Bibliography
Next: Octonions Online
Up: The Octonions
Previous: Acknowledgements
1
John F. Adams, Lectures on Exceptional Lie
Groups , eds. Zafer Mahmud and Mamoru Mimira, University of
Chicago Press, Chicago, 1996.
2
Michael Atiyah and Friedrich Hirzebruch,
Bott periodicity and the parallelizability of the spheres.
Proc. Cambridge Philos. Soc. 57 (1961), 223-226.
3
Helena Albuquerque and Shahn Majid, Quasialgebra structure
of the octonions, available as arXiv:math/9802116 .
4
Chris H. Barton and Anthony Sudbery, Magic squares of Lie
algebras. Available as arXiv:math/0001083 .
5
Arthur L. Besse, Einstein Manifolds , Springer,
Berlin, 1987, pp. 313-316.
6
F. van der Blij, History of the octaves, Simon
Stevin 34 (1961), 106-125.
7
F. van der Blij and Tonny A. Springer, Octaves and
triality, Nieuw Arch. v. Wiskunde 8 (1960), 158-169.
8
Armand Borel, Le plan projectif des octaves et les sphéres
commes espaces homogènes, Compt. Rend. Acad. Sci. 230
(1950), 1378-1380.
9
Raoul Bott and John Milnor, On the parallelizability
of the spheres, Bull. Amer. Math. Soc. 64 (1958)
87-89.
10
Robert B. Brown, Groups of type , Jour. Reine Angew. Math. 236 (1969), 79-102.
11
Élie Cartan, Sur la structure des groupes
de tranformations finis et continus , Thèse, Paris, Nony, 1894.
12
Élie Cartan, Les groupes réels simples finis et
continus, Ann. Sci. École Norm. Sup. 31 (1914),
262-255.
13
Élie Cartan, Nombres complexes, in Encyclopédie des sciences mathématiques , 1 , ed. J. Molk,
1908, 329-468.
14
Élie Cartan, Le principe de dualité et la
théorie des groupes simple et semi-simples, Bull. Sci.
Math. 49 (1925), 361-374.
15
Arthur Cayley, On Jacobi's elliptic functions,
in reply to the Rev. B. Brownwin; and on quaternions, Philos.
Mag. 26 (1845), 208-211.
16
Arthur Cayley, On Jacobi's elliptic functions, in
reply to the Rev. B. Bronwin; and on quaternions (appendix only), in
The Collected Mathematical Papers , Johnson Reprint Co., New York,
1963, p. 127.
17
Sultan Catto, Carlos J. Moreno and Chia-Hsiung Tze,
Octonionic Structures in Physics , to appear.
18
Claude Chevalley and Richard D. Schafer, The exceptional
simple Lie algebras and , Proc. Nat. Acad. Sci. USA
36 (1950), 137-141.
19
Yvonne Choquet-Bruhat and Cécile DeWitt-Morette,
Analysis, Manifolds and Physics , part II, Elsevier, Amsterdam,
2000, pp. 263-274.
20
William K. Clifford, Applications of Grassmann's
extensive algebra, Amer. Jour. Math. 1 (1878), 350-358.
21
Frederick R. Cohen, On Whitehead squares, Cayley-Dickson
algebras and rational functions, Bol. Soc. Mat. Mexicana
37 (1992), 55-62.
22
E. Corrigan and T. J. Hollowood, The exceptional Jordan
algebra and the superstring, Comm. Math. Phys. 122 (1989),
393-410. Available online courtesy of Project
Euclid .
23
Harold Scott MacDonald Coxeter, Integral Cayley
numbers, Duke Math. Jour. 13 (1946), 561-578.
24
Michael J. Crowe, A History of Vector Analysis ,
University of Notre Dame Press, Notre Dame, 1967.
25
C. W. Curtis, The four and eight square problem
and division algebras, in Studies in Modern Algebra , ed.
A. Albert, Prentice-Hall, Englewood Cliffs, New Jersey, 1963, pp. 100-125.
26
Pierre Deligne et al , eds., Quantum
Fields and Strings: A Course for Mathematicians , 2 volumes, Amer.
Math. Soc., Providence, Rhode Island, 1999.
27
Leonard E. Dickson, On quaternions and their
generalization and the history of the eight square theorem, Ann. Math. 20 (1919), 155-171.
28
Geoffrey M. Dixon, Division Algebras: Octonions,
Quaternions, Complex Numbers and the Algebraic Design of Physics ,
Kluwer, Dordrecht, 1994.
29
M. J. Duff, ed., The World in Eleven Dimensions:
Supergravity, Supermembranes and M-Theory , Institute of Physics
Publishing, Bristol, 1999.
30
Gerard G. Emch, Algebraic Methods in Statistical
Mechanics and Quantum Field Theory , Wiley-Interscience, New York, 1972.
31
J. M. Evans, Supersymmetric Yang-Mills theories and
division algebras, Nucl. Phys. B298 (1988), 92-108.
32
John R. Faulkner, A construction of Lie algebras from
a class of ternary algebras, Trans. Amer. Math. Soc. 155
(1971), 397-408.
