Up: The Octonions
Previous: Conway and Smith's On Quaternions and
Octonions
-
- 1
- J. F. Adams, Lectures on Lie Groups,
Benjamin, New York, 1969.
- 2
- J. F. Adams, Lectures on Exceptional Lie
Groups, eds. Z. Mahmud and M. Mimira, University of
Chicago Press, Chicago, 1996.
- 3
- J. C. Baez, The octonions,
Bull. Amer. Math. Soc. 39 (2002), 145-205.
Errata in Bull. Amer. Math. Soc. 42 (2005), 213.
Corrected version available at math.RA/0105155 or this website.
- 4
- J. W. S. Cassels, An Introduction to
the Geometry of Numbers, Springer, Berlin, 1997.
- 5
-
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and
Groups, 2nd edition, Springer, Berlin, 1993.
- 6
- H. S. M. Coxeter, Integral Cayley numbers,
Duke Math. Jour. 13 (1946), 561-578.
- 7
- M. J. Crowe, A History of Vector Analysis,
University of Notre Dame Press, Notre Dame, 1967.
- 8
- D. D. Fenster,
Leonard Eugene Dickson and his work in the arithmetics of algebras,
Arch. Hist. Exact Sci. 52 (1998), 119-159.
- 9
- Hans Freudenthal, Beziehungen der
und
zur Oktavenebene, I, II, Indag. Math. 16 (1954),
218-230, 363-368. III, IV, Indag. Math. 17 (1955),
151-157, 277-285. V -- IX, Indag. Math. 21 (1959),
165-201, 447-474. X, XI, Indag. Math. 25 (1963) 457-487.
- 10
- W. Fulton and J. Harris, Representation Theory --
a First Course, Springer, Berlin, 1991.
- 11
- P. M. Gruber and C. G. Lekkerkerker,
Geometry of Numbers, second edition, North-Holland, New
York, 1987.
- 12
- M. Gunaydin, K. Koepsell and H. Nicolai, Conformal
and quasiconformal realizations of exceptional Lie groups,
Comm. Math. Phys. 221 (2001), 57-76.
Also available as
hep-th/0008063.
- 13
-
S. Kaneyuki, Graded Lie algebras, related geometric structures,
and pseudo-hermitian symmetric spaces, in Analysis and Geometry on
Complex Homogeneous Domains, by Faraut, Kaneyuki, Koranyi, Lu, and
Roos, Birkhauser, New York, 2000.
- 14
- T. A. Larsson, Structures preserved by exceptional Lie
algebras, available as math-ph/0301006.
- 15
- K. McCrimmon, Jordan algebras and their applications,
Bull. Amer. Math. Soc. 84 (1978), 612-627.
- 16
- C. L. Siegel, Lectures on the Geometry
of Numbers, Springer, Berlin, 1989.
- 17
- T. A. Springer and F. D. Veldkamp,
Octonions, Jordan Algebras and Exceptional Groups, Springer,
Berlin, 2000.
- 18
- M. Waldschmidt, P. Moussa, J.-M. Luck, and C. Itzykson, eds., From Number Theory to Physics, Springer, Berlin,
1992.
Up: The Octonions
Previous: Conway and Smith's On Quaternions and
Octonions
© 2004 John Baez