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Second law of thermodynamics and 
Landauer’s bound

In closed system, entropy does not decrease.
 Dissipated work is (on average) non-negative. 

Gives lower bound on heat generated when information is erased.
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The state (variable s) of a system in 
thermodynamic equilibrium, given an 
environmental parameter, x. 
Best described by the Boltzmann distribution:

This is the maximum entropy distribution, given 
the known quantities [here: the average 
energy                                 ].  (Jaynes 1957)

Entropy:

(Equilibrium) Free Energy: 

Equilibrium Thermodynamics (quick review)

x

s={q ,p }ii

Example: Gas in box with 
piston. x = piston position, 
s = positions and momenta of 
molecules. Temperature T.

� =
1

kBT
peq(s|x) = e

��[E(s,x)�F (x)]

F = E � TS

E = hE(s, x)i

S = kBH[peq] = �kB hln[peq]ipeq



1. Start system in thermodynamic equilibrium t=0

2. Drive system, performing work, W. 
Contact to heat reservoir at temperature T. 
Heat flowing into gas = Q.

3. Let system relax back to equilibrium. At  t=   :

Energy is conserved: 

Free energy change:

Average work done in excess of free energy 
change (dissipated work):

x0

x⌧

�E = W +Q

p(s0|x0) = e

��[E(s0,x0)�F (x0)]

p(s⇥ |x⇥ ) = e

��[E(s⌧ ,x⌧ )�F (x⌧ )]

Heat bath, T

�F = �E � T�S
�E := E⌧ � E0

�F := F⌧ � F0

�S := S⌧ � S0

⌧

hW
ex

i := hW i ��F = �hQi+ T �S � 0



Landauer’s principle

Erasing information: reset system to zero entropy state: 

When one bit of information is erased, heat is produced, in the 
amount of at least kT ln(2).  

Direct consequence of the second law of thermodynamics.

Transformation between thermodynamic equilibrium states. 

What if there is no time to stay in equilibrium?

(1961)

H⌧ = 0

�hQi+ kBT (H⌧ �H0) � 0 ) �hQi � kBTH0



Nonpredictive information limits 
smallest achievable dissipation

In system driven (arbitrarily far) away from equilibrium, the 
dynamics matter. 

That fraction of a system’s instantaneous memory about 
environmental signals that does not contain predictive power 

sets a lower bound on dissipation.
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Environmental variables x(t)   System [state s(t)]   drive

Heat bath, T

 
x t

!
x tpast

t

future
st

Driven system, arbitrarily far from equilibrium.

Environment can be stochastic.

This is like a learning machine:



s0 ⇥ s1 ⇥ · · · �⇥ st�1 ⇥ st �⇥ st+1 ⇥ · · · ⇥ s�

x0 ⇥ x1 ⇥ · · · ⇥ xt�1 �⇥ xt ⇥ xt+1 �⇥ · · · ⇥ x�

I[St;Xt]� I[St;Xt+1] = � hWdiss(xt ! xt+1)i

Still, Sivak, Bell & Crooks PRL (2012)

Work done (on average) in excess of nonequilibrium free 
energy change due to change in environment is 

proportional to  instantaneous nonpredictive information.

Signal:
System:

Stochastic thermodynamics of learning machines



This is a fundamental result that also holds for quantum 
systems (Grimsmo, 2013):

• Provides a new interpretation of quantum discord as:
“the thermodynamic inefficiency of the most 
energetically efficient classical approximation of a 
quantum memory”.

• There is a possible quantum advantage in terms of 
dissipation (when environmental signal is non-classical).

New result: there is also a quantum predictive advantage! 
(Grimsmo & Still, in preperation)



Second law and Landauer refined

Lower bound on dissipation: 

(                  is the total instataneous nonpredictive information, 
summed over time.)

