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ABSTRACT: Models of geometry that are intrinsically quantum-mechanical in nature arise
from the recoupling theory of space-time symmetry groups. Roger Penrose constructed such a
model from SU(2) recoupling in his theory of spin networks; he showed that spin measure-
ments in a classical limit are necessarily consistent with a three-dimensional Euclidean vector
space. T. Regge and G. Ponzano expressed the semi-classical limit of this spin model in a
form resembling a path integral of the Einstein-Hilbert action in three Euclidean dimensions,
This thesis gives new proofs of the Penrose spin geometry theorem and of the Regge-Ponzano
decomposition theorem. We then consider how to generalize these two approaches to other
groups that give rise to new models of quantum geometries. In particular, we show how to
construct quantum models of four-dimensional relativistic space-time from the recoupling
theory of the Poincare group.
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QUANTUM MODELS OF SPACE-TIME BASED ON RECOUPLING THEORY
I. INTRODUCTION
1.1 Space-time and recoupling theory

Models of space and time that are intrinsically quantum-mechanical in nature arise from
the quantum rules for the addition of conserved quantities such as spin and momentum. Roger
Penrose constructed such a model from the purely combinatorial calculus of "spin networks"
[Penrose 68, 71, 72], based on the non-relativistic rules for addition of quantized spin (i.e.
SU(2) recoupling theory). He showed that spin measurements in a classical limit are necessar-
ily consistent with the constraints of a 3-dimensional Euclidean vector space. T. Regge and G.
Ponzano developed an analytic approach to the same spin model [Ponzano and Regge 68],
expressing the semiclassical limit in a form resembling a path integral of the Einstein-Hilbert
action in three Euclidean dimensions. This paper considers how to generalize these two
approaches to other groups that give rise to new models of quantum geometries. In particular,
we show how to construct quantum models of four-dimensional space-time from the rules for

addition of relativistic spin and momentum (Poincare group recoupling theory).

The physical situation described by these models can be illustrated as follows. Suppose
we make measurements on an ensemble of test particles or structures in order to probe their
space-time relationships. We require these measurements to be invariant under a space-time
symmetry group - say, the Poincare group. In this case, given a single particle, all we can
measure is its mass and spin. Given two particles, we can measure the mass and spin of the
composite system, and also the helicities of each of the two particles in the center-of-
momentum frame (these "relative helicities" are also invariants). It turns out that more

complicated measurements can be reduced to these simple one- and two-particle observations.

The basic technique for reducing more complicated measurements to one- and two-

particle observations is to regard an n-particle system as the coupling of exactly two
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(composite) sub-structures. These in turn are composed of two finer sub-structures, and so
on. Hence we can visualize the decomposition as a binary tree. More generally, we can
represent both composition and splitting as a cubic graph (fig. 1). The partial masses m, spins
j» and helicities A associated with this graph, as we shall see later, determine all the Poincare
invariants of many-particle systems (except for certain discrete ambiguities - e.g. in orienta-

tion).

Of course, if we make too many measurements, the system becomes overdetermined, and
the space-time we are probing begins to reveal itself. For example, suppose we measure all
the pairwise partial masses of n particles. These masses determine the n x n matrix of scalar

products between the momenta, since

(PeP) = % M2 - M? - M7 (1.1.1)

In classical special relativity, this matrix is constrained to have signature (p, q) with p<1 and
q<3, if the momenta are to be imbeddable in (+---) Minkowski vector space. More compli-

Figure 1.1 Poincare Recoupling
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cated constraints involving the spins and helicities guarantee the imbeddability of the particle
trajectories themselves (and the associated relativistic angular mbmenta) in an affine Minkow-
ski background. All these constraints are just the conditions for the existence in some
reference frame of 4-component momentum vectors and 6-component angular momentum
bivectors which are consistent with the observed mass and spin data, and are conserved at the
cubic vertices of the recoupling graph. Since we do not observe the background directly, but
only through invariant measurements on the test particles, it is convenient to take these
kinematic constraints on the invariants as our operational definition of classical Minkowski

geometry.

Quantum models of geometry arise from replacing this classical kinematic definition
(linear algebra of additively conserved tensor quantities) by its quantum counterpart (the
recoupling theory of the group generated by the corresponding tensor operators). In this case,
we no longer have the rigid constraints of classical geometry. Instead, we have a prescription
(e.g. the recoupling theory of the Poincare group) for assigning a probability measure to
graphs like those in figure 1. We can prove, however, that this measure becomes concentrated
in the classical limit around values for the measurements that respect the classical constraints.
We can also develop a formalism resembling the path integral method for evaluating the

semiclassical limit of these quantum models.

The kinematic intricacies of the Poincare group complicate the construction of the
quantum model for the full 4-d relativistic space-time. Hence, we will begin with a self-
contained review and analysis of earlier models of 3-d Euclidean space based on a much

simpler problem: the non-relativistic addition of spin.



1.2 Spin Networks

The physical situation described by spin networks can be illustrated as follows. Imagine
an ensemble of spinning structures with relative motions so slow and distances so small that
the orbital angular momentum of any two structures is negligible compared with their intrinsic
spin. Thus when structures coalesce or split, intrinsic spin is conserved, without any orbital
contribution. No matter how complicated the collisions and splittings are, we can always in
principle look closely enough to resolve them into cascades of simple exchanges involving only
three spins, such as the coalescence of two structures to form a third, or the splitting of a
structure into two others. When structures are not colliding or splitting, they are sufficiently
isolated from the rest of the universe to have well-defined total spin values. A spin network is
a cubic graph, whose edges are labeled with the results of measuring these total spin values,

and whose vertices represent the composition of conserved spin.

Note that this is a purely kinematic model. Only the relative orientations of spins are
significant in this model: relative positions and velocities are not treated at all. A spin
network describes the kinematic addition of spin, abstracted from any details of localization or

dynamics.

In classical kinematics, the edges of the spin network correspond to 3-component spin
vectors. The total spin label on each edge determines the length of the vector. A vertex

joining three edges 1, 2, and 3 represents the vector conservation law:

S R L) (12.1)
where the signs +/- correspond to 2 and 3 out/ ingoing at the vertex that produces 1.
In quantum kinematics, the edges of the spin network are labelled by half-integers

specifying the quantized total spin in units of A1 Associated with an edge labelled j is the

Hilbert space spanned by the 2j+1 distinct directional states of total spin j. [Each vertex
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represents the requirement that the composition of the three incident spins be spherically
symmetric, or satisfy the operator analog of the vector conservation law given in the last
paragraph (i.e. it represents the homomorphism from the tensor product of the three Hilbert
spaces, regarded as modules over the group, to the trivial module). The spin network as a
whole represents a linear functional on the tensor product of all the spaces associated with its
external lines. In particular, a closed spin network (one with no external lines) corresponds to

a pure number - in fact an integer, with Penrose’s definition of the norm.

Figure 1.2 lists the four simplest closed spin networks and their values. The numbers of
edges and vertices in a closed cubic graph satisfy the relation 2E = 3V, so the number of
distinct spins in these networks is 3n, with n an integer. Figure 1.2a is the trivial case n=1.
Figure 1.2b is the simplest non-trivial closed spin network (with n=2), the value of which is
shown in standard notation as the Racah coefficient, or "6j-symbol".2 Figures 2¢ and 2d show
the two possible networks for n=3, the first of which corresponds to the standard "9j-
coefficient”. The second, as we shall see later, evaluates to the simple product of the two

Racah coefficients shown.

Roger Penrose invented some combinatorial methods for evaluating the integer values of
closed spin networks. These methods include an isomorphism between spinor and "binor"
invariants [Penrose 72b], enumeration techniques based on chromatic polynomials [see
Moussouris 79], and a collection of reduction formulae [Penrose 71, p.171]. Underlying all
these methods is the representation of spin 1/2 by the simplest (2-d) Hilbert space, and of
higher spins by symmetrized products of this basic state space. The homomorphism which
enforces spin conservation at each cubic vertex is constructed explicitly from products of the

antisymmetric isotropic tensor e ap- Then the value of a network becomes the alternating sum

1 Penrose labels the edges of spin networks with integers specifying spin in units of 1/2 # . Our
convention is more consistent with Regge-Ponzano diagrams and other graphical methods.
See the list of other differences in conventions at the end of section 2.2.

2 The Racah coefficient and 6j-symbol differ in sign conventions [Edmonds 57, p99].



Figure 1.2 Four simplest closed spin networks
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of the number of ways individual spin-1/2 subunits can circulate while satisfying the conserva-

tion laws. The evaluation methods are primarily devices for handling the cancellation

(destructive interference) that occurs because of alternating signs in this superposition.

Chapter 2 begins the analysis of the classical limit of spin networks, by an algebraic
method that diverges somewhat from Penrose’s approach. We define operators for the scalar

product (11-12) between two spins. We then prove that any 4 x 4 matrix of such operators

satisfies the identity

det [(0%.1))] = o, (1.2.2)

up to terms that result from the commutation of the operators. In a classical limit, where
these terms are unimportant, we can then show that any n X n matrix of expectation values of
these scalar products must be positive semi-definite with rank no greater than 3. But this is
just the condition - the counterpart of the one given earlier for Minkowski momentum space -
for the existence of spin vectors imbeddable in a three-dimensional Euclidean "spin space "
We discuss the connection between our algebraic proof of this result and a purely combinatori-

al proof given earlier by Penrose.

Chapter 3 reviews yet another analysis of the semiclassical limit of spin networks, by a
method developed by Regge and Ponzano, which resembles the path-integral formulation of
quantum mechanics. This method is based on two observations: first, that the Racah
coefficient of figure 1.2b is a rapidly oscillating function of each of its six spin lengths (for
classically allowed values); second, that any closed network can be decomposed into a
product of Racah coefficients, summed over certain "internal” spin values. In the limit of
large spins, the frequency of oscillation of the Racah coefficient with variation of one of the
spin lengths is proportional to the dihedral angle between the two planes in which that spin
couples (the conjugate action-angle variable), as determined by the classical trigonometry of

the tetrahedron. An internal spin length appears on the common edge of several tetrahedra,
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so the total phase of oscillation will be stationary just when the "defect angle" (the difference
between 27 and the sum of all the dihedral angles at that edge) vanishes. But this in turn is

just another form of the condition for imbedding spin vectors in a flat 3-d space.

The sum-of-products decomposition in Regge-Ponzano theory is a discrete analog of a
path integral. The tetrahedral decomposition is a 3-d simplicial manifold, whose boundary is
(the dual of) the original spin network. Summation over the internal spin lengths amounts to
integration over the geometries ("paths"”) spanning this boundary. The phase part of the
integrand, as defined above, is formally identical to the 3-d vacuum Einstein action (the
integral of the scalar curvature density, or average defect angle) in Regge calculus [Regge 61].
Hence the stationary phase conditions above are Einstein’s equations for gravity on a simpli-
cial manifold; and the flatness of the geometry amounts to the well-known fact that these

equations admit only solutions with vanishing curvature in three dimensions.

1.3 Theory of Fabrics

The theory of fabrics is introduced in chapter 4 as a formalism for extending the Penrose
and Regge-Ponzano analyses of spin to other situations that give rise to new models of
quantum geometries. From the point of view of physics, this theory is a natural generalization
of the rules for addition of conserved quantities such as spin and momentum. It abstracts
from these rules just those properties needed to prove the Regge-Ponzano decomposition

theorem in its general form.

As in the special case of a spin network, a fabric is a cubic graph whose edges may be
taken to represent (composite) "particles", and whose vertices represent the composition of
conserved quantities associated with these particles. In general, the edges of a fabric may be
labelled with several values k of ("single-particle") observables, and the vertices may also be
labelled with the values d of ("two-particle") observables. For example, figure 1.1 illustrates

the edge and vertex labelling in a fabric of the Poincare group.
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The mathematical prototype for the theory of fabrics is recoupling theory. Hence we
begin chapter 3 with a graphical formulation of the mcoupliﬁg theory of compact groups,
making use of the graphical calculus for tensor operations developed by Penrose. Figure 1.3 is
a glossary of our conventions, which we use throughout this paper. A tensor is represented by
a "blob" with "arms" for contravariant indices and "legs" for covariant ones. Tensor (outer)
product is indicated simply by placing two or more blobs next to each other. Inner product,
by linking the contracted indices (entailing summation, in a component expansion). A line

standing alone is an identity operator (or Kronecker delta, in components).

Here we are concerned with the finite-dimensional vector spaces which support irreduci-
ble unitary representations of a compact group G, and with tensor products of such irreducible
spaces. We define the "coupling tensors" which map the product of two irreducible spaces
into its irreducible subspaces. Figure 1.4a is the graphical symbol for such a coupling tensor,
mapping the product of spaces identified by k, and k, into the spaces identified by k5. Since
multiple copies of the ki-space may occur in general in the reduction of k,®k,, a
"degeneracy index" d is attached to the vertex to distinguish the corresponding coupling

tensors.

