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The Big Picture

Mac Lane’s work marked a revolution in how we think
about mathematics. Instead of studying a set of things:

we can now start with a category of things and processes:

Doing this thoroughly forces us to go further, and study
2-categories of things, processes, and processes between
processes:

and so on. This requires a theory of n-categories,
which many mathematicians are struggling to build now.



I'll illustrate these ideas with examples from higher gauge
theory. This describes not only how particles transform
as they move along paths in spacetime:

@

but also how strings transform as they trace out surfaces:

. and so on. Where ordinary gauge theory uses groups,
which are special categories:

higher gauge theory uses 2-groups:

which are special 2-categories. Where ordinary gauge
theory uses bundles, higher gauge theory uses 2-bundles.
Everything gets ‘categorified’!

But how did groups, bundles and gauge theory arise in
the first place? Let’s start at the beginning....



Galois Theory
and the Erlangen Program

Around 1832, Galois discovered a basic principle:

We can classify the ways a little thing £
can sit in a bigger thing K:

k— K

by keeping track of the symmetries of K
that map k to itself. These form a sub-
group of the symmetries of K:

Gal(K|k) C Aut(K).

Galois applied this principle in a special case, but it’s
very general. In 1872 Klein announced his ‘Erlangen
program’, which applies the principle to geometry.

For example, any projective plane P? has a symmetry
group Aut(IP?) consisting of all transformations that carry
lines to lines.

Each point in P? is determined by the subgroup of Aut(P?)
fixing this point. Each line in P? is determined by the
subgroup preserving this line. Other subgroups corre-
spond to other figures in the plane!



Algebras vs. Spaces

Galois applied his idea to situations where the ‘things’ in
question were commutative algebras. In the mid-1800s,
Dedekind, Kummer and Riemann realized that commu-
tative algebra is like topology, only backwards! Any
space X has a commutative algebra O(X) consisting of
functions on it. Any map

f: X->Y

gives a map

1 0Y) — O(X).

If we're clever we can think of any commutative algebra
as functions on some space — or ‘scheme’:

[Affine Schemes] = [Commutative Rings]P.

Note how it’s backwards: the inclusion of commutative
rings

p*: Cl] = Clv/3]
corresponds to the branched cover of the complex plane
by the Riemann surface for /z:

p:C — C

zZ |—>Z2

So: classifying how a little commutative algebra can
sit inside a big one amounts to classifying how a big
space can cover a little one! Now the Galois group gets
renamed the group of deck transformations: in the
above example it’s Z/2:

Vi =z



The Fundamental Group

Around 1883, Poincaré discovered that any nice con-
nected space B has a connected covering space that cov-
ers all others: its universal cover. This has the biggest

deck transformation group of all: the fundamental group
™ (B) .

The idea behind Galois theory — turned backwards! —
then says that:

Connected covering spaces of B are classified by
subgroups H C m(B).

To remove the ‘connectedness’ assumption, say it like
this instead:

Connected covering spaces of B with fiber I’ are
classified by transitive actions of m(B) on F.

Here F' = m(B)/H. Now generalize:

Covering spaces of B with fiber F' are classified
by actions of m(B) on F.

Here F'is any set:
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The Fundamental Groupoid

Having classified covering spaces of a nice connected space
B, what if B is not connected? For this, replace m(B)
by I1;(B): the fundamental groupoid of B. This is
the category where:

e objects are points of B: ez

e morphisms are homotopy classes of paths in B:

f
T

Te oy
The basic principle of Galois theory then says this:

Covering spaces F'— FE — B are classified
by actions of II;(B) on F': that is, functors

I1,(B) — Aut(F).

Even better, we can let the fiber F' be different over
different components of the base B:

Covering spaces £ — B are classified by

functors
H1 (B) — Set.



Eilenberg—Mac Lane Spaces

In 1945, Eilenberg and Mac Lane wrote their paper about
categories and a paper showing any group G has a ‘best’

space with G as its fundamental group: the Eilenberg-
Mac Lane space K (G, 1).

In fact, for any groupoid G we can build a space K (G, 1)
by taking a vertex for each object of G:

o
an edge for each morphism of G:

f

o———>0

a triangle for each composable pair of morphisms:

and so on! This space has G as its fundamental groupoid,
and it’s a homotopy 1-type: all its homotopy groups
above the 1st vanish. These facts characterize it.

Using this idea, one can show a portion of topology is
just groupoid theory:

Homotopy 1-types are the same as groupoids!



Klein’s Favorite Example
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The symmetries of the icosahedron fixing a ‘golden cross’
form a subgroup Ay — As, so the set of golden crosses
is A5 /A4 = 5. We get a covering space:

F© E B

- T

B K(Ay1) K (A5, 1)

where

B = K(S5,1) ~ {oriented 5-element subsets of R>}
E = K(S4,1) ~ {oriented 5-element subsets of R* with chosen point}

The group As acts on the Riemann sphere, CP!. The
field of rational functions on CP! is K = C(z). The As-
invariant rational functions form a subfield k = C(f),
where f is Klein’s ‘icosahedral function’.

