xY — X subject
to several compatibility laws, that is commuting
diagrams

(idx, f)
X xY X X X xY
D) f idx b
Y X
indY
XxYxY X xY
1,3 b
X xY X

A composite of lenses
(fl,bl): X — Y and (fg,bg)i Y -7

comprises the functions

X —>Zand Z x X — X,
respectively defined by x — fo(f1(x)) and

(z,2) = bi(b2(z, f1(2)), z)
and are depicted in Figure 3 using a string dia-
gram. This category generalizes in various direc-
tions, for instance by taking different permuta-
tions of the compatibility laws, by taking lenses
in various categories or, repeatedly, by replac-

ing the Cartesian product with another monoidal
product.

FiGURE 3. Lens Composition as
a String Diagram

2.4. Dialectica Interpretation. When comb-
ing the above cited literature about lenses, one
would notice that there are actually variations
of lenses just as there are for any mathemati-
cal object. In fact, one of the variants of the
lenses discussed by both [12] and [16] seems to
be a certain restriction of de Paiva’s Dialectica
construction, although it is not immediately ob-
vious to what degree such a restriction preserves
the logical structure of the construction. In the
2022 MRC for Applied Category Theory, partic-
ipants will construct a framework that clarifies
in which precise sense the concept of lens as em-
bodied by the Dialectica construction generalizes
the variations of lenses discussed above.

3. Functorial Semantics

We have two formal and rigorous methods of
building systems from their constituent parts:
structured cospans and lenses. The categories
we build from structured cospans or from lenses
offer a syntax that we can use to reason about
the structure of systems. However, we would also
like to understand their behavior. Given our in-
terest in composite systems, a natural question
to ponder is: how much of a system’s behavior
is explained by the behavior of its component
parts? To answer this question, we can borrow
ideas from one of category theory’s giants.

In his PhD thesis, William Lawvere introduced a
category theoretic perspective on universal alge-
bra called functorial semantics [19]. The idea is



to encode the theory for an algebraic object into
a category. For example, the category for the
theory of a group will have its objects generated
by taking all finite products of a single object G,
giving objects

1, G, GxG, GxGxG,

and so on. The morphisms of this category are
generated, via composition and products, by the
structure maps e: 1 — G, (=)7': G — G, and
x: G X G — G. The resulting morphisms are
then quotiented by equations between morphisms
that describe the properties of identity, invert-
ibility, and associativity. This construction pro-
vides a unique morphism for every possible way
to turn a string of group elements into a single
element, for instance

(g17.927 93, 94) = ((gl_l * 92) * g3)71) * g4
has a dedicated morphism of type

GxGExGExG—=d.

Note, there are no actual elements here, we are
just using generalized symbols to describe the
morphism. The resulting category Th(Group)
is not a group; it is the syntax for groups. This
is directly in line with our categories constructed
using structured cospans or lenses to capture the
syntax of various systems. Then, once we have
a syntax, we can use a functor out of that syn-
tax and into another category to realize the se-
mantics. For example, every group is a functor
Th(Group) — Set to the category of sets and
set functions. Here Set is the semantics of the
group. By changing the semantics, we can ob-
tain the many flavors of groups: each topological
group is a functor Th(Group) — Top to the cat-
egory of topological spaces and continuous maps,
each Lie group is a functor Th(Group) — Diff
into the category of differential manifolds and
smooth maps.

Applied category theorists use this idea to study
open systems using two categories. The first cat-
egory has as morphisms the open systems, for
example encoded as structured cospans. This
category serves as the syntax for the system,
governing how we can combine systems to make
larger, more complex systems. The second cat-
egory captures the behavior of these systems.

This category serves as the semantics and is typ-
ically the category Rel whose objects are sets
and morphisms are binary relations, though a
category of stronger relations may be appropri-
ate. Then a functor Syntax — Semantics as-
signs to each system (a morphism in the syntax
category), the relationship between behaviors on
the system’s inputs and outputs. For example,
there is a functor from the category whose mor-
phisms are passive linear circuits to the category
LinRel whose objects are R™ for each natural
number n and morphisms R” — R” are linear
relations, that is linear subspaces of R @ R".
This functor assigns to a passive linear network

= RcCRS@pR?

where R comprises the tuples (Uk7ik)2:1 that
represent the realizable potential-current pairs
that can exist on each port according to Kirch-
hoff’s Circuit Laws.