Coupling tensors are invariant under the action of the group. In fact, the coupling
tensors in figure 1.4a, with d ranging over all possible values, form a basis for

Hom(k, ®k,,k,). Natural isomorphisms such as
Hom(k, ®k,,k;) = Hom(k,®k,®k;,C). (1.3.1)

L]
where kj is the irreducible space dual to ky (ie., the space of complex linear functionals on
the kj -space), allow us to define couplings with different mixtures of covariant and contravari-
ant indices. Figure 1.4b shows how any invariant with 3 covariant indices can be expanded as

an explicit sum of covariant coupling tensors (Wigner-Eckart theorem).
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Figure 1.4 Coupling and Recoupling
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A major goal of recoupling theory is to show how invariants with still more indices can be
expanded as an explicit sum of "coupling trees", which are contractions of coupling tensors
(generalized W-E theorem). Many such bases exist: one for each possible coupling sequence.
For example, figure Ihows two different expansions for an invariant with 4 covariant

indices. Here [k] is the dimension of the k-space.

A second goal of recoupling theory is to compute the "recoupling coefficients" which
transform one coupling basis into another. These coefficients are the values of cubic coupling
graphs obtained by contracting together trees of different structural species (i.e. different
coupling sequence). For example, the two bases shown in figure 1.4c transform as shown in
figure 1.5a by the simplest such graph, corresponding to the Racah coefficient (c.f. the spin

network in figure 1.2b). We refer to figure 1.5a as the "crossing identity".

It turns out that ahy recoupling graph can be evaluated as a sum of products of Racah
coefficients. We give a couple of related proofs of this result, which is a generalization of the
Regge-Ponzaﬁo decomposition theorem. In the "network" version of the proof, we use the
crossing identity to rearrange a graph until it contains a cycle with just three vertices. This
cycle can then be excised by applying figure 1.4b as shown in 1.5b, yielding a product of
Racah coefficients and a graph with fewer vertices. In the "vector" picture, we consider the
graph to be imbedded in the surface of a region, and construct the "vector diagram" which is
the triangulation of that surface dual to the graph. We use the crossing identity to introduce
internal edges that dissect the interior of the region into tetrahedra, which can then be excised
by 1.5b. We illustrate this decomposition theorem for some of the basic coupling graphs in

Regge-Ponzano theory.

In the last section of chapter 4, we define fabrics as cubic graphs with edges and vertices
labelled by variables which take values in arbitrary measure spaces. A fabric valuation is an

assignment of complex amplitudes to fabrics satisfying the crossing and excision identities in
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Figure 1.5 Crossing and Excision Identities
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fig. 1.5 (with sums replaced by integrals) needed for the decomposition theorem. We briefly

discuss the classification problem and semiclassical limit of fabrics.

In chapter 5, we construct fabrics for affine Minkowski space from the recoupling theory
of the Poincare group. We restrict our construction to massive, positive-energy representations
in the helicity basis. Helicity has the advantage of being invariant under all Poincare transfor-
mations, except boosts in directions transverse to the momentum. The helicity basis, moreo-
ver, transforms like ordinary spin states under the three-dimensional "Wigner rotations" of the

intrinsic spin entailed by such boosts in the rest-frame of the particle. By working in the
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Figure 1.6 Racah coefficient of the Poincare group

A,62s¢ A2, 3,5

-

js ™y

i

T

” .

AL AzY M6 2':',6

center-of-momentum frame of a pair of coupled particles, we can calculate the coupling tensor
as a simple product of three rotation matrices. We identify the degeneracy indices of the

coupling to be the relative helicities of each particle in this frame.

By contracting together four coupling tensors, we compute the Racah kernel of figure 1.6

in the form
2 3 4 5 6
€64 €54 Cs6 €26 €63 €35 (1.3.2)

with

k i
e = dik (B..,.) 1.3.3)
fm Ak.!hkm k./m (



< 15

where Ak.! is the helicity of particle k in the frame attached to particle /, ﬁk‘f n is the angle
between the 3-momenta of particles / and m in the frame attached to K, and the d-function is
the standard y-rotation matrix (only y-rotations appear, because momentum conservation
constrains the 3-momenta of all six particles to be coplanar in the frame attached to any one

of them).

In the semiclassical limit, the Racah coefficent (1.3.2-3) is a rapidly oscillating function
of the masses, spins, and helicities, which we display in manifestly invariant form, with the
help of an asymptotic formula for the d-function derived by Regge and Ponzano. We show
that the phase of a product of Racah coefficients contains a term proportional to the angle
defect in the intrinsic spin plane of each internal particle state. The weights of these terms are
such that the phase is stationary just when the ewsvatwre vanishes. The natural way angle
defects arise in this model, however, will probably play a role in fabrics for quantizing the

curved spaces of general relativity.
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2. SPIN NETWORKS

The theory of spin networks is one of several mathematically equivalent graphical
methods for treating the recoupling theory of the rotation group [Yut;is, Levinson, and
Vanagas 62, ElBaz and Castel 72] . Roger Penrose invented this method while searching for
combinatorial models of geometry in quantum physics, so it is distinguished by emphasis on
combinatoric techniques that are probably unique in their simplicity and elegance. Underlying
these techniques is the representation of spin 1/2 by the simplest (2-d) Hilbert space H, , and

of higher spins by symmetrized products of this basic space.

In sections 1 and 2, we develop the elementary facts about spin, in a notation compatible
with spin networks. In section 3, we define scalar product operators, characterize the
constraints imposed upon them in a 3-d Euclidean space, and introduce the notions of
€ -constraints and & -classical limit. In the final section, we give an algebraic proof of the spin
geometry theorem, sketch Penrose’s combinatorial proof, and discuss an alternate approach

involving "interior" scalar products.

2.1 Basic States and Operators

The relationship between Minkowski space-time and the spin-1/2 state space H, is

perhaps most easily seen in the well-known parametrization of the 2x2 Hermitian matrices:

t+z x-— - -
H = (x+1y oy ) = t 1 + reo, where L (x,y,2) (2.1.1)
and
01 0 —i 1 0
o= (1 0/’ %= (i 0). o, = ( 0 _1) (2.1.2)

are the Pauli spin matrices. The Hermitian property H = H“' and the determinant



N &

det H=1t>- x> - y2 g (2.1.3)
are both preserved under the transformation
H = LHL, 2.1.4)

if L is a 2x2 complex matrix with unit determinant. This is the ﬁell—known 2-to-1 isomor-
phism (L and -L produce the same transformation) between SL(2,C) and the identity-
connected component of the Lorentz group O(3,1).

Figure 2.1 Basic spin states

aN
matrix bra-ket Spinoyr 9y;.f:lm:c,a.‘
|
D) 1 e try oot s
o
() =15 =w=a = &
) ;
|j,m> = N.. 1
where
_[{:'-u;')"] ) _J = r:S , m = r;c

If L is also restricted to be a unitary matrix U with UU? = 1, then the t-coordinate is
also unchanged by the transformation (2.1.4), so the Euclidean norm x2 + y2 +2%is pre-

served. In fact, the unitary matrices

cos £ sin & 2

i6o /2 ( 2 2 ) i60,/2 ( )
e V4 = and e ¥ = . (2.1.5)
—sind cos & 0 e~i9/2
2 2
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which rotate the coordinates (x,y,z) by angle  around the y and z axes respectively, generate
all proper rotations, so the group SU(2) of unitary unimodular matrices is 2-to-1 isomorphic to

the group of proper rotations SO(3).

The 2-dimensional Hilbert space H, underlying these operators describes the states of a
spin-1/2 object. Fig. 2.1a illustrates the two basic vectors of this space in several notations:
matrix, Dirac bra-ket (two versions), spinor, and graphical. Noting how o, is diagonalized in

A

(2.1.2), we identify the states u™ and d® as spin "up" and "down" along the z-axis.

The simple combinatorial structure of spin theory stems from the fact that all irreducible
unitary representations of SU(2) can be constructed from symmetrized products of H,. Figure
2.1b gives an explicit construction of spin-j basis states from the tensor product of 2j half-
spins. The round brackets around the spinor indices and the wavy bar in the graphical

notation both indicate symmetrizers.

Tr=s(HX), =5 (1 XD 1X X+ %+ XX, e

The component of spin in the z-direction m, determined by the excess of up to down half-
spins, takes all values from j to -j in integer steps. The constants N:n make these states

orthonormal under the Hermitian product induced from H,.

ag
Referring back to (2.12) and (2.1.5), we see that J, = % , P, S 323 -

2
infinitesimal generators forming a Lie algebra su(2) with commutation relations

Up 3] = e, 1, (2.1.7)

where €, is the totally antisymmetric Levi-Civita tensor with € 123 = + 1. The correspond-
ing operators (satisfying the same relations) on the spin-j Hilbert space I-I(2j +1) With basis
shown in figure 2.1b are the sum of 2j half-spin operators, each being the tensor product of -;-

. on one of the H, spaces with identity operators on the (2j-1) other H, spaces in the symme-
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trized product. For example, in the spin-3/2 space, we have explicitly

¥ = 32£®1®1 + 1@%@1 + 1®1®%. - (2.1.8)

From the definition of |j,m> in figure 2.1b, we check that
J31jim> = m|jm>. (2.1.9)

Similarly, if we define the standard operators J 4+ = Jy%il, which raise and lower the eigenva-

lue m, we may check

¥, ljm> = [0~ MG+ m+ D) {im + 15

J_ljim> = [(j + m)(j — m + I)]y’lj.m - 1>. (2.1.10)

. The scalar product

-

D =T+ 2+ = k3, T_+3_3,)+ 12 (2.1.11)

—
]

is an invariant, since (2.1.7) implies it commutes with all J. From (2.1.9-10) we verify that
Plim> = jii + Dljm>. (2.1.12)

The general y-rotation matrix in the spin-j representation can be computed from
(2.1.5) and the J, definition analogous to (2.1.8):

%02 jm">

- [ (j + m)!(j — m)! ] h ECT) (m—j::’l’+k) x
k

(j +m)!(j — m")!

d () = <jmle

x (- 1¥Csin %)"""“ 2 cos %)”““*‘“ =k (2.1.13)

Hence the matrix elements for arbitrary finite rotations are

D o(ay) = <jm| e ¥z o)y o
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™ dl_(p) ™, (2.1.14)

where afy are the Euler angles.

These representations are clearly irreducible, since the operator J_ in (2.1.10)
generates all states |j,m> from |j,j>. The fact that any irreducible representation is equiva-
lent to one of these can be shown in many ways. Perhaps the simplest is to note the following
facts:

1. An irreducible representation must span a single eigenspace of the invariant 1%, Let the
eigenvalue be j(j+1).
2. Then (2.1.11) implies that the J, -eigenvalues m in this representation are bounded by

Im| <j + 1.

3. The commutation relations of J; and J 4 imply that the maximal eigenvalues are in fact
m = #j, and that m ranges between them in integer steps.

4. Hence 2j is an integer, and we have the spin-j representation of the rotation group.
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2.2 Addition of spin

The addition of spin is represented in quantum theory i)y the composition or tensor
product of spin states. The tensor product of spin j; and spin j, reduces to a direct sum of
irreducible subspaces with spin j3 - where, as we shall see, i3 ranges between j; + j, and
lji;j=j, | in integer steps. Physically the direct sum corresponds to the suﬁerposition of all
possible outcomes of composing j; and j,, ranging from parallel to antiparallel in steps of the
spin quantum. The observation of a particular outcome is represented by an operator, which
we display explicitly, following Penrose’s construction, with the help of the particular choice of
bases in the previous section. These operators are concrete realizations in terms of some
simple invariants of the basic coupling tensors of SU(2), the "1-j and 3-j symbols" which are
treated in the more general context of compact groups in chapter 4.

The basic ingredient of these constructions is the two-dimensional Levi-Civita

symbols:
(%) = Ceyp)i= (_01 ; @22.1)

O : . - : K :
whose invariance is equivalent to the condition that the 2x2 matrices U g in SU(2) have unit
determinant:

P m U WP, € oor g = VA TP e (2.2.2)

These €’s can be used to raise and lower spinor indices, and establish a canonical isomorphism

between spinors and their duals:

A, AB
S
§ el meap & AT (2.2.3)
We also define the identity (or index substitution) operators:
B BC B 10
€A = €c € = —€ = (0 1) (2.2.4

Because the underlying space H, is two-dimensional, a spinor which is skew-
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symmetrical in three or more indices must vanish. Hence in particular
€AB €cp t €Ac €pB t €ap €pc =0- (2.2.5)

From (2.2.3-5) any spinor { can be reduced by

Cocpprns = vy + B €p Lo S (2.2.6)

Here the first term on the right is the symmetric part, and the second term is the skew-
symmetric part, expressed as a product of € and a contracted spinor of valence lower then ¢{.
This identity indicates once again that only totally symmetric spinors are irreducible.

Now composition of two half-spins is the tensor product
Sam8 = famp + % erpg (). (22.7)

Here the symmetric part corresponds to parallel composition, giving total spin 1; and the
skew-symmetric part, to antiparallel composition, giving the rotationally invariant spin 0.

Similarly, by raising one index in a spinor of valence 2, we get

B

BC B C
hy " = by e + hey (b ®).

Here the two terms correspond to a trace-free vector and trace scalar, as in the equation
(2.1.1) with which we began this chapter. Hence we expect that the spin-1 representation is
equivalent to the 3-dimensional vector representation of the rotation group. In fact, it is easy

to check that the following orthonormal basis transforms as an ordinary 3-vector:

gm—— [1L=15— |11s]

V2

f ot [ [ o [Hifs
y ‘/E ]

e, = 11,0>. (2.2.8)
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Strictly speaking, the Hermitian matrix in (2.1.1) is a spinor hAA  where A is a
conjugate spinor index. Conjugate spinors form a space H; of "bra" states related antilinearly
to the "kets" in H,, and they transform by the adjoint LT in SL(2,C), as shown in (2.1.4).