Therefore: 

� hW
ex

i � I
nonpred

I
nonpred

Landauer’s bound is augmented by nonpredictive information 
(which is a signature of the dynamics of the driven system)

Still, Sivak, Bell & Crooks PRL (2012)

��Q � I
erasure

+ I
nonpred



Motivation for efficient computation

View system’s state s as a summary of past environmental state(s)

Interpret information shared with past as bit-cost 

Interpret information shared with future environmental state as 
predictive power

Then: to minimize the lower bound on dissipation at fixed 
predictive power, bit-cost should be small.



Efficient data representation

Basic challenge in communication and in data modeling: 
represent continuous signal by discrete variable 

in an efficient  and meaningful way
(coarse graining, clustering, abstraction).
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Follow our train of thought: summarize past data by s;  
achieve smallest bit-cost at fixed predictive power.

Optimal predictive inference

.⇤ ⇥� ⌅ . ⇤⇥�⌅
t

predict
!

map

 

 Signal:
x(t)

p(s|  x)
s



Summarize past data by s. Achieve smallest bit-cost at fixed 
predictive power:

Maximally predictive models (at fixed memory):

Can be used to model dynamical systems. Finds “causal states” 
(sufficient statistics) in the limit              
(equivalence relation:               if                                            ) 

D[pkq] :=
⌧
log


p

q

��

p

) p

opt

(s|  x) = p

opt

(s)

Z(
 
x)

e

�↵D[p(

!
x | x )kp(!x |s)]

Relative entropy:

↵ ! 0
 
x⇠ x

0
p(
!
x |  x) = p(

!
x |  x

0
)

(Crutchfield&Young 1989, Milner “probabilistic bipartition”1986/89)

(Still, Crutchfield and Ellison, 2010)

, min
p(s| x )

⇣
I[s;

 
x ]� ↵I[s;

!
x ]
⌘min

p(s| x )

I[s;
 
x ]

s.t. I[s;
!
x ] � I



Information Bottleneck method
(Tishby, Pereira, Bialek, 1999)

Given a relevant quantity, y, and co-occurance statistics p(x,y)

Achieve smallest bit-cost while retaining relevant information:

min
p(s|x)

(I[s, x]� ↵I[s, y]) ) p

opt

(s|x) = p

opt

(s)

Z(x)
e

�↵D[p(y|x)kp(y|s)]

x yI[x,y]

sI[s,x] I[s,y]



Information Bottleneck method (IB)

Solutions found numerically by iterative algorithm.

Useful method for clustering, e.g. document classification.

Learning: estimate of p(x,y) is subject to finite sample errors!

Correct resulting overestimate in relevant information. 
Complexity control, e.g. estimate number of clusters 
(Still&Bialek 2004).



How does this relate to...?

Rate distortion theory - can be mapped onto it (next slides)

Thermodynamic work - simple relationship (slides)

MaxEnt - (talk to me at lunch)

Cluster analysis - (talk to me at lunch) 

Generalization: dynamical and interactive learning 
(slides, self-study and/or talk to me)



Rate-distortion theory (RDT)

Continuous signal has infinite information rate.

But infinite resolution is irrelevant for most applications, some 
level of distortion is tolerable.

What is the rate of a continuous information source, if 
transmitted to finite resolution, i.e. for fixed average distortion?

(Shannon 1948)



Rate-distortion curve

Represent original signal, x, by encoded signal, s. 

Given: distortion function d(s,x); information source p(x).

Achievable rate at fixed average distortion: 

(units: convert between information, in bits per symbol, 
and rate by multiplication with a constant: symbols per 
second)

R(D) := min
p(s|x)

I[s, x]

s.t.hd(s, x)i
p(s,x) = D



Optimal models are parameterized 
by      (controls trade-off)

They lie on the rate-distortion 
curve, which delineates feasible 
from infeasible region

↵

bi
t  

ra
te

 

infeasible region

Distortion

K = 2

K = 3

etc.

feasible region

, min
p(s|x)

�
I[s, x]� ↵hd(s, x)i

p(s,x)

�

) p

opt

(s|x) = p

opt

(s)

Z(x)
e

�↵d(s,x)

p

opt

(s) = hp
opt

(s|x)i
p(x)

Z(x) = he�↵d(s,x)i
p

opt

(s)

R(D) := min
p(s|x)

I[s, x]

s.t.hd(s, x)i
p(s,x) = D



IB is a special case of RDT

Recall: given relevant variable, y, and p(x,y).

