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Motivation

Theodosius Dobzhansky (1973)

Nothing in biology makes sense except in the light of evolution.

Richard Dawkins, The Blind Watchmaker (1987)

The theory of evolution by cumulative natural selection is the only
theory we know of that is in principle capable of explaining the
existence of organized complexity.



Motivation

Donald T. Campbell, Evolutionary Epistemology (1974)

A blind-variation-and-selective-retention process is fundamental to
all inductive achievements, to all genuine increases in knowledge,
to all increases in the fit of system to environment.

Ronald Fisher, The Design of Experiments (1935)

Inductive inference is the only process known to us by which
essentially new knowledge comes into the world.



Universal Darwinism

Richard Dawkins proposed a theory of evolutionary processes called
Universal Darwinism (The Selfish Gene, 1976), later developed
further by Daniel Dennett (Darwin’s Dangerous Idea, 1995) and
others.

An evolutionary process consists of

I Replicating entities that have heritable traits

I Variation of the traits and/or entities

I Selection of variants favoring those more fit to their
environment

See also Donald T. Campbell’s BVSR: Blind Variation and
Selective Retention (1960s)



Replication

What is replication? The proliferation of some static or dynamic
pattern (Lila, Robert Pirsig, 1991). A replicator is something that
replicates:

I Biological organisms

I Cells

I Some organelles such as mitochondria and chloroplasts

Hummert et al. Evolutionary game theory: cells as players.
Molecular BioSystems (2014)



Replication

Molecular replicators:

I Genes, transposons, bacterial plasmids

I Self-replicating RNA strands (Spiegelman’s monster)

I Viruses, RNA viruses (naked RNA strands)

I Prions, self-replicating proteins e.g. Bovine spongiform
encephalopathy

Bohl et al. Evolutionary game theory: molecules as players.
Molecular BioSystems (2014)



Replication

James Gleick, The Information: A History, a Theory, a Flood
(2012)

Evolution itself embodies an ongoing exchange of information
between organism and environment .... The gene has its cultural
analog, too: the meme. In cultural evolution, a meme is a
replicator and propagator an idea, a fashion, a chain letter, or a
conspiracy theory. On a bad day, a meme is a virus.

I Meme: an idea, behavior, or style that spreads from person to
person within a culture (Dawkins)

I Words, sounds, phrases, songs, the alphabet

I Proverbs: “Those who live in glass houses shouldn’t throw
stones” – Ancient Egypt

I Language itself
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Phylogenetically Determined

Image source: Mark Pagel, Human Language as a Culturally
Transmitted Replicator (2009)



Shannon’s Information Theory

John von Neumann, speaking to Claude Shannon (circa 1949)

You should call it entropy, for two reasons. In the first place your
uncertainty function has been used in statistical mechanics under
that name, so it already has a name. In the second place, and
more important, no one really knows what entropy really is, so in a
debate you will always have the advantage.



Information Theory

Shannon’s information theory is concerned with transmission of
information through possibly noisy channels

Figure source: A Mathematical Theory of Communication, Claude
Shannon, 1948



Information Theory

Figure source: Hubert Yockey, Information Theory, Evolution, and
the Origin of Life, 2005



Replication and Information Theory

I Replication has a very natural information-theoretic
interpretation – information transport across noisy channels

I In reality all channels are noisy – e.g. thermodynamic
fluctuations for replicating molecules

I Accordingly, replication necessarily has variation



Evolution

Let’s recast Universal Darwinism

I Natural proliferation of patterns – transmission through noisy
channels

I Natural diversification of patterns – acquired variations during
transmission

I What about selection?

I Replicators proliferate at different rates depending on
environment and other factors



Selection

I In evolutionary dynamics it is common to specify a fitness
landscape rather than to attempt to correctly model growth
rates

I A fitness landscape is analogous to a potential in physics (but
we seek to maximize rather than minimize)

I A key contribution of EGT is that replicators themselves are
part of the environment

I Often we look at fitness landscapes of the form f (x) = Ax
where A is a game matrix



The Replicator Equation

A popular model of populations under the influence of natural
selection is the replicator equation.

Consider population composed of n types of replicators (e.g.
phenotypes, genotypes, species) T1, . . . ,Tn with proportions
x1, . . . , xn. Let the fitness landscape be a vector-valued function
f (x) where fi (x) is the fitness of type Ti . Then:

relative rate of change of type Ti = fitness of type Ti−mean fitness

1

xi

dxi
dt

= fi (x)− x · f (x)

dxi
dt

= xi (fi (x)− x · f (x))



The Discrete Replicator Equation

There is also a discrete time model

x ′i =
xi fi (x)

x · f (x)
P(Hi |E ) =

P(Hi )P(E |Hi)

P(E )

Essentially the same as Bayesian inference, first observed (?) by C.
Shalizi circa 2007-2008



Replicator Phase Plots – Two Types

dxi
dt

= xi (fi (x)− x · f (x))

Source: Ross Cressman, Evolutionary Dynamics and Extensive
Form Games, MIT Press (2003)



Replicator Phase Plots – Three Types

Image source: Aydin Mohseni, http://www.amohseni.net/
Classification: Bomze, I. Lotka-Volterra equation and replicator
dynamics: a two-dimensional classification. Biological cybernetics (1983)



Replicator Phase Plots – Three Types
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Right image made made with Bill Sandholm’s Dynamo.