But in context of SU(2), the matrix

AA’ 10)
g "(01

is an invariant because of unitarity, and it provides an isomorphism between H; and H,.
Hence we may eliminate all reference to conjugate spinors in the theory of SU(2): the simple

invariants € ,€,p, and €, B suffice for the construction of all coupling tensors.

Figure 2.2a shows the graphical symbol for €,p. Figure 2.2b shows the "1-j symbol",
constructed explicitly from the symmetrized product of 2j €’s. It is a generalization of € AR i
that it produces the spin-0 paﬁ of the composition of two systems each with total spin j. The
"3-j symbol” in figure 2.2c is an invariant tensor which projects out the spin-0 part from the
composition of three spins J1+ig:i3- The index bundle numbers t; in this definition are uniquely

determined by the j's:

YW=l +i3=ip L=l +i—ip Y=1; +i-i; (2.2.9)
Since these must be positive integers, the j’s must satisfy the triangle inequalities

otz 2 0 s i3+ 2 0y s iyt 2 3 (2.2.10)
and j, +j, + j3 = t; + t, + t; must be an integer.

By using the dual isomorphism (2.2.3), we can also define contravariant 1-j and 3-j
symbols, as shown in figure 2.3. We interpret these contravariant symbols physically as
representing the splitting of a spin-0 system into 2 or 3 higher spin states correlated in such a
way that the total spin is 0 (e.g. as in the Einstein-Podolsky-Rosen experiment). These

coupling tensors satisfy the standard identities illustrated in figure 2.4, provided that the

normalization constants are taken to be
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Figure 2.2 Covariant j-symbols
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N [ Gy tiy+is+ Dt ] % (2.2.11)
hizs (j2+j3_j])!(j3+j]"jz)-'(jl +y—j3)!

Figure 2.4 Identities between j-symbols

m = [aj 0] J/J!\o

& J / I

o

b

Q /’T\

a

Figure 2.5a is a 3-j symbol of mixed valence, which represents the addition of two spins
j; and j, to produce a third spin j3- We see that in our spinor-product basis, this composition
is accomplished by the anti-parallel addition of just the right number of half-spin pairs (with
ty = j; + j,—j; skew €’s) so that the remaining half-spins in j, and j; add in parallel to give
j3 (by the symmetrization of the t; + 1, = 2j; indices). This coupling tensor and its dual are

members of Hon:(jl@jz,j3) and Hom(j3,jl®j2) respectively, where we have used jy as a
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shorthand for th +1 (see chapter 4 for a definition of the module homomorphisms). By
ot;:%njnsing these two tensors as shown in figure 2.5b, we define an operator which projects out
the irreducible spin-j subspace from the product j, ®j,. The constraints (2.2.10) imply that
Pj”‘h) can be constructed in this way for j ranging between j, + j; and |j,—j, | in integer

steps.

The projector identities

are an immediate consequence of Schur’s lemma, shown in Figure 2.5c: the image and kernel
of any ae Hom (j,k) are both invariant subspaces, so a must vanish unless j=k, in which case
it must be a multiple of the identity (since the eigenspaces of « are also invariant). The Pj’s
are complete as well, since they are independent by (2.2.12), and both sides of the Clebsch-
Gordon series defined in figure 2.5d have equal dimensions:

iiti;

Qj;+1) Qj,+1)= > @+ 1. (2.2.13)
j=]i|“j2|

The completeness of the Pj's implies the Wigner-Eckart theorem, which states tha; any
B e Hom(j, ®j,.j;) must be a multiple of the 3-j symbol. For we may decompose the domain
j;®j, by projecting out the j-subspaces as shown in figure 2.5e, and then apply Schur’s lemma
to conclude that only the j = j3 term in the sum is non-vanishing, and that it is proportional to

the 3-j symbol.

In general, we define a spin network to be an SU(2)-invariant tensor described by a
labelled cubic graph which represents the contraction of 3-j symbols according to the graphic
conventions in figures 2.2-5. By repeated application of the Clebsch-Gordon decomposition
and the Wigner-Eckart theorem, we can prove that any invariant under SU(2) can be ex-

pressed as a superposition of spin networks (see the generalized Wigner-Eckart theorem in
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Figure 2.5 Coupling Tensor and Classical Theorems
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chapter 4). In fact, a basis for any particular valence can be constructed from a "coupling
tree” network of fixed structure by varying the intermediate Spms over all possible values.
For example, figure 2.6a shows how any invariant of valence 4 can be expanded as a sum over
coupling trees with the intermediate spin _\rariable a. Figure 2.6b displays another basis,
relying on a different choice of coupling sequence in the tree. By applying the expansion
formula in 2.6a to a basis element in 2.6b, we explicitly compute the "recoupling coefficient"

shown in figure 2.6¢.

All such recoupling coefficients are closed spin networks obtained by contracting together
trees of the same valence but different coupling sequence. The value of any closed network
can be computed in principle by using the 3-j definitions in figures 2.3-5 and expanding the
€’s in components as in (2.2.1). In practice, there are several techniques for simplifying the
evaluation of closed networks, some of which we have described elsewhere [Moussouris 79].
In chapter 4, we supply yet another evaluation method, by proving that all closed networks

can be decomposed as a sum of products of the Racah coefficients shown in figure 1.2b.

The graphical conventions of spin networks given here are consistent with chapters 3 and
4 and most diagrammatic methods in the quantum theory of spin. They differ however in a
few details from Penrose’s conventions, which emphasize combinatorics, e.g. by avoiding all

reference to non-integer quantities:

1)  Penrose labels the edges of a spin network with integers 2j specifying the number of
balf-spins composed to make j-

2) Penrose omits the normalization factor (2.2.11) on each vertex, so that the values of
closed spin networks become integers.

3)  Penrose alters the sign conventions for the graphical representation of €’s, so that the
value of a closed spin network depends only on the labelled cubic graph, and is unaf-

fected by continuous deformations of its imbedding in the plane.
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Figure 2.6 Completeness and Recoupling Coefficients
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We have in fact glossed over certain sign ambiguities that arise in our graphical definition

of the j-symbols. For example the two graphical diagrams

A B8 c p A B

<D \_/I
EADEBCE GAB i
l
are of opposite sign according to (2.2.4), even though they are topologically equivalent. In
[Moussouris 79] we described Penrose’s modified sign conventions, which alleviate these
ambiguities, and result in a formal isomorphism between spinor and "binor" invariants which
lead to some elegant evaulation techniques. The geometric analysis of the following sections is

independent of sign convention, since the expectation values computed are quadratic in the

states.

2.3 Geometric relations between spins

Let 3 ang 19 be tWo spin vector operators. We define the scalar product operator

on the tensor product of the two spin spaces:

12) ) e D@ | 12 . (2) ~ 2 (2)
T = M%) = ;WEIP 4 1P el + 157 @1 (2.3.1)

where the superscript ensemble indices are enclosed in parentheses to distinguish them from

the 3-d indices. If J = 3 4 ;@

T = %@ - p™P - pop, @32

S0 measurement of the scalar product of two known spins is equivalent to measuring the total

spin of the composite system, and T is the sum of Clebsch-Gordon projection operators shown



i
in figure 2.7a, with

G = B LG+ D = GG+ D - G, + DI (23:3)

Figure 2.7 Scalar Product Operator
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A much simpler expression for T!'? arises from applying the Wigner-Eckart theorem to

the vector operator J. The commutation relations imply that J transforms under rotation as

follows:

Di(aPy) 1 DiT(afy) = RJ (2.3.4)

where

R = U2!(aps) Ut (2.3.5)
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is the 3 x 3 rotation matrix obtained from the spin-1 matrix 2! by the basis transformation U
given in (2.2.8). Thus the triplet (J1-J3,J3) can be regarded as an element of
Hom(H3®H2j+I,H2j+I), which must be proportional to the 3-j tensor shown in figure 2.7b.
The constant k! is fixed by 1 - jGi + 1). Hence TU? js equal to the spin network shown in

figure 2.7c.

N

i=1"

Suppose now that w is the state of an ensemble of N spins {J m}

The scalar product operator T"'? is defiged on w, provided we multiply (2.3.1) by identity
operators on the Hilbert spaces associated with spins 3 through N. We compute the expecta-

tion values of T's on the state w in the usual way:

<T>, = <wl|Tle>/<w|w> =

Our main goal is to show that for states w approaching the "classical limit", these expectation

values are consistent with a 3-dimensional Euclidean vector space.

" The following proposition characterizes the constraints a N x N matrix T* must satisfy in

order to be the matrix of scalar products of N vectors in a 3-d Euclidean space.



T

Proposition SP (scalar product):

Suppose T is a real symmetric N x N matrix.

The following conditions are equi\;:alent:

1)  There exist 3-d vectors {-\Tk} k=1 such that s (;k,-\:"), the Euclidean scalar products.
2) T is positive semi-definite of rank <3.

: N
3) xk'l'uxfzo for all real {x.} .-, and the determinants of all symmetric 4 x 4 submatrices

of T vanish.

(2.3.8)

proof: By elementary linear algebra [Herstein, p.310], the real symmetric matrix T can be

reduced to diagonal form D by a real orthogonal transformation D = RTR".

2>1: Condition 2 implies that D has no negative elements, and at most three positive
elements on the diagonal. We define D}g by taking positive square roots of the diagonal

elements. Then T = CTC, where C = DY’R can be regarded as a 3 x N real matrix. The
N :

columns of C are the components of the 3-vectors {vk}k=l in condition 1.

1=3: If T (vk, v’), then x, Tk"x, =(u, u) >0, where u = Exk vE. Moreover, any

ey

four of the vectors {vk} are linearly dependent, so the 4 x 4 submatrices of T are singular.

32 kak'x, = (Rx)TD(Rx) > 0. Since R is non-singular, we can chose Rx to pick out any
diagonal element of D, which must therefore be positive semi-definite. The rank of T and the
singularity of its 4 x 4 submatrices are both unchanged under permutations of rows (or
columns) of T or addition of a multiple of one row (or column) to another. But these
operations are sufficient to reduce T to (upper left) diagonal form while preserving its
symmetry [Loomis and Sternberg, p. 114]. Since the determinant of the upper left 4 x 4

submatrix must vanish, T must be of rank <3.
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If the spins are too small, then the scalar products are quantized too coarsely to respect
these classical constraints. On the other hand, even when the épins are large, the constraints
may still be violated, because the state provides too little correlation between spins for their
geometry to be well defined. For example, suppose w decomposes into the product of two

invariant states @; and w,

by by o

Then it is easy to see from figure 2.7¢ that <T“2’>u = 0, so the spin subspaces associated

with w; and w, appear to be orthogonal. In particular, as Penrose noted, the network
2 3 .. .. o T

describes N completely uncorrelated spins, whose scalar products all have expectation value 0,

suggesting an N-dimensional spin space.

In the classical limit, this situation can be avoided by requiring that the state w contain
enough information about the geometric relations between the spins that all the observables T

are well-determined. We define the usual root-mean-square uncertainty in an observable A by

oA = [<a,a%>,] % (23.9)

where

A A=A-<A> . (2.3.10)
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The operator A is bounded when it has finite norm

1A Eli‘:n sup [ <A> |.

Definition: The bounded observable A is & —classical for a state w when

Since the expression (2.3.3) for T""? attains the maximum value j,j, forj = j, + iz

we have

1 v i
1T = jji, (2.3.11)
and the T"? are § -classical when %T(u) /ii; < 8.

The uncertainty relations for the T operators imply that they can be § -classical only if the

spins are large. For any Hermitian operators A and B, the Cauchy-Schwartz inequality gives

9,A o,B 2 [<w|AA AB|w>| = [<AB>, — <A>_<B>_|. (23.12)
Since the commutator [A, B] = [AA, AB], we have the familiar uncertainty relation

o, Ao B > 4% | <%[A,B]>”|. (2.3.13)

In the case of three spins J, 1@, &

[(1(11.1(2)), (Jtz).]m)] : (2.3.14)

i1, (1@ xDy,
SO

(12) (23)
T T
o o > S (2.3.15)

5 2L e > €
Wiy dy s 2j,

where
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!<J(l].(1(2) X 1(3))>ul
j1j2j3

is generically of magnitude 0(1).

For spins of finite magnitude, we expect the constraints of proposition SP to be satisfied
only approximately. Suppose T is a real symmetric N x N matrix which is nearly equal to

(vk,v’). where {vkj are N 3-d vectors. If v* are all non-zero, then TX >0, and we can

normalize to form the matrix

-
T = T [1& 1 ] (2.3.16)

—

[4

A . ; —
Here T is the cosine of the angle between v* and v’. Now if K is a 4-tuple of index

elements, the 4-volume spanned by the corresponding four unit vectors is

A
A [ o AP L (2.3.17)

Definition: The real symmetric N x N matrix T satisfies the € -constraints for Euclidean three
space if

== Y N
a)  T¥>0 and XkTux: 20 for all real {x,}, _,

b) vk < ¢ for any 4-tuple K.
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2.4 The spin geometry theorem
N

-

Spin Geometry Theorem: Let w be a state of an ensemble of N spins {Jm}k_, , and

T®) < J e J(”) be the N x N matrix of scalar product operators between these spins. For

all € > 0, there exists § > 0 such that the expectation values <T“"”>“ satisfy the
€ -constraints for Euclidean three space, provided that all the T*) are d ~classical in the state

w.