Gal(K|k) 2 As,

and in his Lectures on the Icosahedron, Klein showed
how the solution of w = f(z) lets you solve the general
quintic!



Galois Theory Revisited

Since the classification of covering spaces
EF— B

only involves the fundamental groupoid of B, we might
as well assume B is a homotopy 1-type. Then F will be
one too.

So, we might as well say E and B are groupoids! The
analogue of a covering space for groupoids is a discrete
fibration: a functor p: £ — B such that for any mor-
phism f: x — y in B and object ¥ € E lifting z, there’s
a unique morphism f . ¢ — g lifting f:

s X
./Nﬂ.
pi i T
B | e ™4
x f Y

The basic principle of Galois theory then becomes:

Discrete fibrations ¥ — B are classified by
functors B — Set.

This is true even when F and B are categories, though

people use the term ‘opfibrations’.

This — and much more — goes back to Grothendieck’s
1971 book FEtale Coverings and the Fundamental Group
(SGAL).
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Grothendieck’s Dream

Say a space is a homotopy n-type if its homotopy groups
above the nth all vanish. Since homotopy 1-types are
‘the same’ as groupoids, maybe

homotopy n-types are ‘the same’ as n-groupoids!

Grothendieck tackled this possibility in his 600-page let-
ter to Quillen, Pursuing Stacks. 1t’s certainly true if we
use Kan’s simplicial approach to n-groupoids — but we
want it to emerge from a general theory of n-categories.

How does the basic principle of Galois theory generalize
to this situation?

So far we have been studying discrete fibrations. For
these the fiber is a mere set, and there is no choice about
how to lift a path. The real fun starts when we let the
fiber be a more general space:

=l

B —eo——>9o
Now we need a ‘connection’ to lift paths, leading to gauge

theory.

Since spaces are like n-groupoids, we therefore expect
something like a ‘connection’ to show up when we study
fibrations of n-groupoids!
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Nonabelian Cohomology

For n-groupoids, the basic principle of Galois theory should
say something like this:

Fibrations ¥ — B where E and B are n-
groupoids are classified by n-functors B —

nGpd.

Grothendieck proved this for n = 1; Hermida proved it
for n = 2.

Let’s see what it happens when n = 1. Suppose E, B are
simply groups, and fix the fiber I, also a group:

Short exact sequences of groups
1l F—-F—-B—1
are classified by weak 2-functors
B — AUT(F).

where AUT(F) is the ‘automorphism 2-group’
of I

This is called Schreier theory, since a version of this
result goes back to Schreier (1926). The classifications
of abelian or central group extensions using Ext or H?
are just watered-down versions of this!
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AUT(F) is the automorphism 2-group of F, a 2-
category with:

e [ as its only object: oF

e automorphisms of F' as its morphisms:

«
T

Fe o F
e clements ¢ € F with ga(f)g™! = B(f) as its 2-
morphisms:
/ﬁ\
Fe ﬂg o [’
\E/

Given a short exact sequence of groups, we classify it by
choosing a set-theoretic splitting... which is analogous to

a connection:

S
LN

l—F—F

7 p

B 1

This gives for any b € B an automorphism «(b) of F":
a(b)(f) = s(b) fs(b)~!
We do not have
a(b) a(t)) = a(bb)

but this holds up to conjugation by an element a(b,b’) €
I, so we get a weak 2-functor

a: B — AUT(F).

Different splittings give equivalent 2-functors.

The set of equivalence clases of weak 2-functors B —
Aut(F) is the nonabelian cohomology H?(B, F). This
set is in one-to-one correspondence with the set of iso-
morphism classes of short exact sequences

11— F—-F—-B—1
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What’s Next?

e Tomorrow, Alissa Crans will explain how every simple
Lie algebra g has a 1-parameter deformation into a Lie
2-algebra gi. For integer values of k, this Lie 2-algebra
comes from a Lie 2-group. This Lie 2-group is built using
a central extension of the loop group C*(S!, G).

e On Sunday, Danny Stevenson will talk about the Lie
algebra analogue of Schreier theory. He’ll explain how a
connection on a principal bundle is a splitting for some
short exact sequence of Lie algebras. He’ll then cate-
gorify this: a connection on a categorified principal bun-
dle is a splitting for some short exact sequence of Lie
2-algebras. Curvature and the Bianchi identities then
arise from nonabelian cohomology!

e On Monday I'll explain connections and 2-connections
for trivial bundles and 2-bundles. These are just Lie-
algebra-valued differential forms, so I won’t even use the
language of bundles.

e On Tuesday I'll explain connections and 2-connections
for nontrivial bundles and 2-bundles.
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