
CATEGORIES IN CONTROL

John Baez, Jason Erbele & Nick Woods
Higher-Dimensional Rewriting and Applications

Warsaw, 28 June 2015

http://en.wikipedia.org/wiki/Signal-flow_graph

We have left the Holocene and entered a new epoch, the
Anthropocene, when the biosphere is rapidly changing due to
human activities.

http://en.wikipedia.org/wiki/Anthropocene
http://blog.trowbridge.org/index.php?m=200410

According to the 2014 IPCC report on climate change, to surely
stay below 2 ◦C of warming, we need a more than 100% reduction
in carbon emissions...

...unless we completely stop carbon emissions by 2040.

http://johncarlosbaez.wordpress.com/2014/04/18/what-does-the-new-ipcc-report-say-about-climate-change-part-7/
http://johncarlosbaez.wordpress.com/2014/04/18/what-does-the-new-ipcc-report-say-about-climate-change-part-7/

So, we can expect that in this century, scientists, engineers and
mathematicians will be increasingly focused on biology, ecology
and complex networked systems — just as the last century was
dominated by physics.

What can category theorists contribute?

To understand ecosystems, ultimately will be to understand
networks. — B. C. Patten and M. Witkamp

We need a good mathematical theory of networks.

The category with vector spaces as objects and linear maps as
morphisms becomes symmetric monoidal with the usual ⊗.

In quantum field theory, ‘Feynman diagrams’ are pictures of
morphisms in this symmetric monoidal category:

But the category of vector spaces also becomes symmetric
monoidal with direct sum, ⊕, as its ‘tensor product’. This is more
important in electrical engineering and control theory: the art of
getting systems to do what you want.

Control theorists use ‘signal-flow diagrams’ to describe how signals
flow through a system and interact.

http://en.wikipedia.org/wiki/Signal-flow_graph

For example, an upside-down pendulum on a cart:

has the following signal-flow diagram...

http://math.ucr.edu/home/baez/networks_oxford/#I

−mg

1
M

F

∫

∫

x

−1
l

∫
g
l ∫

θ

To formalize this, think of a signal as a smooth real-valued
function of time:

f : R→ R

We can multiply a signal by a constant and get a new signal:

f

c

cf

We can integrate a signal:

f

∫
∫
f

Here is the signal-flow diagram for the simplest machine in the
world: a rock!

q

∫ v

∫ a

1
m

F

Integration introduces an ambiguity: the constant of integration.
But electrical engineers often use Laplace transforms to write
signals as linear combinations of exponentials

f (t) = e−st for some s > 0

Then they define

(
∫
f)(t) =

e−st

s

This lets us think of integration as a special case of scalar
multiplication! We extend our field of scalars from R to R(s), the
field of rational real functions in one variable s.

Let us be general and work with an arbitrary field k . The simplest
kind of signal-flow diagram with m input edges and n output edges:

stands for a linear map

F : km → kn

In other words: it’s a string diagram for a morphism in FinVectk ,
the category of finite-dimensional vector spaces over k... where we
make this into a monoidal category using ⊕, not ⊗.

Lemma (Jason Erbele)

The category FinVectk , with

I finite-dimensional vector spaces over k as objects,

I linear maps as morphisms,

is symmetric monoidal with ⊕ as its tensor product. It is generated
as a symmetric monoidal category by one object, k, and these
morphisms:

c

where c ∈ k .

http://arxiv.org/abs/1405.6881

1. For each c ∈ k we can multiply numbers by c :

c

This is a notation for the linear map

c : k → k
x 7→ cx

2. We can add numbers:

This is a notation for the linear map

+: k ⊕ k → k
(x , y) 7→ x + y

3. We can duplicate a number:

This is a notation for the linear map

∆: k → k ⊕ k
x 7→ (x , x)

4. We can delete a number:

This is a notation for the linear map

! : k → {0}
x 7→ 0

5. We have the number zero:

This is a notation for the linear map

0: {0} → k
0 7→ 0

In fact we know what relations these generating morphisms obey:

Theorem (Erbele)

FinVectk is the free symmetric monoidal category on a
bicommutative bimonoid over k.

The jargon here is a terse way to list the relations obeyed by scalar
multiplication, addition, duplication, deletion and zero. In detail...

http://arxiv.org/abs/1405.6881

(1)–(3) Addition and zero make k into a commutative monoid:

= = =

(4)–(6) Duplication and deletion make k into a cocommutative
comonoid:

= = =

(7)–(10) The monoid and comonoid structures on k fit together
to form a bimonoid:

= =

= =

(11)–(14) The rig structure of k can be recovered from the
generating morphisms:

c

b

=bc b+c = b c

1 = 0 =

(15)–(18) Scalar multiplication by c ∈ k commutes with the
generating morphisms:

c c

=
c c =

c c
=

c c =

These are all the relations we need!

However, control theory also needs more general signal-flow
diagrams, which have ‘feedback loops’:

setting

a controller

measured error

system input

b system

system output

csensor

measured output

−1

Feedback is the most important concept in control theory: letting
the output of a system affect its input. For this we should let wires
’bend back’:

These aren’t linear maps — they’re linear relations!

A linear relation F : U V from a vector space U to a vector
space V is a linear subspace F ⊆ U ⊕ V .

We can compose linear relations F : U V and G : V W and
get a linear relation G ◦ F : U W :

G ◦ F = {(u,w) : ∃v ∈ V (u, v) ∈ F and (v ,w) ∈ G}.