For the proof of this theorem we need the following lemma about expectation values of
operator products, which is a weaker form of the bound (2.3.12), applying to three or more
operators:

Lemma: Let w be a state supporting a set of bounded observables {Ai}?=l with expectation

values <A>, = A;. Then

o A

I <AAAS>, = A0, | < (IA] 1A, T
1

proof of Lemma: 3 We normalize w so that <w|w> = 1. Then

| <elAjA; Ap=A A A 0> |

S IAA A=A A A ) (o> Twll

= [(A A2""An_AlA2'"An— A >

+ (AJA AL A=A LA DAL A 0>

+: .

+ (AAA A=A Mg A ) 0> |

3 This proof was suggested by E. B. Davies.
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S NALcAL_ A=A o>

+ 1AL AL LTI T T, -2, w>]
e AR R

+ Ihz---l-hnl " (AI—A]) ' "’>"

n o A.
<HA[....1A_| £
; " El 1Al

proof of spin geometry theorem:

Nn
First of all, we note that for any real R 1%

- —— 3
4 . 2
SH<T >0 = T <@ s, = 3 <cHy’>, 20, @4
K/ |4 i=1
since H= I Xy ]i(k) is Hermitian. Moreover,
k
& k)2 2 '
<>, = <™, = G, + 1)>0, (2.4.2)

A A A
Now we define the operator TED o T”‘”/jkjf. normalized so that [IT"“” l<1. If K is

a 4-tuple of indices labelling a subensemble of four spins, we define

A .

Our goal is to show that for any €>0 there exists §>0 such that for all such K

A
0, T < § for kteK » |D® g, $(2.4.3)8

Consider the determinant operator

A A A N,
AK) =% & ks, TED Tl Tlkaty) Tikely

5!1,2{3,‘. (2.4.4)
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Here there is an implicit summation over the indices ky,....k, and t’l,...,!4, ranging over the
four elements of K. The €’s are totally antisymmetric symbols which have the value +1 for

A
even permutations of K. Applying the lemma to the products of TED jn A we have

A,
1<a®s  _ p®| 3 E%TM < 965 (2.4.5)
k/eK

Finally, we show that there is a similar bound on I<A(K)>u| itself. For consider the

antisymmetrized tensor product

T T Ty (e _
10 D 0 30D o ey it (2.4.6)

which vanishes identically, because only products of distinct 3-vector operators occur, and

these commute. Therefore

=) ) e(kp) o ¢
%[Hlx] €k, koksk, Jiz“) @® .50 Ji(zzl x
" keK

(1) (k) Tty 1y
x JiJJ (J 4 .J 4 ) Ji]_] E’]’z’j" - 0- (2.4.?)
But (2.4.7) and (2.4.4) differ by terms of the form

AB[CD]; [ABICD; and [A,B] [C,D], (2.4.8)

where
A = '?‘(kl*'l}, . "1\‘(“2'33, e 3]\*“"3’3‘, D -?*(1‘4*’4).
Let [AB]=E, [C,D] = F. By (23.12 - 14),
| <ABF>, - <AB>_, <F>,| < 0,(AB) o F

and |<AB>, <F>, | < 262

Also
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2
0o(AB) = |<ABAB>_ — <AB>_ |
<|<ABAB> - <ABA><B>| + | <ABA><B> — <AB> <A><B>| +

2
| <AB><A><B> - <AB>"|
<o (ABA) o, B + o,(AB) 0, A + oA o B < 68,

since [[x[[<1 > o, X £2. Similarly, a:F < 248, so

| <ABF> | < 126 + 282 (2.4.9)

By the same arguments
| <ECD>_ | < 125 + 252 (2.4.10)
| <EF> | < 248 + 25% (2.4.11)

Now we count the number of terms of each type. A commutator ['I‘""”,T(k”')] vanishes
unless it is of the form [T“z),Ta‘”]. Given 4 different indices, there are 4 x 3 x 4 commuta-
tors of this type. The remaining T’s in the term must be TV and T®Y or TOV and T(“)_,
(the latter is excluded in the terms of type [A,B] [C,D]). Hence there are 4 x 3 x 4 x 4 /4! =
8 contributions for each of type (2.4.9) and (2.4.10) and 4 contributions of type (2.4.11).

Thus

1<a®> 1 < 16(125 +252) + 4245 + 45%)

Combining this with (2.4.5), we have the bound
ID® % < 4245 4+ 257 + 64" < 208% <

-_—

for sufficiently small §.
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This proof relies only on properties of the observables {T(k”}. Nothing is assumed about
the state w, except that it contains enough information to make ;hese observables § -classical.
In fact, © need not even be invariant. Since the observables are invariant, however, we may
project out the invariant part of w (say, by integration over the group manifold), without
changing the expectation values of the T’s. In this case, the generalized Wigner-Eckart

theorem guarantees that w is a superposition of spin networks.

Penrose proved a very similar result by a method emphasizing the combinatorics of the
petwork themselves. Since his proof has not been published, we sketch it here, and show the

connections with our method.

Given a petwork with two free ends j 1 and j,, Penrose considers the new network shown
in figure 2.8a in which a spin-1/2 unit splits off j, and combines with j; to form either jp + A
or j,—%. He defines the cosine of the angle between j, and j, to be the difference between
the probabilities of these two outcomes (these probabilities are computed as expectation values

of a projection operator as in figure 2.5b).

Penrose notes that if j; and j, are not connected by w, then cos 6, = 0 by this
definition. Hence he considers the results of making repeated angle measurements as shown in
figure 2.8b. He requires that the angle 6,, be well-defined in the sense that the results of
successive measurements are approximately the same. He is then able to show that w is an
approximate eigenvector of the spin-1 exchange operator of figure 2.7c, with eigenvalue

proportional to cos 8,, as shown in figure 2.8b.

Since the spin-1 system has only three components, the antisymmetric product of 4 such
systems vanishes. Thus the network of figure 2c, which approximates the determinant of the
4x4 matrix of cosines between 4 spins, also vanishes. In order to apply the eigenvector
approximation of 2.8b, however,"we have to rearrange the order of some spin-1 exchanges as

shown in 2.8d, the network analog of the commutation relations (2.3.14). In the limit of very
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Figure 2.8 Penrose proof of geometry theorem
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large spins, the uncertainty relation (2.3.15) guarantees that these rearrangements make small

contributions to the determinant.

Finally, we consider how to extend the spin geometry theorem to make predictions about
the interior of a network. As shown in figure 2.9a, we define the expectation value of the
scalar product between two interior edges as the fractional change in the amplitude of the
network when these edges are linked by a spin-1 exchange operator. If the two edges happen
to be coupled, as in figure 2.9b, then we get the expected result (2.3.3). If the edges are not
coupled, we may still have the classically expected value. For example, the identity in figure
2.9c guarantees that the expected angles in a tetrahedron take the classical values. In general,
the scalar products between any interior edge and each of a coupled triplet of edges satisfy a
linear conservation law of this type, thanks to the identity in figure 2.9d. This identity, the
operator analog of (1.2.1), is simply the infinitesimal version of the requirement that the

3j-symbol be rotationally invariant.

In a closed connected spin network with E edges and V vertices, the 3E interior spin
components are subject to E quadratic constraints on the spin lengths and 3(V-1) linear
conservation conr.:iilions. Since 2E=3V, the spin components are algebraicly determined by
the constraints, up to an overall rotation of the configuration. Because the length constraints
are quadratic, however, there may be no real solutions, or a finite multiplicity of solutions,

corresponding to discrete ambiguities in the conformation of the spins.

Consider the matrix of expectation values T of all the interior scalar products of a
closed spin network. Any three rows or columns corresponding to coupled edges are linearly
dependent by figure 2.9d. Proposition (SP) implies that real solutions for the underlying spin
components exist just when this matrix is positive semidefinite of rank no greater than 3. The
argument of the previous paragraph shows that in this "classically allowed" regime there will

in general be a finite multiplicity of spin configurations. The multiplicity may cause the



Figure 2.9 Interior geometry of a spin network
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8 ~classical hypothesis of the spin geometry theorem to fail, even for classically allowed

networks.

As we shall see in the next chapter, discrete ambiguities in spin configuration are the rule
rather than the exception. Regge-Ponzano theory overcomes this difficulty by means of a
path-integral technique for evaluating closed networks. Ambiguities in conformation appear as
multiple extremal paths. Moreover, this technique accounts for the exponential decay of the
amplitude of a network as we "tunnel" into a classically forbidden regime, where there are no

extremal spin geometries at all.
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3. REGGE-PONZANO THEORY

Regge and Ponzano developed a more detailed analysis of the semiclassical limit of spin
networks. Their method has two parts: first, a remarkly accurate analytic approximation to
the Racah coefficient; second, an exact path-integral-like decomposition formula for evaluating
any spin network as a sum of products of these coefficients. This chapter consists entirely of

review of this approach [Ponzano and Regge 68].

3.1 Semiclassical limit of Racah coefficient

In the classical limit, it is convenient to depict spin coupling by means of "vector
diagrams", which are graph-theoretic duals of spin networks. Figure 3.1 describes the simplest
non-trivial recoupli.ng amplitude, the Racah coefficient: 3.1a is the standard "network"
picture; 3.1b is the corresponding vector diagram. The edges in b represent spin vectors, as in
classical kinematics. Hence in b the conservation laws are indicated by the closing up of
triplets of spin vectors into triangular faces, which correspond one-to-one with the incidence
of triplets on cubic vectices in a (the face 012 with vertex A, 130 with B, 203 with C, 321
with D). If we think of the tetrahedra in figure 3.1 as embedded in the surface of a sphere,

then a and b are duals in the familiar graph-theoretic sense.

The vector diagram shows two different schemes for coupling the three spins iy Jp» and
j; to form the total spin J. In the first scheme, j, and j, couple (face 012) to form the
"partial spin" j,,, which couples (on face 203) with j; to form J. In the second scheme, i
and j; couple to form j23_ which couples with jj to form J. The Racah coefficient is the
“recoupling amplitude” which transforms between bases for the 3-spin states labelled by these
two different co.upling schemes. In standard notation of quantum mechanics [Ponzano and

Regge 68, p.9]:
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<((j1-.i2)j]2sj3)] I(jl:(j29j3)j23)l >
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where the normalization factors are chosen to give the 6-j symbol maximal symmetry under
the group preserving the tetrahedron. The square of this amplitude can be interpreted as the
probability that jp3 be the sum of the angular momenta Jp and j;, while j, and j, sum to j12
and both j,,, j; and i1» jp3 sum to J.

Figure 3.1 Dual Representations of the Racah Coefficient
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Wigner reasoned heuristically that, in the limit of large spins, all values of the dihedral

angle 0, between the faces (021 and 023) which hinge at J1a as j,3 changes should be equally

likely [Wigner 59]. By elementary trigonometry,

d802 - jl2j23_ (3.1.2)
dj,; 6V
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where V is the volume of the tetrahedron in figure 3.1b. Hence we expect that on the

average, in the classical limit

I {jl iz J12 } | 2 1
ia J i L 3.1.3
132 s 247V 5.53)

abec
The actual values of the Racah coefficient {d] e} as a function of J oscillate wildly

about the average computed by Wigner. Ponzano and Regge accounted for the oscillations

with the following analytic approximation:

1 A _ -
[12,,v] gos (g-lcge * 5! (3.1.4)

where 6, is the angle between the outer normals of the faces meeting at edge e, and Je is the
length of the spin associated with that edge.4
The phase term in this formula has a simple physical explanation: the angle variables 8

are conjugate to the spins j:

1 9 Ly | (3.1.5)

This correspondence leads us to expect recursion relations for the Racah coefficient of the

form
i {Pa'ef} - @ 4 e fict (3.1.6)

Such relations in fact do exist in the limit of large spins, and the formula (3.1.4) can be
derived from them by a finite-differences analog of the WKB method [see also Schulten and
Gordon 75]. This method gives accurate approximations to the Racah coefficient even when
the 6 spin lengths are not consistent with the classical tetrahedron being embedded in Euclide-
an 3-space. In this "tunneling" regime, the volume V and angles @ become pure imaginary,

and an analytically continued formula similar to (3.1.4) predicts exponential decay of the

4 We take the length to be j + 1/2, since this is a better approximation to v/ j(j + 1) than j is.
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coefficient.

3.2 Decomposition theorem and path integrals

The second part of the Regge-Ponzano method, which which we call the decomposition
theorem, permits the evaluation of more complicated spin networks, such as shown in figure
3.2a. This network is also planar, so we once again think of it as imbedded in the surface of a
sphere, and construct a dual vector diagram 3.2b, triangulating the sphere with six triangular
faces, one for each vertex in 3.2a. Figure 3.2c shows that this triangulation can be decom-
posed into two tetrahedra with the common face 024. In this case, the decomposition theorem
implies that the amplitude of a diagram which decomposes into tetrahedra is the product of the

corresponding Racah coefficients, resulting in the equation give in figure 1.2d.