33
John R. Faulkner and Joseph C. Ferrar,
Exceptional Lie algebras and related algebraic and geometric structures,
Bull. London Math. Soc. 9 (1977), 1-35.
34
Alex J. Feingold, Igor B. Frenkel, and John F. X.
Ries, Spinor Construction of Vertex Operator Algebras, Triality, and
, Contemp. Math. 121, Amer. Math. Soc.,
Providence, Rhode Island, 1991.
35
Hans Freudenthal, Oktaven, Ausnahmegruppen und
Oktavengeometrie, mimeographed notes, 1951. Also available in
Geom. Dedicata 19 (1985), 7-63.
36
Hans Freudenthal, Zur ebenen Oktavengeometrie,
Indag. Math. 15 (1953), 195-200.
37
Hans Freudenthal, Beziehungen der und
zur Oktavenebene, I, II, Indag. Math. 16 (1954),
218-230, 363-368. III, IV, Indag. Math. 17 (1955),
151-157, 277-285. V - IX, Indag. Math. 21 (1959),
165-201, 447-474. X, XI, Indag. Math. 25 (1963) 457-487.
38
Hans Freudenthal, Lie groups in the foundations of
geometry, Adv. Math. 1 (1964), 145-190.
39
Hans Freudenthal, Bericht über die Theorie
der Rosenfeldschen elliptischen Ebenen, in Raumtheorie , Wege
Der Forschung, CCLXX, Wissenschaftliche Buchgesellschaft, Darmstadt,
1978, pp. 283-286.
40
Lynn E. Garner, An Outline of Projective Geometry ,
North Holland, New York, 1981.
41
Robert Perceval Graves, Life of Sir William Rowan
Hamilton , 3 volumes, Arno Press, New York, 1975.
42
Michael B. Green, John H. Schwarz and Edward Witten,
Superstring Theory , volume 1, Cambridge University Press,
Cambridge, 1987, pp. 344-349.
43
B. Grossman, T. E. Kephart, and James D. Stasheff,
Solutions to Yang-Mills field equations in eight dimensions and the
last Hopf map, Comm. Math. Phys. 96 (1984), 431-437.
44
Murat Günaydin, Generalized conformal and
superconformal group actions and Jordan algebras,
Mod. Phys. Lett. A8 (1993), 1407-1416.
Also available as arXiv:hep-th/9301050 .
45
Murat Günaydin, Kilian Koepsell, and Hermann Nicolai,
Conformal and quasiconformal realizations of exceptional Lie groups.
Available as arXiv:hep-th/0008063 .
46
Murat Günaydin, C. Piron and H. Ruegg, Moufang plane
and octonionic quantum mechanics, Comm. Math. Phys. 61
(1978), 69-85.
47
Feza Gürsey and Chia-Hsiung Tze, On the Role of Division,
Jordan, and Related Algebras in Particle Physics , World Scientific,
Singapore, 1996.
48
William Rowan Hamilton, Four and eight square
theorems, in Appendix 3 of The Mathematical Papers of Sir William
Rowan Hamilton , vol. 3, eds. H. Halberstam and R. E. Ingram,
Cambridge University Press, Cambridge, 1967, pp. 648-656.
49
Thomas L. Hankins, Sir William Rowan Hamilton ,
John Hopkins University Press, Baltimore, 1980.
50
F. Reese Harvey, Spinors and Calibrations ,
Academic Press, San Diego, 1990.
51
Adolf Hurwitz, Über die Composition der quadratischen
Formen von beliebig vielen Variabeln, Nachr. Ges. Wiss. Göttingen
(1898) 309-316.
52
Dale Husemoller, Fibre Bundles , Springer, Berlin,
1994.
53
Pascual Jordan, Über eine Klasse nichtassociativer
hyperkomplexer Algebren, Nachr. Ges. Wiss. Göttingen (1932),
569-575.
54
Pascual Jordan, Über eine nicht-desarguessche
ebene projektive Geometrie, Abh. Math. Sem. Hamburg
16 (1949), 74-76.
55
Pascual Jordan, John von Neumann, Eugene Wigner,
On an algebraic generalization of the quantum mechanical formalism,
Ann. Math. 35 (1934), 29-64.
56
Dominic Joyce, Compact Manifolds with Special
Holonomy , Oxford U. Press, Oxford, 2000.
57
I. L. Kantor and A. S. Solodovnikov, Hypercomplex
Numbers - an Elementary Introduction to Algebras, Springer, Berlin, 1989.
58
Michel Kervaire, Non-parallelizability of the
sphere for , Proc. Nat. Acad. Sci. USA 44 (1958),
280-283.
59
Wilhelm Killing, Die Zusammensetzung der stetigen
endlichen Transformationsgruppen I, Math. Ann. 31 (1888),
252-290. II, 33 (1889) 1-48. III, 34 (1889), 57-122.
IV 36 (1890), 161-189.
60
T. Kugo and P.-K. Townsend, Supersymmetry and the
division algebras, Nucl. Phys. B221 (1983), 357-380.
61
J. M. Landsberg and L. Manivel: The projective geometry of
Freudenthal's magic square. Available as arXiv:math/9908039 .
