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The Big Picture

Mac Lane’s work marked a revolution in how we think

about mathematics. Instead of studying a set of things:
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we can now start with a category of things and processes:
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Doing this thoroughly forces us to go further, and study
2-categories of things, processes, and processes between

processes:
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... and so on. This requires a theory of n-categories,

which many mathematicians are struggling to build now.
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I’ll illustrate these ideas with examples from higher gauge

theory. This describes not only how particles transform

as they move along paths in spacetime:
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but also how strings transform as they trace out surfaces:

���
�

... and so on. Where ordinary gauge theory uses groups,

which are special categories:
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higher gauge theory uses 2-groups:
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which are special 2-categories. Where ordinary gauge
theory uses bundles, higher gauge theory uses 2-bundles.

Everything gets ‘categorified’ !

But how did groups, bundles and gauge theory arise in

the first place? Let’s start at the beginning....
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Galois Theory
and the Erlangen Program

Around 1832, Galois discovered a basic principle:

We can classify the ways a little thing k

can sit in a bigger thing K:

k ↪→ K

by keeping track of the symmetries of K
that map k to itself. These form a sub-

group of the symmetries of K:

Gal(K|k) ⊆ Aut(K).

Galois applied this principle in a special case, but it’s
very general. In 1872 Klein announced his ‘Erlangen

program’, which applies the principle to geometry.

For example, any projective plane P2 has a symmetry

group Aut(P2) consisting of all transformations that carry
lines to lines.

Each point in P
2 is determined by the subgroup of Aut(P2)

fixing this point. Each line in P2 is determined by the
subgroup preserving this line. Other subgroups corre-

spond to other figures in the plane!
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Algebras vs. Spaces

Galois applied his idea to situations where the ‘things’ in
question were commutative algebras. In the mid-1800s,
Dedekind, Kummer and Riemann realized that commu-

tative algebra is like topology, only backwards! Any
space X has a commutative algebra O(X) consisting of

functions on it. Any map

f : X → Y

gives a map
f ∗ : O(Y ) → O(X).

If we’re clever we can think of any commutative algebra

as functions on some space — or ‘scheme’:

[Affine Schemes] = [Commutative Rings]op.

Note how it’s backwards: the inclusion of commutative
rings

p∗ : C[z] ↪→ C[
√

z]

corresponds to the branched cover of the complex plane
by the Riemann surface for

√
z:

p : C → C

z 7→ z2

So: classifying how a little commutative algebra can

sit inside a big one amounts to classifying how a big
space can cover a little one! Now the Galois group gets

renamed the group of deck transformations: in the
above example it’s Z/2:

√
z 7→ −

√
z.
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The Fundamental Group

Around 1883, Poincaré discovered that any nice con-
nected space B has a connected covering space that cov-
ers all others: its universal cover. This has the biggest

deck transformation group of all: the fundamental group
π1(B).

The idea behind Galois theory — turned backwards! —
then says that:

Connected covering spaces of B are classified by
subgroups H ⊆ π1(B).

To remove the ‘connectedness’ assumption, say it like
this instead:

Connected covering spaces of B with fiber F are

classified by transitive actions of π1(B) on F .

Here F = π1(B)/H. Now generalize:

Covering spaces of B with fiber F are classified
by actions of π1(B) on F .

Here F is any set:
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The Fundamental Groupoid

Having classified covering spaces of a nice connected space
B, what if B is not connected? For this, replace π1(B)
by Π1(B): the fundamental groupoid of B. This is

the category where:

• objects are points of B: •x
• morphisms are homotopy classes of paths in B:

x •
f

(( • y

The basic principle of Galois theory then says this:

Covering spaces F ↪→ E → B are classified
by actions of Π1(B) on F : that is, functors

Π1(B) → Aut(F ).

Even better, we can let the fiber F be different over
different components of the base B:

Covering spaces E → B are classified by

functors
Π1(B) → Set.
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Eilenberg–Mac Lane Spaces

In 1945, Eilenberg and Mac Lane wrote their paper about
categories and a paper showing any group G has a ‘best’

space with G as its fundamental group: the Eilenberg-
Mac Lane space K(G, 1).

In fact, for any groupoid G we can build a space K(G, 1)
by taking a vertex for each object of G:

• x

an edge for each morphism of G:

• •f
//

a triangle for each composable pair of morphisms:

• •

•

fg
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g
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a tetrahedron for each composable triple:
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and so on! This space has G as its fundamental groupoid,

and it’s a homotopy 1-type: all its homotopy groups
above the 1st vanish. These facts characterize it.

Using this idea, one can show a portion of topology is
just groupoid theory:

Homotopy 1-types are the same as groupoids!
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Klein’s Favorite Example

Aut

( )

∼= A5

Gal

(

∣

∣

∣

∣

∣

)

∼= A4

The symmetries of the icosahedron fixing a ‘golden cross’
form a subgroup A4 ↪→ A5, so the set of golden crosses

is A5/A4
∼= 5. We get a covering space:

F
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E //

∼
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B
∼
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// K(A4, 1) // K(A5, 1)

where

B = K(S5, 1) ' {oriented 5-element subsets of R∞}
E = K(S4, 1) ' {oriented 5-element subsets of R

∞ with chosen point}

The group A5 acts on the Riemann sphere, CP1. The
field of rational functions on CP1 is K = C(z). The A5-

invariant rational functions form a subfield k = C(f),
where f is Klein’s ‘icosahedral function’.