Figure 3.3d shows another kind of decomposition of 3.3b, into three tetrahedra which
hinge at a new edge Jp3 spanning vertices 1 and 3 in the original vector diagram. In this case,
the decomposition theorem implies that the amplitude is the product of the corresponding
Racah coefficients, summed over all values of the new edge. Since both methods of evaluating
the amplitude must give the same result, we have the classic identity between Racah coeffi-
cients derived by Biedenharn and Elliott [Biedenharn 53, Elliott 53] shown in figure 3.3e (the
phase factor ( — 1)° and weight (2j23 + 1) are explained in the next chapter). In fact,

recursion relations such as (3.1.6) can be derived from this identity.

In general, we may think of any spin network w as being imbedded in the boundary of a
region in some three-dimensional space. We associate with w a dual vector diagram D(w)
which triangulates the boundary in a polyhedron with specified edge lengths. Even in the
simplest case of planar w, the geometry of the polyhedron D(w) is not completely determined
(e.g. it need not be convex). Hence we define a new diagram C(w) which has additional
information about the lengths X;, i= 1,2,..,q of a sufficient number of new "internal” edges

to dissect the interior of D(w) into tetrahedra T,. We may regard C(w) as a three-dimensional
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Figure 3.2 Decomposition: the Biedenharn-Elliott Identity

) T d3u
— —j’7j
J23 jq
b) Vecltor:
j:+_j1=jn j-s*)"l VET
_?‘113 ‘rj-:i = J- -j.' -l-j.‘;.’ - J.

®©

)iz @
T b
Jy ?

()™
®
aBicde.u herm-Elliott lalu.'}‘:l-y -

jl js _)-lz }{ju )'-; -):Il;}
Jsy T )23y Jy T o

5 : Jodz jos J'-szjm} {jszju}
= Z (’I)T (1J15+I) gj; _jus )-1;} {)‘l I j=3‘!
J=3

j'l jl!'!j;q



o

combinatorial manifold with boundary D(w). We then form the product

P q
Oxpx)=T] [T (= DX J] 2x, + 1), (3.2.1)
k=1

i=1

where [T,] is the Racah coefficient associated with T, and the sign ( — D% is given by
q

x=3 (=2 %+ x, (3.2.2)
i-1

Here p; is the number of tetrahedra which meet at the internal edge Xjs and x  is a
constant 0 or 1/2, as required to make y an integer.> The decomposition theorem, which we

will prove in a more general context in chapter 4, states that the amplitude ¥[w] of  is given

by

¥l = 3.3 0k, (3.2.3)
X
q

X

This theorem resembles the path integral approach to quantum theory [Dirac 33, Feyn-
man and Hibbs 65]. In this approach, we compute the transition amplitude <x,|x,> (x, is
an initial state at time 0 and X, is a final state at time t) by introducing a sequence of interme-

diate states XpeeXg and forming the product
T(Xppe X)) = <X | Xq><Xg I Xo_ 1> <X 1 X ><x, | x> (3.2.4)
By repeated application of the completeness theorem for the states X, the original amplitude

<x,|x,> is equal to the sum (or integral)

<x x> = 3. E -rr(xl,....,xq) (3.2.5)

If X, evolves according to some Hamiltonian H, it is easy to show that as dt - 0,

iLdt
h

Xyalx> = e (3.2.6)

3 This choice of sign is correct for the planar case only.
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where L is the corresponding classical Lagrangian. Hence in the limit of infinitely closely
spaced X;, = becomes a pure phase proportional to the classical action S associated with the
"path" defined by the X; and (3.2.5) becomes the formal integral over all those paths which

span the boundary states X, and X

. t
<x x> = e’sn', where S = Ldt. (3.2.7)
L (3] A

In the limit h-0, only paths near the classical trajectory, for which the action is extremal -

and hence stationary - contribute to the amplitude (principle of stationary phase).

In Regge-Ponzano theory, the analog of (3.2.6) is the semiclassical approximation to the
Racah coefficient (3.1.4). Since, moreover, cos ¢ = (ei‘s +e"i¢’)/2. the substitution of
(3.1.4) into the product (3.2.1) for each of the p tetrahedra T, results in a sum of 2” different
pure phases. A particular internal edge X; which belongs to p; different tetrahedra will appear

in 2 different phases of the form:

Pj
(3 26 )
g (3.2.8)

where 8}" is the external dihedral angle between the faces of tetrahedron k which meet at edge

X; ; and each of the 2Pi different phases correspond to a choice of the signs of these p; angles.

The physical interpretation of these phases is illustrated in figure 3.3, which shows how
they correspond to different orientations of the P; tetrahedra which hinge at x;. Each tetrahe-
dron is determined by two vertices that form two triangular faces with the edge X; and are
connected by an edge (which forms the other two faces with the endpoints of xj). Each of
these "equatorial” vertices is shared between two tetrahedra meeting at a common face.
Hence there are exactly p; such vertices in all, connected in a loop which encircles X, We
number these vertices 1 through P; around the loop, and let the kth tetrahedron be defined by

the two vertices k and k + 1 ( mod pj).
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Figure 3.3 Phase and Orientation Ambiguities

Now in fig. 3.3a each pair of successive tetrahedra k and k+1 are on opposite sides of the
common face formed by x j and vertex k+1. Hence the dihedral angles 8}‘ are all of the same
sign, and the phase term corresponding to this orientation is 01-1 + ﬂjz + 8j3 S 8}-’1 In
figure 3.3b, however, the tetrahedra 1 and 2 are on the same side of the face defined by X
and vertex 2. This "retrograde" progression in the loop corresponds to a phase term of the
form le - sz + 8]-3 -+ ....ﬂfi. Each of the 2Pi. phase terms corresponds to such an ordering
of the loop, once an overall orientation convention is chosen. In fact we may interpret the

cosine in the Racah formula (3.1.4) as arising from the superposition of the amplitudes for the

two possible orientations of a single tetrahedron.

If we substitute these phase terms in (3.2.3), we arrive at a sum over all orientations of
the tetrahedral cells, as well as over all values of XprewXgl Le., a sum over all geometries
consistent with the boundary conditions given by the original spin network w. Now Regge and
Ponzano reason, in formal analogy with the path integral argument, that the ‘geometries that

contribute to the sum will be just those for which S is stationary under variation of each X;.
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For the sake of simplicity, we describe what this condition means in the case when an
extremal geometry is oriented as shown in fig. 3.4a at all interior edges. Suppose that a
particular X; is integral (the half integral case is similar). Then the effect of X; in the sign term

X:

(3.2.2) can be incorporated into the phase in the form e*'” ®—2) J, and the total contribution

of X; is

P
i"s[(E- 6%) —vpj+21r]
k=1

e (3.2.9)

In this formula the 8;"3 are functions of the edge lengths Xj. However, as we shall see in the
next section, we can carry out the variation as if the Bjk’s were constants. Hence the station-

ary phase condition is

P;
kE (r—8) = 27, (3.2.10)
=]

which means that the sum of the internal dihedral angles around X; is just 27. But this is the
condition for the configuration to be imbeddable in a three-dimensional Euclidean space.
Hence we have arrived by this circuitous path at a conclusion very similar to Penrose’s spin

geometry theorem.
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3.3 Regge calculus for quantized spin

We interpret the stationary phase condition (3.2.10) by applying the Regge calculus
[Regge 61, Sorkin 75], a discrete coordinate-free approach to describing geometry, to the
vector picture of quantized spins. In this approach, a manifold is approximated by a simplectic
net with specified edge lengths. For example, a 2-manifold is approximated by a triangulation,
a 3-manifold by a tetrahedralization, and in general an n-dimensional manifold by a net of
n-simplices ("cells") each rigidly determined by n(n+1)/2 edge lengths. The cells meet at
(n-1)-simplices called "faces", which join at (n-2)-simplices called "bones". Figure 3.3 is an
example of a combinatorial 3-manifold described by pi tetrahedra which meet at pj triangular

faces, all of which hinge at the bone x’.

The Regge calculus gives rise to an elegant "finite-element" approximation to Einstein’s
equations in general relativity. In this context, we assume the usual flat-space parallel
transport within each cell and across the face between two cells. Transport around a loop that
encircles a bone B will, however, result in an overall rotation around B through a "defect
angle" 7(B) which measures the curvature concentrated at B. The defect n(B) is the differ-
ence between 27 and the sum of the internal dihedral angles between the successive faces that

hinge at B. In fact, explicit calculation of the vacuum Einstein action S gives [Sorkin, p.387]

S = =% f RdAV = 3 | B| 5(B) (3.3.1)

where |B| is the magnitude of the bone (length, area, volume,....), and the sum is over all the
internal bones of the manifold. Einstein’s equations are simply the condition for this action S

to be stationary under variation of all the internal edges in the simplicial manifold.

These equations are simplified by an identity [Sorkin, p.395] which allows us to perform
the variation as if the deficit angles were constants. Let T be the single n-cell with vertices i
= 0, 1,....,, n and volume V. Let F; be the face opposite vertex i; Bij the bone opposite i and j

(i.e. the intersection of F; and Fj) and aij the dihedral angle contained between F; and F i The
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desired identity is

ij
where aeij is the change in Bij under arbitrary variation of the lengths of edges in T. We

compute 68ij with the help of the elementary facts

(F;»F)) = —|F,] |F;l cos 6;; (3.3.3)

and

1Byl Vv = 2=1 |p| |F| sin 0, (3.3.4)

Thus

=1
=25 Kl IFj| 8 (FeF) / || ;1) (33.5)

n—1
= N [G(Fi-Fj) — (Fi-Fj) 6In |F;,|] - (Fi-Fj) éIn ]Fjl].
Hence the sum (3.3.5) vanishes by Stokes identity = F; = o. Since the defect n(B) involves a

sum of 9; over all the cells T* containing B, we conclude that the variation in S is given by

8S =3 n(B) §|B]. (3.3.6)

This equation justifies the stationary phase condition (3.2.10) in the previous section.
The Regge-Ponzano amplitude for a spin network is simply a formal path integral over the
vacuum Einstein action in three dimensions, expressed in terms of the Regge calculus. The
vector diagram of the network describes a fixed 2-manifold boundary of a three-dimensional
region, and the integral is performed by summing over all "internal" spin lengths introduced

by the decomposition theorem (and also over all orientations of the tetrahedra). In three
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dimensions, |B| is simply the length of the edges B, so 6S = 0 in (3.3.6) just when (B) = 0
at all internal bones. Hence we see that ouir stationary phase condition (3.2.10) amounts to
the well-known fact that Einstein’s equations in three dimensions possess only trivial (flat)

solutions.

In dimensions n>3, |B| is a more complicated function of the edge lengths (the square
root of a Cayley determinant), so Einstein’s equations become non-trivial. Recent investiga-
tions have shown that a Regge-calculus formulation of quantum gravity is feasible [Rocek and
Williams, 81], at least in the weak-field limit. It is tempting to conjecture [Hasslacher and
Perry 81] that such a formulation arises from applying the Reggq:,Bonzano method to the

recoupling theory of some larger group.
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4. THEORY OF FABRICS

In this chapter, the notion of fabric is introduced as an attempt to extend the Penrose and
Regge-Ponzano analyses of spin to other situations that give rise to new models of quantum
geometries. In section 1, we review the well-known recoupling theory of compact semisimple
groups, in a graphical calculus which is a natural generalization of spin networks. [see also
Agrawala and Belinfante 68]. In section 2, we prove the Regge-Ponzano decomposition
theorem in this general context, and give some examples of the scope of its application. In
section 3, we gwoms—fef—fabnwaﬂd—;hmr_uahmmby isolati;g those properties needed
to prove the decomposition theoren’lv We briefly discuss the classification problem and
semiclassical limit of fabrics. o grretrn Syt Y ] R

"
My ot ;}Cﬂbtff.sn PR | Aha- v V{;JIAAA*ahovus 5

4.1 Recoupling theory of compact semisimple groups

We start with the basic theory of representations of a compact semisimple group G, in the
language of modules. A (left) module M over G is a vector space over the field C, along with
a continuous map G x V - V through which every element geG becomes represented as an
invertible linear transformation on V such that (gl g2y = gl(gzv,b) for all YeV (figure 4.1a).
A submodule is an invariant subspace. A module M is irreducible if its only submodules are C

and M.
Compact semisimple groups have the following nice properties:

a. All modules reduce to a direct sum of irreducible submodules.
b. All irreducible modules are finite-dimensional.
¢. All finite-dimensional modules are equivalent to unitary ones (we may define an invari-

ant hermitian product on V).
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Figure 4.1 Group multiplication and invariance
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The space lin(M,M’) of linear maps from M to M’ is itself a module over G under the

usual action

-1
(e(¥) = gt(g™ ). (4.1.1)
The module homomorphisms Hom(M,M’ ) are the tensors t elin(M,M’) which are invariants

under g: t = gt. A module isomorphism is a one-one, onto homomorphism.

In analogy with spin theory, we use lower case Latin letters j, k to label isomorphism
classes of irreducible modules. Let M(j) be a reference module in the j-class. We adopt the

shorthand notation
Hom(k; ®k,®...0k,, k;®k,®...®k) (4.1.2)

for the space of invariant linear maps between the corresponding products of reference

modules (figure 4.1b). We classify such invariants By their valence (p,q).

