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HEAT OF ERASING A BIT
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Thermodynamic cost to erase a bit - the
minimal amount of entropy that must be
expelled to the environment - is In[2]




HEAT OF ERASING A BIT

* Crucially, DO know precise pre-erasure value of bit
- After all, a computer is useless if don’t know its initial state

Bennett, 2003: “If erasure is applied to random data, the operation
may be thermodynamically reversible ... but if it is applied to known
data, it is thermodynamically irreversible.”



HEAT OF ERASING A BIT

Crucially, DO know precise pre-erasure value of bit
- After all, a computer is useless if don’t know its initial state

In fact, the prior distribution over the pre-erasure value — and
in particular the entropy of that prior — is irrelevant

Requires careful engineering to make this property hold

““Local detailed balance” does not hold



REFRIGERATION BY

RANDOMIZING A BIT
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 Example: Adiabatic demagnetization

* Exploited in modern engineering:
o Noisy error correction computing

o Real (not ““pseudo”’’) random number generators



SOME ERASING AND
SOME RANDOMIZATION

* What is the thermodynamic cost for an arbitrary conditional
distribution from X ={0, 1, 2, 3} into itself?

 E.g.,whatif
* Oand] goto 0 (as in bit erasure),
ie,P010)=P0I1)=1
* 2 goes to 0 with probability .8, stays the same otherwise;
ie,P012)=.8,P212)=.2
* 3 goes to 2 with probability 4, and to 0 with probability .6,
ie,P213)=.5,P013)=.6



THERMODYNAMIC COST

E(cost) = Z m(verq | v¢) P(vg) In [Zw(futH | vt)]

Vt,Vt41 Vy

= I(Wip1; Vigr) — I(W; Vi)




THERMODYNAMIC COST

E(cost) = Y  m(ves1 | ve)P(ve) In [Z (Vg1 | vt)]

Vt,Vt41

* where v, is the observable v’s value at time t;

 m.l.) is the conditional distribution of dynamics;

Example:
In a 2-to-1 map, m010)=m011) =1,
so expected cost equals In[2]




BOUNDS ON
THERMODYNAMIC COST

Given the evolution kernel n(. | .), as one varies P(v,):

0 < E(cost)+ H(V;)+ H(Viz1) < logl|V]] - II%}?X KL(W(W.H | a) || H+(m+1>)

v, is the observable v’s value at time t;




BOUNDS ON
THERMODYNAMIC COST

Given the evolution kernel n(. | .), as one varies P(v,):
0 < Efeost) + H(Ve) + H(Viy) < log[[V]] - max| KL(x(Viya [ a) [| TI7 (Veyn))

* where v, is the observable v’s value at time t;
 H(.) is Shannon entropy;

« KL(.Il.)is KL divergence;

o IT*(vy,) = Evt”(vtﬂ [v)/1VI

Example: In a 2-to-1 map both bounds are tight:

Thermodynamic cost is the drop in Shannon entropies over V




K°’TH ORDER MARKOV CHAINS

For a k’th order Markov chain, thermodynamic cost
during a single step is bounded below by

L = H(V; | V;f—l—la"wv;f—l—k—l) _H(‘/t—l—k | V;ﬁ—l—lwﬂa‘/t—l—k—l)

bove by

Very messy expression




K°’TH ORDER MARKOV CHAINS

For a k’th order Markov chain, thermodynamic cost
during a single step is bounded below by

L = H(Vt \ ‘/;5+17---7Vt+k—1) —H(Vt+k | Vitt,

and above by

Very messy expression

If P(v) has reached stationarity, lower bound is

E(cost) = I(Vi;Vigr, ..o, Vigk—1) — L(Vitr; Vg,
(Cf. Still et al. 2012)
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THERMODYNAMIC COST

Tons of other fun results, including:

1) Second law: Thermodynamic cost is non-negative for any
process that goes from distribution A to distribution B
and then back to distribution B

2) Examples of coarse-graining (in the statistical physics
sense) that increase thermodynamic cost

3) Examples of coarse-graining that decrease thermo. cost
4) Implications for optimal compiler design

5) Analysis of thermodynamic cost of Hidden Markov Models



IMPLICATIONS FOR
DESIGN OF BRAINS

* P(x,) a dynamic process outside of a brain;
* Natural selection favors brains that:
* (generate v,’s that) predict future of x accurately;
but ...
* not generate heat that needs to be dissipated;

* not require free energy from environment (need to
create all that heat)

Natural selection favors brains that:

1) Accurately predict future (quantified with a fitness function);
2) Using a prediction program with minimal thermo. cost




IMPLICATIONS FOR
BIOCHEMISTRY

* Natural selection favors (phenotypes of) a prokaryote that:
* (generate v,’s that) maximize fitness;
but ...
* not generate heat that needs to be dissipated;

* not require free energy from environment (need to create
all that heat)

Natural selection favors prokaryotes that:

1) Behave as well as possible (quantified with a fitness function);
2) While implementing behavior with minimal thermo. cost




COMPLEXITY DYNAMICS
OF BIOSPHERE

E(cost) = Y  m(ves1 | ve)P(ve) In [Z (Vg1 | vt)]

Vt,Vt41

* where v, is the observable v’s value at time t;

 m.l.) is the conditional distribution of dynamics;

N.b., thermodynamic cost varies with t:

For what kernels n1(. | .) does thermo. cost
increase with time?




COMPLEXITY DYNAMICS
OF BIOSPHERE

E(cost) = Y  m(ves1 | ve)P(ve) In [Z (Vg1 | vt)]

Vt,Vt41

* where v, is the observable v’s value at time t;

 m.l.) is the conditional distribution of dynamics;

Plug in np. | .) of terrestrial biosphere:

Does thermo. cost of biosphere behavior
increase with time?




COMPLEXITY DYNAMICS
OF BIOSPHERE

E(cost) = Y  m(ves1 | ve)P(ve) In [Z (Vg1 | vt)]

Vt,Vt41

* where v, is the observable v’s value at time t;

 m.l.) is the conditional distribution of dynamics;

Plug in np. | .) of terrestrial biosphere:

How far is thermo. cost of biosphere
from upper bound of solar free energy flux?