Evolutionary Stability

1

xi

dxi
dt

= (fi (x)− x · f (x))

D(y , x) =
∑
i

yi log yi −
∑
i

yi log xi

Evolutionarily Stable State if for a neighborhood of e:

e · f (x) > x · f (x)

Theorem: Given an interior evolutionarily stable state e, it is easy
to show that D(e, x) is a local Lyapunov function for the replicator
equation:

d

dt
D(e, x) = −

∑
i

ei
1

xi

dxi
dt

= x · f (x)− e · f (x) < 0

Hofbauer 1978, Akin and Losert 1984, Bomze 1991, Amari 1995;
ESS: John Maynard Smith and George Price 1̃972



The Replicator Equation, Information-Geometrically

The second way is through information geometry. We can show
that the replicator equation is a gradient flow with respect to a
local information measure (Kimura’s Maximal principle).

dx

dt
= ∇V (x)



Riemannian Geometry

In Riemannian geometry we use a metric to specify the geometry
of a space. The angle between vectors depends on the dot product:

〈a, b〉 = a · b = |a||b| cos(θ)

where a · b =
∑

i aibi

By altering the dot product we can change the angles between
tangent vectors and impart curvature to a space.



Riemannian Geometry

We do this by introducing a matrix-valued function g (called the
metric) that changes the dot product at every point in a space. At
the point x ,

〈a, b〉x =
∑
ij

ai [g(x)]ij bj

For standard Euclidean space, the matrix is always the identity at
every point.



Information Geometry

In information geometry, the points of our space are probability
distributions and the metric is called the Fisher information
metric.
If we consider the space of discrete probability distributions (the
simplex), i.e. all points of the form x = (x1, ..., xn) with xi
real-valued, 0 < xi < 1 and x1 + · · ·+ xn, the Fisher information
metric takes the form

gij(x) =
1

xi
δij ,

where δij is the Kronecker delta.
Then the dot product becomes

〈a, b〉x =
∑
i

aibi

xi



Information Geometry

So this is a weird (looking) metric by most accounts, but it turns
out that we can transform this space into a sphere! Letting
yi = 2

√
xi , we have that

1 = x1 + · · ·+ xn = y2
1 /4 + · · ·+ y2

n/4,

22 = y2
1 + · · ·+ y2

n

The metric transforms from the Fisher information metric to the
Euclidean metric on the surface of the sphere or radius 2.



Information Geometry

Slices (x3 constant) map to quarter circles (y3 = 2
√

x3 constant):

1− x3 = x1 + x2 −→ 4− y2
3 = y2

1 + y2
2



Replicator Equation – Information Geometry

I In information geometry, the gradient flow on the Fisher
information geometry is called the natural gradient

I In evolutionary dynamics it’s called the replicator equation on
the Shahshahani geometry

I Precisely, if the fitness landscape is a Euclidean gradient (∇V
for some function V : ∆n → R), then the right-hand side of
the replicator equation is also a gradient with respect to the
Fisher/Shahshahani metric.

I Let V = 1
2x · Ax be the mean-fitness, with A = AT a

symmetric matrix. Then ∇V = Ax = f (x), and the
(information) gradient is

∇SV = g−1 ((∇V )i − x · ∇V ) = xi (fi (x)− x · f (x)).



Replicator Equation – Information Geometry

These results have led some to describe the replicator equation as
an information transport equation (Jerome Harms, Information
and Meaning in Evolutionary Processes (2004)).

A Taylor expansion of the relative entropy has the Fisher matrix as
the Hessian (second derivative):

D(y , x) =
∑
i

yi log yi −
∑
i

yi log xi

=
1

2
(x − y)Tg(x)(x − y) + · · ·



Fisher’s Fundamental Theorem

We also get a nice statement of FFT, again with mean-fitness
V = 1

2x · Ax , A = AT :

dV

dt
= Varx [f (x)] =

∑
i

xi (fi (x)− x · f (x))2

dV

dt
=

1

2

d

dt
(x · Ax) =

1

2

dx

dt
· Ax +

1

2
x · Adx

dt

=
dx

dt
· Ax =

∑
i

xi (fi (x)− f̄ (x))fi (x)

=
∑
i

xi (fi (x)− f̄ (x))(fi (x)− f̄ (x)) = Varx [f (x)]



Generalizations of this Story

I Starting from any generalized relative entropy, one can get a
generalized replicator equation, a Lyapunov theorem, etc.

I Additional game dynamics – best reply, logit, BvNN, etc.

I Discrete and other time scales (time-scale calculus)

I Other probability distributions: Gradient Systems in View of
Information Geometry, Fujiwara and Amari 1995



Finite Populations

The replicator equation is a nice model, but it’s unrealistic in many
ways:

I Infinite population size, no drift

I No mutation or stochasticity

It turns out that information theory can be used to understand
finite populations modeled as Markov processes in a very similar
way.



Finite Populations

By adding mutation to e.g. the Moran process we obtain processes
without stationary states that have similar “equilibria” that
minimize an information-theoretic quantity.
We do this by looking at the expected next state of a process

E (x) =
∑
x→y

yT y
x

Then we have that the maxima and minima of the stationary
distribution occur when E (x) = x , and when D(E (x), x) is
minimized.



Finite Population Example
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Top Right: Stationary Distribution — Bottom right: D(E (x), x)



Thanks!

Questions?



The Moran Process with Mutation

The distribution of fitness proportionate selection probabilities is
given by p(ā) = M(ā)ϕ̄(ā) where ϕi (ā) = āi fi (ā); explicitly, the
i-th component is

pi (ā) =

∑n
k=1 ϕk(ā)Mki∑n

k=1 ϕk(ā)

The transition probabilities are:

T
a+ij,k
a = pj(ā)āk for j 6= k

T a
a = 1−

∑
b adj a,b 6=a

T b
a (1)



Stationary Stability

I It’s easy to show that for the Moran process

E (ā) =
1

N

∑
b adj a

bT b
a =

N − 1

N
ā +

1

N
p(ā)

I For the Wright-Fisher process E (ā) = p(ā) (multinomial
expectation)

I For both processes, E (ā) = ā iff ā = p(ā)
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