There are no non-trivial invariants with one index, by the irreducibility of the modules.

Schur’s lemmas classify the (1,1) invariants as follows:
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1. a € Hom(j,k) vanishes unless j = k, since the kernel and image of « are both submo-
dules.
2. a € Hom(k,k) must be a multiple of the identity operator, since the eigenspaces of «
are submodules.
These lemmas are represented graphically by figure 4.2a. Here we use the shorthand [k] =
dim M(k).

Figure 4.2 Schur’s lemmas and 1j-symbols
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The module M’ = lin(M,C) is the dual of M. We have the natural isomorphisms
Hom(M,®M,,C) = Hom(M,,M;) = Hom(C,M;®M)) (4.13)

Hence by Schur’s lemma Hom(k 1®k2,C) and Hom(C.k]G)kz) vanish unless ky = k; = the

label of the isomorphism class of M(kz)., in which case they are of dimension 1. We define
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the generalized covariant and contravariant 1j-symbols (figure 4.2b) to be dual basis elements
of the spaces Hom(k@k..c) and Hom(C.k@k') respectively, honnalized as shown in figure
4.2c. Figure 4.2d depicts an analog of Schur’s lemma for invariants of valence (2,0). The
lj-symbols can be used to raise or lower tensor indices invariantly in any of the recoupling

identities that follow.

Another consequence of Schur’s lemmas is shown in figure 4.3. The integral with respect
to the invariant measure dg on G projects a tensor a onto an invariant tensor, by averaging it
over the group manifold. Since a is arbitrary, it can be removed from the identity to give

figure 4.3b. This group orthogonality property is the basis for harmonic analysis on G.

Figure 4.3 Group Orthogonality Property

~

- J¢ Q/K lk
)l-'-
T+ |

&
-

B

dj 3;' - J)‘K '
' T
|

—_— N ——
_— K

:

J

I

Figure 4.4a is a diagram for a coupling tensor (or generalized 3j-symbol) which maps
k1®k2 into one of its ks -subspaces. In general there are multiple occurrences of k; in the
product, so a new kind of index d (the ’degeneracy index") is introduced to label an orthonor-

mal basis for the (2,1) invariants Hom(k, ®k,,k,). Figure 4.4b depicts dual coupling tensors

of other valence mixtures, which may be defined with the help of 1j-symbols.
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Figure 4.4 Coupling tensors
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Figure 4.5 shows the results of all possible inner products of two coupling tensors. Figure
4.5a restates our assumption that the covariant and contravariant coupling tensors form dual
bases. The orthogonality relation 4.5b arises from Schur’s lemmas and an application of 4.5a.
The summands on the left side of figure 4.5c are just projection operators into the irreducible
subspaces of k 1 ®k,. Hence 4.5c is the completeness relation for the reduction of the product.
Figure 4.5d illustrates how any invariant with 3 indices can be expressed as an explicit sum of

3j-symbols (the Wigner-Eckart theorem).

Figure 4.6a shows how to apply these last two identities to give an explicit expansion for
any invariant of valence (4,0). In general for an invariant with n indices, we can apply the
completeness identity n-3 times to get an invariant of valence 3, to which finally we apply the
Wigner-Eckart identity. The result is an explicit expansion (generalized Wigner-Eckart
theorem) of any invariant tensor with n indices in terms of coupling trees of n-2 coupling

tensors (figure 4.6b).

There are many different coupling tree bases for invariants with n indices: one for each

choice of coupling sequence. The recoupling coefficients that transform between two such

bases are simply the contractions of the two corresponding trees of coupling tensors. The



Figure 4.5 Contractions of coupling tensors
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Figure 4.6 Coupling trees and recoupling coefficients
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simplest recoupling amplitudes are the Racah coefficients, shown in figure 4.6¢c. If we identify

k; and k, with the state spaces of ingoing particles in a scatten:ng event, and k, and k, with
outgoing particles, then the Racah coefficients here represent the "crossing symmetry"
between s and t channels. With the help of this crossing identity, we show in the following
section that any recoupling coefficients can be evaluated as a sum of products of Racah

coefficients.

A recoupling graph of the group G is a- labelled cubic graph representing a contraction of

coupling tensors of G. Such a graph is more general than a recoupling coefficient, since not
all cubic graphs split into two trees. Thanks to the dual isomorphisms mediated by the
1j-symbols, we may ignore the distinction between covariant and contravariant indices in these
tensors. However, the coupling order at the vertices of the graph is significant in general. We
may select a coupling basis adapted to the irreducible representations of the permutation group
S; In the case of SU(2), only one-dimensional representations of S, occur (the identity and
alternating ones), so alterations in the coupling order at a vertex will at most change the sign
of the recoupling graph. In general, however, the two dimensional rep of S; may occur,
resulting in more complicated phase factors [Derome 66).
Figure 4.7 Phase factors
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These phase factors can be isolated as values of 2-vertex graphs such as shown in figure
4.7a. The Wigner-Eckart theorem determines the phase changes of the Racah coefficient as in

4.7b. In the following sections, the term "recoupling graph" will denote a labelled cubic graph
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together with an ordering of the edges at each vertex. Phase factors in the decomposition

theorem can be subsumed into the choice of ordering for the Racah coefficients,

4.2  Decomposition theorem

Decomposition Theorem: A recoupling graph F of a compact semisimple group G can

always be evaluated as a sum of products of Racah coefficients of G.

proof: (metwork version)

We use induction on the number of vertices V in F, and the size n of the smallest cycle.

A cycle is a sequence of edges €1,€5,-..,€  such that e;ande; ,( mod n) are coupled in F.

If V=2, F is a phase factor, as in figure 4.7. If V = 4, F is a single Racah coefficient
(or else two phases). If V is greater than 4, we have the cases shown in figure 4.8:

a. n=2: A 2-<ycle is eliminated by the Schur identity (fig. 4.5b), resulting in a graph F’
with V-2 vertices.
b. n=3: A 3-cycle collapses into a single coupling tensor (by the Wigner-Eckart theorem
4.5d), giving a product of a Racah coefficient and a graph F’ with V-2 vertices, summed
over a common "internal" degeneracy index d.
¢. n>3: A cycle with n edges labelled Jyrigsendp_ i, reduces to a cycle with n-1 edges by
the crossing identity (fig. 4.6c). The result is a Racah coefficient multiplied by a graph in
which the edge j is removed, and a new edge x couples j, to Jn—y- The product is summed
over the "internal" edge x and two internal degeneracy indices d 1 and d,. Such a rear-
rangement can be performed n-3 times to produce a graph containing a 3-cycle. Then case

b applies to eliminate 2 vertices from this graph.

The process of vertex reduction can be repeated until V=4. The result is a product of Racah

coefficients, summed over all internal variables.
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Figure 4.8 Decomposition theorem: network version
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proof of decomposition theorem: (vector version)

Suppose F is a planar graph, which we regard as being imbedded in the surface of a
sphere. The vector diagram D(F) is the graph-theoretic dual of F in this surface. Cubic
vertices in F correspond to triangular faces in D(F). Hence D(F) is a triangulation of the

sphere, with faces labelled by degeneracy indices.

The decomposition theorem has simple geometric interpretation in this dual vector
picture. A cycle is a sequence of edges such that successive pairs belong to the same triangle
in D(F). A local cycle is a cycle in which all the edges meet at a common vertex. Figure 4.9a
shows that the Schur identity corresponds to the "healing up" of a local 2-cycle: two triangles
that share two edges must be congruent on the third as well. Figure 4.9b shows that a local
3-cycle forms the outer three faces of a tetrabedron joined at its base to D(F). The excision
identity removes this tetrahedron to expose the internal coupling labelled d on the base
triangle, a face of the smaller triangulation D(F’). Figure 4.9¢ illustrates how the crossing
identity removes the edge labelled jp from a local n-cycle by coupling Jo_; and j; with a new

internal edge x.

The effect of successive applications of figures 4.9b-c is to add sufficient internal edges to
dissect the interior of D(F) into tetrahedra. The result is a combinatorial 3-manifold C(F)
which has D(F) as its boundary. We may sharpen the decomposition theorem for this special

-

case as follows:

Decomposition Theorem: (vector version)

Let F be a planar recoupling graph, D(F) its dual relative to a particular imbedding in the
surface of a sphere, and C(F) a combinatorial 3-manifold produced by dissecting D(F) with

internal edges labelled X sen Xy into tetrahedra T, ,...,Tq which meet at internal faces labelled
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Figure 4.9 Decomposition theorem: vector version
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dy,...,d.. Then the amplitude ¥ (F) is given by

¥(F) = 22 EZ H(xl,...,xp; dy,...,d), (4.2.1)

X1 Xp dl d,

where
P q
H(xl,...,xp; d]"“’dr)EH [xj] n R[Tk] (4.2.2)
j=1 k=1

and R[T,] are the Racah coefficients associated with the tetrahedra T,

As an example of the application of the decomposition theorem, we consider the "3nj-
coefficients of the first kind". These are recoupling graphs in the form of two n-cycles with
corresponding vertices connected by n edges. For example, figure 4.10a is such a graph for
n=5. On the right, the crossing identity is applied to the edge e, ‘The 3-cycle s,e,0, can be
removed to produce another 3-cycle S3€3n3 and so on, until the graph is decomposed into the
5 Racah coefficients shown on the right of figure 4.10b. The left of 4.10b is the dual vector
diagram, which triangulates the sphere into 5 "northern hemisphere" triangles and 5 southern
ones. The addition of a single internal edge X across the poles dissects the interior of the
diagram into 5 tetrahedra hinging at x, which correspond 1-1 to the 5 Racah coefficients on
the right. These diagrams are basic in Regge-Ponzano theory, since they describe n cells
hinging at an internal bone x, at which the curvature of a simplicial manifold is concentrated

(viz. figure 3.3).

The decomposition process is highly non-unique. For example, a 3nj-coefficient of the
first kind with n=3 can be decomposed as in figure 4.10 into 3 tetrahedra hinging around a
single internal edge x. On the other hand, the three triangles in each hemisphere can be

decomposed by the excision identity into two tetrahedra meeting at their common "equatorial”
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Figure 4.10 Example: 3nj-coefficients of the first kind
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face. The equivalence of these two decompositions is the (generalized) Biedenharn-Elliott

identity.

As noted in figure 3.2, the B-E graph is the recoupling coefficient between two coupling
schemes of the form (((12)3)4) and (1(2(34))). The transition between these coupling trees

can be made through intermediate schemes in two different ways as follows:

(((12)3)4)

S

((1(23))4)
((12)(34)) }
(1((23)4))

v

(1(2(34)))

Here each intermediate step recouples only three states, and therefore involves a single Racah
coefficient. The two steps on the left correspond to the left side of the B-E identity in figure
3.2d-e; the three on the right, to the right side. In general, two coupling trees that differ by
rearrangement of only three edges are c-equivalent: the crossing identity recouples them with a
single Racah coefficient. Thus we have yet another proof of the decomposition theorem for
the special case of recoupling coefficients, based on the purely combinatorial fact that the
transitive closure of this c-equivalence relation covers the entire set of cubic trees on n

objects.

4.3 Fabrics

A fabric F is a triple (C,D,E), where E is a set of edge labels, D is a set of degeneracy or
coupling labels, and C is a well-formed set of couplings. By a coupling we mean a pair
(d,(j.k,])) consisting of a coupling label d and a triplet of distinct edge labels. A set of
couplings is well-formed if the coupling labels are all distinct, and no edge label occurs more

than twice.
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A fabric is closed if each edge label in C occurs exactly twice; otherwise it is open. A
closed fabric can be depicted as a closed graph with edges and cubic vertices labelled by
members of E and D respectively. An open fabric has free ends indicated by the edge labels

that occur only once.

We regard the coupling labels D and edge labels E as variables in two measure spaces M
and N respectively. With any closed fabric F we associate the measure space M(F) which is
the cartesian product of the copies of M and N associated with the distinct coupling and edge
labels in F. An amplitude for F is a complex-valued integrable function on M(F). The
amplitude of a fabric containing just two couplings is called a phase factor. The amplitude of
a fabric containing four couplings with distinct edge triplets (ie., forming a tetrahedron) is

called a Racah kernel.

A fabric valuation (M,N,¥) is a choice of measure spaces, along with an assignment of an
amplitude ¥(F) to each closed fabric, satisfying the axioms shown in figure 4.11. The

6 -functions in 4.11a are defined by the property

f dp(x)8(xY(x) = f(y) (43.1)

Couplings that have the same coupling label are assumed to be identical: if the ordering of the

edge triplets differ, phase factors must be introduced as in figure 4.4.

These axioms are sufficient to prove the decomposition theorem for fabrics, by the
arguments of the previous section. Strictly speaking, the axioms are not independent. For
example, the excision axiom is an easy consequence of the crossing and Schur axioms, applied
to the reduction of the 3-cycle. On the other hand, if we restrict the theory to fabrics which
cannot be disconnected at just two edges, we can eliminate the Schur axiom, and avoid some

of the complications entailed in § -functions and the theory of distributions.
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We introduce some definitions to clarify the fabric decomposition theorem. A term is a
product of Racah kernels. Suppose we designate some subset of coupling variables Int(D) as

internal coupling variables. Internal edge variables are those that occur exclusively in internal

couplings. These internal variables will be the ones summed over in the crossing and excision

identities. Variables that are not internal are called external. A well-formed term or weft is a

term in which all external variables occur in a single Racah kernel, and internal coupling
variables occur in identical couplings in exactly two Racah kernels. The boundary B(w) of a
weft w is the closed fabric determined by the external couplings of w. We say that a fabric F

encloses a weft w, if w can be obtained from F by crossing and Schur deletion. Thus

Fabric Decomposition Theorem: If a fabric F encloses a weft w,then ¥(F) is the integral of w

over all its internal variables.