A linear map φ : U → V gives a linear relation F : U V , namely
the graph of that map:

F = {(u, φ(u)) : u ∈ U}

Composing linear maps becomes a special case of composing linear
relations.

There is a category FinRelk with finite-dimensional vector spaces
over the field k as objects and linear relations as morphisms.

FinRelk becomes symmetric monoidal using ⊕. It has FinVectk as
a symmetric monoidal subcategory.

Fully general signal-flow diagrams are pictures of morphisms in
FinRelk , typically with k = R(s).

Erbele showed that besides the generators of FinVectk we only
need two more morphisms to generate FinRelk :

6. The cup:

This is the linear relation

∪ : k ⊕ k {0}

given by
∪ = {(x , x , 0) : x ∈ k} ⊆ k ⊕ k ⊕ {0}

7. The cap:

This is the linear relation

∩ : {0} k ⊕ k

given by
∩ = {(0, x , x) : x ∈ k} ⊆ {0} ⊕ k ⊕ k

Lemma (Erbele)

The category FinRelk , with

I finite-dimensional vector spaces over k as objects,

I linear relations as morphisms,

is symmetric monoidal with ⊕ as its tensor product. It is generated
as a symmetric monoidal category by one object, k, and these
morphisms:

c

http://arxiv.org/abs/1405.6881

Theorem (Erbele, Bonchi–Sobociński–Zanasi)

FinRelk is the free symmetric monoidal category on a pair of
interacting bimonoids over k .

Besides the relations we’ve seen so far, this statement summarizes
the following extra relations:

http://arxiv.org/abs/1405.6881
http://arxiv.org/abs/1403.7048

(19)–(20) ∩ and ∪ obey the zigzag relations:

= =

It follows that (FinRelk ,⊕) becomes a dagger-compact category,
so we can ‘turn around’ any morphism F : U V and get its
adjoint F † : V U:

F † = {(v , u) : (u, v) ∈ F}

For example, turning around duplication ∆: k → k ⊕ k gives
coduplication, ∆† : k ⊕ k k :

:=

∆† = {(x , x , x)} ⊆ (k ⊕ k)⊕ k

http://en.wikipedia.org/wiki/Dagger_compact_category

(21)–(22) (k ,+, 0,+†, 0†) is a Frobenius monoid:

= =

(23)–(24) (k ,∆†, !†,∆, !) is a Frobenius monoid:

= =

(25)–(26) The Frobenius monoid (k ,+, 0,+†, 0†) is extra-special:

= =

(27)–(28) The Frobenius monoid (k ,∆†, !†,∆, !) is extra-special:

= =

(29) ∪ with a factor of −1 inserted can be expressed in terms of +
and 0:

−1 =

(30) ∩ can be expressed in terms of ∆ and !:

=

(31) For any c ∈ k with c 6= 0, scalar multiplication by c−1 is the
adjoint of scalar multiplication by c :

c = c−1

A PROP is a symmetric monoidal category with natural numbers
as objects, the tensor product on objects being addition.

The symmetric monoidal category FinVectk is equivalent to the
PROP Mat(k), where a morphism f : m→ n is an n ×m matrix
with entries in k .

However, we can define Mat(k) whenever k is a rig. We have:

Theorem (Simon Wadsley and Nick Woods)

Mat(k) is the PROP for bicommutative bimonoids over k .

http://arxiv.org/abs/1505.00048

To understand this, note that for any bicommutative bimonoid A
in a symmetric monoidal category C, the bimonoid endomorphisms
f : A→ A can be added and composed, giving a rig End(A).

A bicommutative bimonoid over k in C is one equipped with a rig
homomorphism

ΦA : k → End(A)

Bicommutative bimonoids over k in C form a category where a
morphism f : A→ B is a bimonoid homomorphism such that for
each c ∈ k the square

A

f

��

ΦA(c) // A

f

��
B

ΦB(c)
// B

commutes.

Wadsley and Woods proved that this category is equivalent to the
category of algebras of the PROP Mat(k) in C.

Example: the commutative rig of natural numbers gives the PROP

Mat(N) ' FinSpan

equivalent to the symmetric monoidal category of finite sets and
spans, with disjoint union as tensor product.

Steve Lack showed that this is the PROP for bicommutative
bimonoids. But this also follows from the result of Wadsley and
Woods.

http://www.tac.mta.ca/tac/volumes/13/9/13-09abs.html

Example: the commutative rig of booleans B = {F ,T}, with ∨ as
addition and ∧ as multiplication, gives the PROP

Mat(B) ' FinRel

equivalent to the symmetric monoidal category of finite sets and
relations, with disjoint union as tensor product.

Samuel Mimram showed that this is the PROP for special
bicommutative bimonoids, meaning those where

=

Again, this follows from the general result of Wadsley and Woods.

http://arxiv.org/abs/0805.0845

Example: the commutative ring of integers Z gives the PROP
Mat(Z). This is the PROP for bicommutative Hopf monoids. The
key here is that scalar multiplication by −1 obeys the axioms for
an antipode:

−1 = = −1

More generally, whenever k is a commutative ring, the presence of
−1 ∈ k guarantees that Mat(k) is the PROP for Hopf monoids
over k .

So, there’s no shortage of beautiful category theory and rewrite
rules hiding in control theory.

Next: use them to help control theorists and save the world!

