

THE AUSTRALIAN NATIONAL UNIVERSITY

Maximum entropy & maximum entropy production in biological systems: survival of the likeliest?

Roderick Dewar Research School of Biology The Australian National University, Canberra

Information and Entropy in Biological Systems 8–10 April 2015, NIMBIOS

Maximum Entropy (MaxEnt)

Maximum (relative) entropy:

Maximise
$$H = -\sum_{i} p_{i} \ln \frac{p_{i}}{q_{i}}$$
 w.r.t. p_{i} subject to

$$\int_{i} \sum_{i} p_{i} x_{i} = X$$

$$\sum_{i} p_{i} = 1$$

$$\therefore p_{i|C} = \frac{q_{i}e^{-\beta x_{i}}}{\sum_{i} q_{i}e^{-\beta x_{i}}}$$
constraints (C)

=1

What is the rationale for MaxEnt?

- information theory (least biased $P_{i|C}$)
- combinatorics of sample frequencies (most likely $P_{i|C}$)

MaxEnt: the combinatorial rationale

N independent observations

M possible outcomes for each observation, $i = 1 \dots M$

q_i = prior probability of outcome i

Outcome *i* observed n_i times \rightarrow frequency distribution $p_i = \frac{n_i}{N}$

$$\Pr(\{n_i\}) = N! \prod_{i=1}^{M} \frac{q_i^{n_i}}{n_i!}$$

 $\lim_{N \to \infty} \frac{1}{N} \ln \Pr(\{n_i\}) = -\sum_{i=1}^{M} p_i \ln \frac{p_i}{q_i} = \text{relative entropy of } p_i \text{ and } q_i$

The MaxEnt distribution $P_{i|C}$ is **by far the most likely** long-term frequency distribution of outcomes, among all those distributions consistent with given constraints C

(transparent connection to observations)

The prediction challenge in biology: biological systems are complex, open, non-equilibrium

Statistical mechanics:

Some (many?) details of the underlying dynamics are irrelevant for making predictions at larger scales

Boltzmann

statistical mechanics

Gibbs

maximum (relative) entropy

Shannon

detailed dynamics x(t)

most likely $p(x \mid \text{key dynamical constraints})$

Maximum (relative) entropy:

Maximise
$$H = -\sum_{i} p_{i} \ln \frac{p_{i}}{q_{i}}$$
 w.r.t. p_{i} subject to

$$\int_{i} \sum_{i} p_{i} x_{i} = X$$

$$\sum_{i} p_{i} = 1$$

$$\therefore p_{i|C} = \frac{q_{i}e^{-\beta x_{i}}}{\sum_{i} q_{i}e^{-\beta x_{i}}}$$
constraints (C)

What do the constraints represent ?

- information theory: C = what we know
- statistical mechanics: C = the relevant dynamics (key resource constraints, steady-state balance ...)

The role of MaxEnt in statistical mechanics

MaxEnt as a statistical selection principle

Known constraints $C \rightarrow most$ likely $p(x \mid C)$

MaxEnt as a tool for identifying the relevant dynamics (C)

Guess constraints
$$C \rightarrow most likely p(x | C)$$

 $\uparrow \qquad observed \leftarrow \uparrow \qquad \uparrow$
 $p(x) \qquad fraction of time$
system is in state x

Combining mechanism and drift* in ecology

Bertram & Dewar (2015)

* in the biological sense!

MaxEnt: a non-neutral, resource-based approach

Dewar & Porté (2008), Bertram & Dewar (2013, 2015)

For given \overline{R} what is most likely $p(f_{\text{tree}}, f_{\text{grass}})$?

Maximum Entropy Production (MEP)

Understanding Complex Systems

Springer:

Roderick C. Dewar Charles H. Lineweaver Robert K. Niven Klaus Regenauer-Lieb *Editors*

Beyond the Second Law

Entropy Production and Non-equilibrium Systems

Paltridge (1978): 10-zone energy balance model

Maximize
$$EP \equiv \sum_{i=1}^{10} \frac{LW_i^{\uparrow} - SW_i^{\downarrow}}{T_i} = \sum_{i=1}^{9} X_i \left(\frac{1}{T_{i+1}} - \frac{1}{T_i} \right)$$

'entropy production'
(it's not!)

subject only to steady-state energy balance

MEP applications across physics & biology

Paltridge (1978) ...

Malkus (2003) ...

Main & Naylor (2008)

some intriguing successes, but what does it mean?

Martyushev et al (2000)

Some potentially misleading statements about Maximum Entropy Production

MEP is a corollary to the second law
 $(dS_{universe}/dt \ge 0)$ which states that $S_{universe}$ increases as fast as possible

MEP means that, over time, EP approaches a maximum in the steady-state

MEP as a statistical stability criterion for non-equilibrium stationary states

- D is a generic measure of irreversibility / time-reversal symmetry breaking / distance from equilibrium
- Fluctuation theorem (follows from definition of d_{Γ}):

$$\frac{p(d)}{p(-d)} = e^d$$

• If $p(d) = N(D,\sigma^2)$: $\sigma^2 = 2D$ \therefore $CV = \frac{\sigma}{D} \propto \frac{1}{\sqrt{D}}$ is minimal when *D* is maximal

• Use MaxEnt to construct p_{Γ} : *D* depends on the constraints *C*

Invited review: Part of an invited issue on carbon allocation

Modeling carbon allocation in trees: a search for principles

Oskar Franklin^{1,7}, Jacob Johansson^{1,2}, Roderick C. Dewar³, Ulf Dieckmann¹, Ross E. McMurtrie⁴, Åke Brännström^{1,6} and Ray Dybzinski⁵ Tree Physiol. **32**, 648-666 (2012)

MEP mimics traditional maximum fitness models

Evolutionary optimisation of Rubisco: Earth's most abundant protein

Enzyme state i

Maximise simultaneously w.r.t. $k_6 \& k_3$

Evolutionary optimisation of Rubisco: Earth's most abundant protein

Rubisco adaptation to different CO_2/O_2 environments

F₀F₁-ATP synthase : Nature's smallest rotary motor

Dewar, Juretic & Zupanovic (2006)

Evolution of ATP-synthase kinetics

MaxEnt & MEP predict ...

- optimal angular position for ATP synthesis close to observed (0.6)
- \Box optimal gearing ratio (H+/ATP) \propto 1 / pmf
- \Box J_{net} maximally sensitive to pmf
 - high free-energy conversion efficiency (69%) within the experimental range (50 – 80%)
- → observed kinetic design of ATP synthase consistent with most likely design

Where next?

Theory

- Basis of MEP
- Non-stationary behaviour

Applications

- Ecological interactions: $r_i \rightarrow r_{ij}$
- Food webs
- Plant adaptations (e.g. leaf stomatal responses)