Figure 4.12 A divergent weft

2

"

If a fabric encloses a weft w, then F = B(w). The converse is not true, however. For
example, consider the weft made up of the four Racah kernels corresponding to the four
tetrahedra which meet at point 0 in the vector diagram of figure 4.12. Here the triangles
which meet at O are all internal couplings, so the edges w,x,y,z are internal edges. The
boundary of the weft is the outer tetrahedron (1234). However, Regge and Ponzano showed
in the simple case of an SU(2) fabric, that the integral of this weft over its internal variables

diverges.



i

The source of this divergence is that the sum over W,X,y,Z overcounts the possible internal
geometries enclosed by the tetrahedron, because of "gauge" freedom in the location of the
internal vertex 0. Such internal vertices never arise from the crossing identity, since the new
edges introduced by crossing always link external vertices. Regge and Ponzano have shown,
however, how to renormalize wefts with internal vertices. They introduce a cutoff r on the
magnitude of internal spin variables, then divide the cutoff integral by %wrs to compensate for
recounting at each internal vertex. The resulting ratio correctly approaches the amplitude of

the enclosing fabric as r goes to infinity.

Fabrics derived from recoupling theory of compact groups resemble spin networks in that
the edge variable space is discrete. Coupling variables are a new feature that must be
introduced to handle multiplicities in the reduction of tensor products, but these too are
discrete. Hence the integrals in the decomposition theorem for compact fabrics are simple
sums. The usual procedure for making explicit calculations with these fabrics is to label
representations with Young patterns which describe maximally symmetrized products of the
basic representation. Then contractions of coupling tensors can be computed by purely

combinatorial methods, based on the representation theory of the permutation groups.

Fabrics derived from non-compact groups have more complicated label spaces. For
example, we shall see in the next chapter that fabrics for the massive representations of the
Poincare group have edges labelled by a pair (m,j), where the spin j is still discrete, but the

mass m has continuous spectrum. Each coupling variable in this fabric is a pair of discrete

relative helicities.

The problem of classifying all fabric valuations reduces to the classification of all possible
Racah coefficients that satisfy the identities arising from the non-uniqueness of decomposition.
The simplest of these, the Biedenharn-Elliott identity, guarantees the equivalence of two wefts
that differ by one internal edge linking the apices of two tetrahedra that share a common base

(in the vector picture). We conjecture that the transitive closure of this equivalence relation
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covers the entire set of wefts enclosed by a fabric. In that case, the classification problem
would reduce to finding all Racah kernels which solve the B-E equation in the context of a

particular choice of label spaces.

Finally, we make some remarks about the classical limit of a fabric F associated with a
Lie group G. By the argument that led to figure 2.9d, the invariance of each coupling in F
corresponds to a conservation law in the n-dimensional vector space of generators of G (i.e.,
the Lie algebra). In the classical limit, we expect that the invariants we can construct as
polynomials in the generators associated with different edges in F (modulo the ideals generat-
ed by commutators) have small uncertainties, and their algebra approaches an ordinary
("c-number") tensor algebra. The edge-labels themselves can be thought of as eigenvalues of
k independent Casimir invariants; and the coupling labels, as eigenvalues of m independent
"two-particle invariants", which are polynomials of generators in two coupled spaces. In a
fabric with V vertices and L edges, these labels impose mV + kL non-linear constraints on the
oL vector components. If F is connected, there are n(V-1) independent conservation condi-
tions, so the nL. components are algebraicly determined, up to an overall n-parameter transfor-

mation of the group, just when
mV + kL + n(V=1) = nL—-n ) (4.3.2)
or
n = 3k + 2m, (43.3)

since 3V = 2L. In fact, the physically interesting fabrics are algebraicly determined in this

sense: the rotation group has n=3, k=1, m=0; the Lorentz group has n=6, k=2, m=0; the
Poincare group, as we shall see, has n=10, k=2, m=2. Since the conformal group has n=15,

k=3, we expect m=3 for this case.

In order to understand these invariants geometrically, it is useful to regard the vector

spaces themselves as possessing tensor structure. For example, the generators of the Lie
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algebras so(n), su(n), sp(n) transform under the adjoint representation as second rank tensors
which are self-adjoint with respect to orthogonal, unitary, and ‘symplectic forms respectively.
The Casimir and degeneracy invariants for these groups arise from contracting together these
second rank tensor operators, with the help of the corresponding invariant forms and Levi-
Civita tensors (spin appears to form a vector in so(3) only because there is a third rank
Levi-Civita tensor to dualize the antisymmetric second rank spin tensor). Inhomogeneous Lie
groups (e.g. the Poincare group = ISO(3,1)) have generators which decompose into a vector
operator (e.g. 4-momentum) and a second rank tensor operator (e.g. the spin 6-bivector),

resulting in yet more intricate invariant structures.

As in Regge-Ponzano theory, we expect the Racah kernel to be an oscillating function of
its edge and coupling variables in a semiclassical limit. The amplitude of a fabric enclosing a
weft w can then be approximated by evaluating the integral of w by the method of steepest
descents. As in the case of simplicial manifolds, the non-linearity of the edge and coupling
invariants is reflected in a multiplicity of stationary phase terms. The fabric decomposition
theorem is a natural tool for handling the ambiguities in conformation of a fabric in the
classical limit. Moreover, the relation to path integrals suggests a route for incorporating

dynamics in geometric models of this type.
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5. FABRICS OF THE POINCARE GROUP

In this chapter, we show how to construct and evaluate fabrics for the recoupling theory
of the Poincare group, restricted to unitary representations of massive particles with positive
energy. The customary mathematical setting for Poincare recoupling is the theory of induced
representations [Klink 71, 75]. Here we give an equivalent self-contained treatment by
elementary methods which have more transparent physical interpretation, and help to elucidate

the structure of the classical limit.

In section 1, we review some well-known results about the states.and operators of
massive representations in the helicity basis. In section 2, we define a new two-particle
invariant, the relative helicity Ai.i: the helicity of particle i in the rest frame of particle j.
There are four conservation relations between the six relative helicities at each cubic vertex,
and we identify the remaining two independent A’s as the degeneracy index of the fabric. This

Wi G2\
identification facilitates a simplified derivation of Wick’s formula for the Racah coefficient of

h
the Poincare group, in a form that makes the tetrahedral symmetries and classical interpreta-
tion manifest. In section 3, we compute the semi-classical limit of this Racah coefficient in the
oscillatory regime of large spins and helicities. In section 4, we use this limit to compute the

pseudo-action in the interior of the fabric. We derive the stationary phase equations, and

show that they correspond to vanishing space-time curvature.
5.1 Basic states and operators of the Poincare group

The Poincare group @ is the 10-parameter group of transformations preserving intervals

(As)l2 = ﬁxﬁ g Ax, in Minkowski space-time, where

X, g'"' X, = (x(,)2 - (:’(l)2 - ();2)2 o ("3)2-

The general element (a, L) € & is the semidirect product of a Lorentz transformation L and a

translation a:
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(@Ql): x* w» L* x 4 af (5.1.1)

v

The Lorentz transformations are generated by the relativistic angular momentum

Wa - g

» @ 6-component bivector; and the translations, by the relativistic momentum P* ,

a 4-component vector. In particular, the hermitian operator
G = 8, P + % su, J” (5.1.2)
generates the infinitesimal Poincare transformation
x' - x - 8%,
where

&x" = 8¢, + 8™ X (5.1.3)

Any 4-vector V¥ must transform as x* under Lorentz transformations generated by
G' =% sw_ J”:
o
Ve Vo4 50 V, = (1-iG") V' (1 +iG")
=~ v - 1 v, 6 (5.1.4)
1

In particular for P*

% [P', JxA] = 8 Px = 8 P;\' (5.1.5)

Similarly, J w transforms as the antisymmetric product of two vectors:

1 :
ry [Jp’ Jal = 8k Jr.\ ~ 8 I + &\ ],ux = By Jp\' (5.1.6)

Finally, the translations commute:

[P, P] = o (5.1.7)
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The mass-squared operator M? = P*p 5 is clearly a Casimir invariant of & (i.e. commutes
with all J’s and P’s). The Pauli-Lubanski spin vector
Wy, =% ¢, 17 P (5.1.8)
commutes with P;. by (5.1.5). Hence the scalar W? = W&Wl_ is a second Casimir invariant.
The unitary representations of 2 can be classified according to the eigenvalues of M? and
w? [Wigner 39]. Here we will restrict ourselves to the case M2>0, corresponding to massive

particles. In this case a momentum eigenstate in the rest frame has W* proportional to the

spatial spin components

wt = (5.1.9)

The [J,J] commutation relations (5.1.6) restricted to the spatial components are identical
to the SU(2) relations (2.1.7), so the arguments of section 2.1 guarantee that 312 has eigenva-

lues j(j+1) with j half-integral.

The [J,P] commutation relation (5.1.5) requires that J transform under translation as an

orbital angular momentum

In fact, for M2>0 we can decompose J explicitly:

»” = ‘li' (7P, W) + (Y P - Y P, (5.1.10)
M

where

Y = g M M2,
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the skew displacement of the particle trajectory from the origin of angular momentum
measurements, transforms as x* in (5.1.1-3). This decomposition is an application of the

simple combinatoric identity

W, PY = 0 and ¥, P* = 0. (5.1.11)

Note that

Thus (5.1.10) decomposes the 6 components of J,, into 3 components of skew displacement

Y, and 3 components of intrinsic spin W,

The sign of the energy P,/IP,| is Lorentz-invariant for M2>0, so there are two
irreducible representations for each mass and spin. Here we will restrict ourselves to the
positive-energy massive representations. The sum of two future timelike momenta is also
future timelike: hence the tensor product of any two reps in this class will reduce to other reps
in this class, and the recoupling theory is self-contained. In particular, we may construct
fabrics which describe ensembles consisting only of positive-energy massive particles. The
completeness of the corresponding representations under tensor product and reduction will

preserve the fabric decomposition properties.

‘The representation theory of & is simplified by labelling the basic states with the eigenva-
lues of a complete set of commuting observables having as much symmetry as possible. We

form such a complete set by augmenting the Casimir observables M? and 1% with four

—

translation-invariant operators: the 3-momentum p and helicity A, which is the component of J

along P:

—

A=13J.P/ |P|. (5.1.12)



-84 -

—

This particular component of the translation-invariant W has the virtue of also being invariant

—— —

under retations—amd boosts along P (unless the direction of P is reversed, in which case

A==—d), & well ey GMV‘L.‘,.? veldiony

We label our basic states with the eigenvalues of these operators: | mj, ;A> or more
briefly |pA>, where p is a 4-vector with p2 = m?. Since the operators -; in (5.1.8) have the
SU(2) commutation relations, j must be half-integral and A must range from j to -j in integer
steps. The helicity A in a frame = is just the z-component of ? in a rest frame X having
z-axis in the direction —-\:, where:is the relative velocity of X in Z,- Using B = (m,0,0,0) to
denote the 4-momentum in frame I o the rest-frame states |3?\> transform under rotations as

specified by (2.1.14).

R IPA> = 3 2L, (R) pu>. (5.1.13)
®

(For simplicity, we will use upper case Latin letters R, H, Z, L, etc. both for Lorentz

transformations and for the operators which represent them.)

Following Wick [Wick 62], we define the general state
IpA> = H(p) |pA> (5.1.14)
with
H(p) = Ry, Z(p), (5.1.15)
where Z is a pure boost in the z-direction

A ; = (m,0,0,0) = (E,O,O.I-I;I)

and R 80 1S @ rotation of z to the direction p:

R: (Boolpl) = (Ep) = p. (5.1.16)
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This convention for H(p) corresponds to fixing the ambiguity in possible rest frames 3 o (with
Z,-axis along the velocity —v of 2, in ), by choosing the xo—aiis so that the z-axis in = lies
in the x z -plane (figure 5.1a).

Figure 5.1 Helicity reference frames

B

-l
Y

We now compute the transformation law of the states IpA> under arbitrary Poincare

transformation (a,L). Note that

Lp = H(Lp)p = L H(p) p, (5.1.17)
SO
R = H '(Lp) L H(p) (5.1.18)

- o - - - - -
fixes p, and is a pure rotation in =, (a "Wigner rotation").