62
Jaak Lohmus, Eugene Paal, and Leo Sorgsepp,
Nonassociative Algebras in Physics , Hadronic Press, Palm
Harbor, Florida, 1994.
63
Corinne A. Manogue and Tevian Dray, Octonionic
Möbius transformations, Mod. Phys. Lett. A14 (1999),
1243-1256.
64
Corinne A. Manogue and Jörg Schray, Finite Lorentz
transformations, automorphisms, and division algebras, Jour.
Math. Phys. 34 (1993), 3746-3767.
65
Corinne A. Manogue and Jörg Schray, Octonionic
representations of Clifford algebras and triality, Found.
Phys. 26 (1996), 17-70.
66
Kevin McCrimmon, Jordan algebras and their applications,
Bull. Amer. Math. Soc. 84 (1978), 612-627.
Available online courtesy of AMS and Project
Euclid .
67
K. Meyberg, Eine Theorie der Freudenthalschen
Tripelsysteme, I, II, Ned. Akad. Wetenschap. 71 (1968),
162-190.
68
R. Guillermo Moreno, The zero divisors of the
Cayley-Dickson algebras over the real numbers, available
as arXiv:q-alg/9710013 .
69
Ruth Moufang, Alternativkörper und der Satz vom
vollständigen Vierseit, Abh. Math. Sem. Hamburg 9
(1933), 207-222.
70
A. L. Onishchik and E. B. Vinberg, eds., Lie Groups and
Lie Algebras III , Springer, Berlin, 1991, pp. 167-178.
71
Susumu Okubo, Introduction to Octonion and Other
Non-Associative Algebras in Physics , Cambridge University Press,
Cambridge, 1995.
72
Roger Penrose and Wolfgang Rindler, Spinors and
Space-Time , 2 volumes, Cambridge U. Press, Cambridge, 1985-86.
73
Ian R. Porteous, Topological Geometry ,
Cambridge U. Press, 1981.
74
Boris A. Rosenfeld, Geometrical interpretation of
the compact simple Lie groups of the class (Russian), Dokl. Akad. Nauk. SSSR (1956) 106 , 600-603.
75
Boris A. Rosenfeld, Geometry of Lie Groups ,
Kluwer, Dordrecht, 1997.
76
Richard D. Schafer, On algebras formed by the
Cayley-Dickson process, Amer. Jour. of Math. 76 (1954)
435-446.
77
Richard D. Schafer, Introduction to Non-Associative
Algebras , Dover, New York, 1995.
78
Jörg Schray, Octonions and Supersymmetry ,
Ph.D. thesis, Department of Physics, Oregon State University, 1994.
79
G. Sierra, An application of the theories of Jordan
algebras and Freudenthal triple systems to particles and strings,
Class. Quant. Grav. 4 (1987), 227-236.
80
Tonny A. Springer, The projective octave plane, I-II,
Indag. Math. 22 (1960), 74-101.
81
Tonny A. Springer, Characterization of a class of
cubic forms, Indag. Math. 24 (1962), 259-265.
82
Tonny A. Springer, On the geometric algebra of
the octave planes, Indag. Math. 24 (1962), 451-468.
83
Tonny A. Springer and Ferdinand D. Veldkamp,
Octonions, Jordan Algebras and Exceptional Groups , Springer,
Berlin, 2000.
84
Frederick W. Stevenson, Projective Planes , W. H.
Freeman and Company, San Francisco, 1972.
85
Anthony Sudbery, Octonionic description of exceptional
Lie superalgebras, Jour. Math. Phys. 24 (1983), 1986-1988.
86
Anthony Sudbery, Division algebras, (pseudo)orthogonal
groups and spinors, Jour. Phys. A17 (1984), 939-955.
87
Jacques Tits, Le plan projectif des octaves et les groupes
de Lie exceptionnels, Bull. Acad. Roy. Belg. Sci. 39 (1953),
309-329.
88
Jacques Tits, Le plan projectif des octaves et les groupes
exceptionnels et , Bull. Acad. Roy. Belg.
Sci. 40 (1954), 29-40.
89
Jacques Tits, Algèbres alternatives, algèbres de
Jordan et algèbres de Lie exceptionnelles, Indag. Math. 28
(1966) 223-237.
90
Jacques Tits, Buildings of Spherical Type
and Finite BN-Pairs, Lecture Notes in Mathematics, Vol. 386,
Springer, Berlin, 1974.
91
V. S. Varadarajan, Geometry of Quantum
Theory , Springer-Verlag, Berlin, 1985.
92
E. B. Vinberg, A construction of exceptional
simple Lie groups (Russian), Tr. Semin. Vektorn. Tensorn.
Anal. 13 (1966), 7-9.
93
Max Zorn, Theorie der alternativen Ringe,
Abh. Math. Sem. Univ. Hamburg 8 (1930), 123-147.
94
Max Zorn, Alternativkörper und quadratische Systeme,
Abh. Math. Sem. Univ. Hamburg 9 (1933), 395-402.
Next: Octonions Online
Up: The Octonions
Previous: Acknowledgements
© 2001 John Baez