In general, these semantics-assigning functors cap-
ture the external behavior of a system as a com-
posite of the system’s components. The gener-
ality of this approach favors the structural per-
spective and, by using category theory as a com-
mon language, allowing for a more readily-made
comparison for systems of different types. In an
era of increasing interdisciplinarity, the ability to
translate knowledge across disciplines is crucial.
Applied category theory is one approach towards
building such a dictionary.

It is worth noting that functorial semantics as
described above does does not capture any be-
havior that is emergent from composing systems.
Research is underway in this direction by using
so called lax functors [13].

3.1. Social Simplicial Complexes. The power
of functors goes beyond their ability to describe
the deconstruction of systems into their syntax
and semantics. They are a powerful organiza-
tional tool that encompasses a staggeringly large



number of the most famous mathematical opera-
tions. Indeed, computing some free algebraic ob-
ject on a set, the fundamental group on a space,
the homology and cohomology of spaces, the tan-
gent or cotangent bundle of a smooth manifold
are all functors. Even a space like a sheaf or
presheaf can be represented as a functor. By
thinking about a space as a functor, the higher-
dimensional features can be studied using higher
category theory, a perspective that offers new
tools to classical subjects. In the field of Topo-
logical Data Analysis, functoriality of many con-
structions is a key ingredient in the study of their
robustness [11].

In the 2022 MRC, participants will study social
systems using functors and other category theo-
retic tools. Many of the methods currently used
in network science were first developed by social
network scientists, who use nodes to represent
an agent of a social system, and (un)directed
labelled edges to represent binary relations be-
tween agents (see Figure 4).

Two of the main properties of social systems
that social scientists are interested in studying
are positions and roles. For networks, positions
are defined as equivalence classes of nodes, while
roles are equivalence classes of compound rela-
tions [22]. Since the 1970s a lot of research has
been done to develop these concepts in a rigorous
way [15]. Otter and Porter developed methods
to relate the analysis of roles and positions in
social networks, using a functorial formulation
[20]. At the 2022 MRC, we intend to extend this
functorial framework to account for higher-order
interactions between social agents by modeling
social systems with simplicial complexes instead
of mere graphs.

4. Software Development

A goal of ACT community is to bridge the gap
between theorists using category theoretic mod-
eling tools and those who want to use the mod-
els to say something useful and true about the
world. One can cross their fingers and hope that
the “users” will simply take it upon themselves
to learn enough category theory to take advan-
tage of ACT-styled models. A more proactive
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aunt mother

FIGURE 4. An example of social
network modeling kinship rela-
tionships.

approach would be to build user-friendly (mean-
ing, no category theory knowledge required) tools.
Such tools will likely take the form of computer
software with intuitive graphical interfaces where
the category theory is programmed under-the-
hood. A number of researchers are currently
working on building such software tools, though
this work is very much in its infancy. One exam-
ple include Globular [3], a proof assistant that
allows one to perform higher-dimensional calcu-
lations in categories via a graphical interface.
Structured cospans of Petri nets were implemented
in the software package Julia to develop an SIR
model that is compositional in the sense that var-
ious cities can each have their own model that
can be connected together to form a composite
SIR model [2]. Users can set parameters and
all the category theory remains underneath the
hood. Private enterprise is also entering the pic-
ture. The organization Statebox' is blending
an ACT approach to Petri Nets together with
blockchain technology to develop a technology
stack based on a visual programming language.
In addition, they have built a software engine for
compositional game theoretic modeling, a finite
state machine oracle [4]. The company Conexus?
uses applied categorical methods for data inte-
gration.

The success of ACT as a discipline largely hinges
on its ability to be accessible and available to
scientists and engineers, meaning the building of
software is central to the ACT program.

Ihttps:/ /statebox.org/

2https://conexus.com/
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5. Conclusion

The ACT community is continuing to grow and
seeking early-career researchers, programmers, sci-
entists, and engineers of all stripes to join us
at the 2022 Mathematical Research Community.
Those who enjoy a systems-thinking and struc-
tural perspective will find that category theory
provides a rigorous and robust framework for
reasoning about systems, processes, and relation-
ships. Expertise in category theory is not re-
quired to join, just a desire to learn.
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