Get IB by choosing the distortion function:

d(s, x) = D[p(y|x)kp(y|s)]



Thermodynamic foundations

T
Y

X

T
Y

X

0

T
Y

Xf

Win
Wout

reset

p(x)q(y) p(x,y) q(x)p(y)
1 2 3

Thermodynamic cost: work it takes to run the memory Y 

Thermodynamic gain: extracting work from X

Wreset



Thermodynamic foundations

Thermodynamic cost of data representation: Second Law => 
Minimum effort required is the (nonequilibrium) free energy change:
 

Maximum work extraction potential is free energy change due to 
inference:

T
Y

X

T
Y

X

0

T
Y

Xf

Win
Wout

reset

p(x)q(y) p(x,y) q(x)p(y)
1 2 3

Wreset

W

Y

 �F1!2 +�Freset = hF [p(y|x)]i
p(x) � F [p(y)]

�WX � � (�F2!3 +�Freset) = hF [p(x|y)]ip(y) � F [p(x)]



Thermodynamic foundations

Free energy change = ave. energy change + kT entropy change

Assume no change in overall average energy, then: 

minimum effort required for data representation equals 
maximum work extraction potential...

... and is proportional to mutual information:
(Still 2014; Parrondo, Horowitz, Sagawa 2015)

Lends a thermodynamic foundation to Shannon’s approach!

hF [p(y|x)]i
p(x) � F [p(y)] = hF [p(x|y)]i

p(y) � F [p(x)] =: �F

�F = kBT I[x, y]



Thermodynamic foundations of RDT
Given information source statistics p(x)

Least effort principle: for a given quality of reproduction, 
minimize effort!

Recall:                                     
and: 

Encodings that achieve minimum effort lie on rate-distortion 
curve (kT adjusts the units).

Bit-cost is proportional to physical effort!

(Still 2014)

L(D) := min
p(s|x)

�F

s.t.hd(s, x)i
p(s,x) = D

�F = kBT I[s, x]

R(D) := min
p(s|x)

I[s, x]; s.t.hd(s, x)i
p(s,x) = D



Thermodynamics of channel capacity

Communication: given encoding and channel noise statistics, 
p(y|x). Information source can be more or less “matched” to 
channel.

Maximum extractable work <=> channel capacity defined by 
Shannon as the maximally transmittable (rate of) information: 

(units adjusted by constants).

max

p(x)
�F , max

p(x)
I[x, y]

(Still 2014)



Thermodynamic foundations of IB

Given two correlated systems, X and Y, with p(x,y) 

Represent X by system S (at temperature T). Least effort: 

Can use this representation to extract work from system Y (at T’)
Work extraction potential:

Want: least effort data representation at maximum work 
potential. Opt. sol. fulfills: 

Recognize IB! Interpret trade-off parameter as ratio of 
temperatures. 

(Still 2014)

kBT I[s, x]

kBT
0 I[s, y]

min
p(s|x)

(k
B

T I[s, x]� k

B

T

0
I[s, y])



Dynamical and interactive learning

Animals and embodied systems (robots) interact with their 
environment and are able to change (to some degree) the world 

they are learning about. 
Learning is dynamical, decisions are made under uncertainty.
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Interactive learning

Learner summarizes history, and acts on environment.

Summary: s, action: a, history: h (has to contain at least one past 
environmental data point; may contain past trajectories and/or 
past actions/states. Future signal to predict: z.

Behavior: action-state pair (a,s)

Based on the same motivation as before: achieve behavior with 
maximal predictive power at fixed bit-cost.

(Still 2009)



Interactive learning (IAL)

Model: probabilistic map from (past) experiences, h, onto
               summary s, p(s|h).