Gal(K|k) ∼= A5,

and in his Lectures on the Icosahedron, Klein showed

how the solution of w = f(z) lets you solve the general
quintic!
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Galois Theory Revisited

Since the classification of covering spaces

E → B

only involves the fundamental groupoid of B, we might
as well assume B is a homotopy 1-type. Then E will be

one too.

So, we might as well say E and B are groupoids! The
analogue of a covering space for groupoids is a discrete

fibration: a functor p : E → B such that for any mor-
phism f : x → y in B and object x̃ ∈ E lifting x, there’s

a unique morphism f̃ : x̃ → ỹ lifting f :
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The basic principle of Galois theory then becomes:

Discrete fibrations E → B are classified by
functors B → Set.

This is true even when E and B are categories, though
people use the term ‘opfibrations’.

This — and much more — goes back to Grothendieck’s

1971 book Étale Coverings and the Fundamental Group

(SGA1).
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Grothendieck’s Dream

Say a space is a homotopy n-type if its homotopy groups
above the nth all vanish. Since homotopy 1-types are
‘the same’ as groupoids, maybe

homotopy n-types are ‘the same’ as n-groupoids!

Grothendieck tackled this possibility in his 600-page let-

ter to Quillen, Pursuing Stacks. It’s certainly true if we
use Kan’s simplicial approach to n-groupoids — but we

want it to emerge from a general theory of n-categories.

How does the basic principle of Galois theory generalize

to this situation?

So far we have been studying discrete fibrations. For

these the fiber is a mere set, and there is no choice about
how to lift a path. The real fun starts when we let the
fiber be a more general space:
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Now we need a ‘connection’ to lift paths, leading to gauge

theory.

Since spaces are like n-groupoids, we therefore expect
something like a ‘connection’ to show up when we study
fibrations of n-groupoids!
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Nonabelian Cohomology

For n-groupoids, the basic principle of Galois theory should
say something like this:

Fibrations E → B where E and B are n-

groupoids are classified by n-functors B →
nGpd.

Grothendieck proved this for n = 1; Hermida proved it
for n = 2.

Let’s see what it happens when n = 1. Suppose E, B are
simply groups, and fix the fiber F , also a group:

Short exact sequences of groups

1 → F → E → B → 1

are classified by weak 2-functors

B → AUT(F ).

where AUT(F ) is the ‘automorphism 2-group’

of F .

This is called Schreier theory, since a version of this

result goes back to Schreier (1926). The classifications
of abelian or central group extensions using Ext or H2

are just watered-down versions of this!
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AUT(F ) is the automorphism 2-group of F , a 2-
category with:

• F as its only object: •F
• automorphisms of F as its morphisms:

F •
α

((
•F

• elements g ∈ F with gα(f)g−1 = β(f) as its 2-

morphisms:

F •
α

((

β

66 •Fg
��

Given a short exact sequence of groups, we classify it by
choosing a set-theoretic splitting... which is analogous to

a connection:

1 // F
i

// E p
// B

s
zz

// 1

This gives for any b ∈ B an automorphism α(b) of F :

α(b)(f) = s(b)fs(b)−1

We do not have

α(b) α(b′) = α(bb′)

but this holds up to conjugation by an element α(b, b′) ∈
F , so we get a weak 2-functor

α : B → AUT(F ).

Different splittings give equivalent 2-functors.

The set of equivalence clases of weak 2-functors B →
Aut(F ) is the nonabelian cohomology H2(B, F ). This

set is in one-to-one correspondence with the set of iso-
morphism classes of short exact sequences

1 → F → E → B → 1
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What’s Next?

• Tomorrow, Alissa Crans will explain how every simple
Lie algebra g has a 1-parameter deformation into a Lie
2-algebra gk. For integer values of k, this Lie 2-algebra

comes from a Lie 2-group. This Lie 2-group is built using
a central extension of the loop group C∞(S1, G).

• On Sunday, Danny Stevenson will talk about the Lie
algebra analogue of Schreier theory. He’ll explain how a

connection on a principal bundle is a splitting for some
short exact sequence of Lie algebras. He’ll then cate-

gorify this: a connection on a categorified principal bun-
dle is a splitting for some short exact sequence of Lie

2-algebras. Curvature and the Bianchi identities then

arise from nonabelian cohomology!

• On Monday I’ll explain connections and 2-connections

for trivial bundles and 2-bundles. These are just Lie-
algebra-valued differential forms, so I won’t even use the

language of bundles.

• On Tuesday I’ll explain connections and 2-connections

for nontrivial bundles and 2-bundles.
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