Action policy: probabilistic map from (past) experiences onto
                             actions a,   (a|h)

max
�
I[{s, a}; z]� �I[s;h]� µI[a;h]

⇥

Predictive power 
of behavior

Cost of 
model

Cost of 
policy

p(s|h)
�(a|h)

⇡



Optimal action policies

Optimal action policies have to balance between control and 
exploration!

                           modeling accuracy               information gain
                            (should be small)                  (should be large)

Include rewards => curiosity driven reinforcement learning...

⇡⇤(a|h) ⇠ e�
1
µE⇡⇤ (a,h)

E⇡⇤(a, h) = D [p(z|h, a)kp⇡⇤(z|s⇤, a)]�D [p(z|h, a)kp⇡⇤(z)]



Include rewards, r, and compare to “Boltzmann-Exploration” (Sutton & Barto 98).
 

Reinforcement learning: World state, x. Value of action: expected future reward. 
                               Objective: max expected return

(A) Max. entropy    =>  Boltzmann-Exploration:

   Min. information rate =>  the policy that optimally trades return for bit-cost is 

   Exploration happens only due to randomness in decision!

(B) Require optimal prediction (as before) => optimal policy contains exploration-
exploitation trade-off, even in absence of randomness in the decision!

(comp. Jaynes 57)

Q� = E�

⇥
⇥⌅

i=0

�irt+i

����� x, a

⇤

��(a|x) =
1
Z

e
1
� Q(x,a)

��(a|x) =
p��(a)

Z
e

1
� Q(x,a)

a�(x) = arg max
a

�
DKL [p(x⇥|x, a)⇥p��(x⇥)] + �Q(x, a)

⇥

Exploration Exploitation
(Still&Precup

2012)



Optimal models

Models that achieve maximal predictive power at given coding cost fulfill

Compute solution with iterative algorithm (as before).

This suggests definition of  interactive causal state partition:         
(take limit                           )
- Two histories are equivalent under action policy A(h) when

  
- Two action policies A and A’ are causally equivalent when they 
  induce the same partition, i.e.

p⇤(s|h) ⇠ e�
1
� hDKL[p(z|h,a)kp⇡⇤ (z|s,a)]i⇡⇤(a|h)

SA

{�, µ} ! 0

pA(z|h) = pA0(z|h)

SA = SA0



Special case: no actions

1. Recursive Information Bottleneck:

3. Limit                                       =>    -machine.

4. History includes pasts of arbitrary length but no states => 
Information Bottleneck / OCI. 

5. Time local + gaussian statistics => PFIB

(more details next slide...)

max

p(st+1|st,xt)

✓
I[{s

t+1;
!
x

(⌧)

t

]� �I[s

t+1; {st, xt

}]
◆

� ! 0; {t, ⌧} ! 1 ✏



- Some theorems and algorithms for 
optimal predictive machines -

Dynamical learning system finds asymptotically (Still, 2014) the    -machine  (Crutchfield and  
Young,1989), a deterministic hidden Markov model that is maximally predictive. All characteristics of 
the underlying process can be computed from the    -machine, in many cases analytically: entropy rate, 
predictive/stored information,... (Crutchfield and colleagues,1989 onward).

Used in batch mode (Still and Crutchfield , 2007) it is an instantiation of Information Bottleneck 
Method (Tishby, Pereira and Bialek,1999) which, in turn, is a special case of rate-distortion theory 
(Shannon, 1948). Family of optimal solutions: maximally predictive models at fixed memory. More 
efficient models are infeasible. Iterative algorithm (compare to Blahut/Arimoto ,1972). 

As the constraint on model complexity is relaxed, the batch method finds (Still, Crutchfield and Ellison, 
2010) the “causal state partition” (Crutchfield and Young,1989), minimal and unique sufficient 
statistics (Shalizi and Crutchfield, 2001). 

Gaussian assumptions -> method is related (Creutzig and Sprekeler, 2008) to slow feature analysis 
(Wiskott and Sejnowski, 2002) in batch, and (Creutzig and Globerson and Tishby, 2009) to canonical 
correlation analysis in dynamic learning mode. 

✏

✏
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