Hence

L IpA> = LHp)Ip\> = HLp)R |pA>

= Hlp) F2,(R) Ipu> = T2, (R) |(Lp)w>. (5.1.19)
B B

Thus finally the unitary representation U(a,L) of & on these states is
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U@L IpA> = *” i (Lp) |(Lpy> (5.1.20)
B

where

2,\(Lp) = 2,(Lpl) = P,{H (Lp) L Hp)}. (5.1.21)
T St Dovide s e (W Qb o N
el o vtk e T o Al e e o e ’,4_4_1,(( e Al bremg bt "'7?1,{.'%1
The second D-notation is useful for emphasizing the momentum after Lorentz transformation.
We give the Wigner rotation (5.1.21) for some special cases. If L = Rnﬁr' an ordinary

r ’
rotation between two frames ¥ and = , the axes z, and z, coincide, so we have the rotation

around these axes
P\ (Ryg0) = 8, e, (5.1.22)

where x is the internal dihedral angle between the pz-plane and the pz’-plane, as shown in
figure 5.1b. Since this is a pure phase, we see that the helicity convention (5.1.15) amounts to

a choice of phase for the basic states.

As a second example, let L = Z, a pure boost in the z-direction. Suppose that p is the
zx-plane of =. Then p will also be in the z x’-plane of 2', but the azimuthal angles § and 6
will differ by the angle g between the velocities of the = and 3 systems, as seen from X .

Hence we have a rotation by B around the Y, -axis:

2i,(Zp) = d, (). (5.1.23)

Finally, we specify our normalization conventions for the states | pA>. We define

~

8(p) = 2E &,(p), (5.1.24)

the & -function corresponding to the invariant volume element on the mass shell
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o~

dp = d’p /2E = 8¢ - md) d*. (5.1.25)

Then the convention

r g ’
<PAIpA> = 4, 8(p-p) (5.1.26)

is consistent with the unitarity of (5.1.20).

5.2 Relativistic addition of spin and momentum

We now compute the 3j-coefficient
<PUIAE Pagdy | p3iss; d> = 8, (p) + p,—py)<12]3>, (5.2.1)

which reduces the tensor product of the two states |p,A,> | p;A,> into a sum of irreducible
states | p;A,;; d> distinguished by degeneracy eigenvalues d. Thanks to the simple form of
the transformation law (5.1.20), we can express d in terms of "relative helicities," and

compute < 123> explicitly as a product of ordinary SU(2) rotation matrix elements.

The simplest approach to this computation [Wick 62] is to begin in the "center of

momentum” frame such that

o o A ] A
p] = (msyo): pl - (Elvqlzz); Pz = (Ezy-qlzz), (5.2.2)

where q,, is the "relative momentum"” of p; and p,. Let A, ; and A, 3 be the helicities of
particles 1 and 2 respectively in the frame attached to p; (the "relative helicities"). We apply
a Wigner projection (i.e. harmonic analysis on the rotation group manifold, viz. figure 4.3) to
the tensor product IB]J\IJ‘;- |§2A2'3> to get a new state that transforms under rotation as

ligAy>:

0 -
|p3j32\3; ?‘1,3?‘2.3;" =
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A3t o o
N fdsz 23, R R {lpA 5> Ip, A} (5.2.3)

where R = R 480 and the integral is over the 2-sphere

0<¢<27, 0<f<m; dQ = sin 8dOds. (5.2.4)

The usual invariant measure on the SU(2) group manifold

dR¢N = d¢ sin 6d8 dy (5.2.5)

is abbreviated to dQ because the definition

guarantees that the integral over the second polar angle is trivial.

Now we go to a general frame by applying H(p;) of (5.1.15) to both sides of (5.2.3):

I P3izAss Ag3hy5> =

j T [ o
N [ 4@ D3, R LPA3 1525550, (s27)

where L = H(p3) R and

—_

o

=1 A
L : P3 = P3; P} ™ q,2 (5.2.8)

The 6 components of p, and p, completely determine the 4 components of p; and the 2
angles 6 and ¢, and hence also the Lorentz transformation L. A simple change of variables
gives

q
dp, dp, = 4_% d*p, de, (5.2.9)

s0 (5.2.7) can be rewritten, with the help of (5.1.20)
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~

le.afdpl dp; 94 (Py + py—p3) @ﬁl_(R) X

x 2! (p,L) @j2 (p:L) 1pA;> Ip,A,>. (5.2.10)
e 1?‘1.3 1 ;\2)\23 2 11 22

It is straightforward to check that this state satisfies the normalization convention (5.1.26) if
; h
Nip3 = [Qi; + 1) my/7q,,]". (5.2.11)

Note also

[+
R= H'(p;) L = H™'(Lpy) L H(p,).

Thus finally we get the simple result [c.f. Wick 62, eg. (17)].

<P Pady IpsisAss Aj5hp3> = Np,,8,(p, + Py—P3) x

st L) 21 L) 92 L). 5.2.12
x ;\3_2;\3“’3-) M’\uw") hzhmf"z-) ( )

where the momenta determine L by (5.2.8).

Figure 5.2 Recoupling scheme for Racah coefficient
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Now we consider two different schemes for coupling together three states, and use the
3j-symbol (5.6.12) to compute the corresponding Racah coefficient. To simplify the indices,
suppose that states 1 and 2 couple to form state 4 (rather than state 12 as in figure 3.1); and
states 2 and 3 couple to form 5. The composite state. 6 of all three particles can be formed
either from 4 and 3 or from 5 and 1 (see figure 5.2). The first coupling scheme ((1,2)4,3)6

for state 6 is given by two applications of (5.2.12) as follows {c.f (3.1.1) and (5.2.7)}:

1((12)43)6 > = Ipgighs; myig; Agghygi Apehy o> =

~

Ng36 Niog f dp, dp; 8,(p3 + p4—pg) X

= 04 -3
x 26" (p,L.) @ (pyLn) 2 (p;Ly) x
Agadg © P .\%} Mg PT TAgAy 63D

x fdp1 dp, 8,(p; + p,—p,;) x

x Qj“*

.1 .2
(PaLp) P (p,;.Ly) 2 (p5,Ly) x
Agahy 4B A% L O
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Here

and

A
Lg: Py ™ Py s Py = qy 2 (5.2.14)
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Similarly, the adjoint of the second coupling scheme for state 6 is:

<2356 | = <pg jg' At msis; A; s Aashasl =

Nise Noss f dp," dps 8,(p;" + ps—pg) x

- r - -
' T T
X Q;L:’?\ﬁs(p‘s ta) 2 @ill elltpl”l“‘) Qisslshs Bstal ¥
: AjAs ’ '

x fdpzr dps" 84(p," + p3'-py) x

. - ’ s ]
x @5 (p.,Ln) @2" . jp, L) B . L) %
Ashsy € Ag\:; Agshy 27T TRy A, Parte

x <p"A1 <pyA, | <p;'A5 | (5.2.15)

where

—

—1 o
LA5P6"“Pﬁ’P1"“q15

N>

and

Lk Ps
c- Ps ™ Ps ; P2 = qy;

N>

(5.2.16)

Figure 5.3 summarizes the frames which L A through L, transform into the observer’s frame.

By Poincare invariance, the inner product of these two states must be of the form

’
84([)6—[.)6 ) sjsjé' 84\6&6' <1(23) I (12)3 > (5.2.17)

Wwhere the abbreviated recoupling coefficient on the right is a function of the invariants m;, j;,

and ?LL]-. In fact, we see that this product is a sum over eight helicities and an integral over
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Figure 5.3 Coupling frames for the Racah coefficient
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eight momenta - namely, of particles 17,2’,3’, and 1 through 5. However, the normalization

conditions

<A IpA> = S 8(i=p) (5.2.18)
for i=1,2,3 eliminate the three primed sums and integrals, and ‘replace the primed variables
with the corresponding unprimed ones.

The remaining five momentum integrals can be simplified by noting that (5.2.9) implies

= ~ 12
dpl dpz 64(131 + pz"'P4) = ‘Zm_ dg]z

4
and
S o B4 e
dpy dpy 8,(p3 + py—pg) * —L dQ,, (5.2.19)
4mg
and that (5.1.25) implies
dps 84(py + P3—ps) & 8((p, + p3y) —my 2). (5.2.20)

Hence

r. 1y 1 P 2 . . S .
<Pg Jg A > Msjs; '\1,6"5.0 Az.sls.s | Peighs s Mylys A4.613.6' Arata s>

912 Q34 '
= Njs6 Nys Ngg Ny 4_m4 Em_(, 8,(Pg—pg ) x

2
x [d2,, 42, 8((p, + py)’-md) x

1 2 3 4 5
x Exg Ecs Egp Egp Exe (5.2.21)

where
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Efss = > 9&‘:6,\](91-!‘,\) @i'l,‘”(p,.LB) (5.2.22)
Al L ¥

and the other edge functions are similar. We have

El - gl Oy PN R . 5.2.23
) AI.GAiA( A Fpn ‘\1.6}\1.4(81'64) ( )

since the boost from frame B to A produces a Wigner rotation of form (5.1.23), where ﬁl.& is

s . §
the angle between Pg and p, in the frame attached to 1.

Note also that

. P - !

=i ]

@iﬁs’%s (PeLy) = 2@;\6{?\ (Pe:Lp) @iﬁ,\“(LD Laobe)-  (5.2.24)
e a »:

and

d2;, d2;, = sin8,, df,, dRp, (5.2.25)

where

Rps = H™'(Lppg) Ly Hopy). (5.2.26)

The integration over the invariant measure dRpe (viz. 5.2.5) is given by the orthonormality

relation (figure 4.3)

. !

jet 811'2
6 6 = .. ’ o
f o @J‘hﬁhﬁﬂ ®) QJAﬁ’A(R) 616!6 8‘\6‘\6 8‘\&3" 2jg+1 (5:2:27)

The final integration is

m,

— (5.2.28)
2mgq;,qs

Y. & 2 2
f sin 8y, dd;, 8((p; + p3)" =mg“) =
]

Putting all this together, we have verified (5.2.17) and bave computed the recoupling

coefficient (c.f figure 1.6):
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1 m,ms hoo . . %
1(23 12)3 = 2j, +1
<I1(23) | (12)3> A, [q15q23q43q12] [(2j, + 1) 2js + DI x

1 2 3 4 5 6

X Ces €54 €56 €3¢ €3 €34, (5.2.29)
where
ko i
e{m = dxk'(kk,m (Bk,!m)‘ (5-2-30)

It is straightforward to check that this formula is equivalent to Wick’s [Wick 62] equation

(35).

Ao
Sapm w04 1“*“‘?

53 ASemic!assical limit of Racah coefficient

We identify the symmetrical part of (5.2.29) - namely, the product of the six d’s - as the
Racah kernel of the Poincare group. The semiclassical limit of this kernel can therefore be
deduced from an asymptotic formula for the d-function derived by Regge and Ponzano. In
order to understand the symmetries and geometric significance of the Racah coefficient, we

first analyze the relative helicities and angles )Sj ;¢ 10 more detail.

In manifestly invariant form, the relative helicity of particle k in the frame attached to

particle / is

(W« P)
A= ——L, (5.3.1)
| PAP, |

Here the exterior product P .AP, has magnitude
2 S, IR,
lPkAP{I - I(Pk'P{) oo Ml{ hi{l ’ (5-3-2)
a special case of the elementary formula

(PLAP] « [PAP,]D) = MU(P,oP,) = (P,-P,) (P,-P.). (5.3.3)
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The scalar products in (5.3.2-3) are all determined by the masses, as noted in (1.1.1). We also

have

_ (P AP < [P AP

cos Bk.fm = T P,l ka AT (5.3.4)
It is easy to check that
Ay = (—;k'-;k)/ I-I:kl (5.3.5)
in the frame where P, = (M{,-(;) and that
cos Bk.fm = (;!-—I:m) / i;!l I:ml (5.3.6)
and
Ay = _(-;k';{) / I-l:fl (5.3.7)
in the frame where Pk = (ML__,-[;).
Suppose now that we have three particles coupled by the conservation conditions:
Jy+3,+J; =0
P,+P,+P; = 0. (5.3.8)

Then

is twice the area of the triangle defined by the momenta. Moreover, the six distinct relative

helicities between these particles satisfy four identities:

A|.2+hl,3 = (
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;\23 +)\2‘, =0
Ap+tA, =0

Hence there are only two independent relative helicities associated with each coupling triplet.
In particular, the four couplings of the Racah coefficient have eight independent helicities,

as indicate on the left side of (5.2.21). The remaining four helicities in (5.2.29) are

J‘4.2 = Nyy = ‘\2.4

Asa = A5 = Ag
Aes = Are = Asg

A3 = Agg = Ay (5.3.11)

Note here that AL, for k/ = 4,56 have signs opposite to those in (5.3.10), because the

couplings in figure 5.2 specify these particles to be conserved in conditions like (5.3.8) with

reversed signs.

Figure 5.4a shows an edge k and its two couplings (k#¢’) and (kmm"). Figure 5.4b is a

picture of the corresponding momentum 3-vectors in the rest frame of k. We have
ﬂk.fm = w_ﬂk.:"m = ﬂk,!’m' = W_Bk.!m" (53]2)

The well known symmetries

d(B) = (- 1) =B = (- p

= (=0 a-p = (- N d, (p) (5.3.13)
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Figure 5.4 Scattering diagram for particle k
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therefore imply the identities
- = | . S -
e?m = (—-' 1)’k k.m e?rm = (— I) k.7 &k‘m e}':m.«.
j—=A k A=A k
= (= 1)k "k et = (— 1WA oo, (5.3.14)

Thus the asymmetries in the edge labels of (5.2.29) are only apparent: any other labelling
consistent with the recoupling scheme in figure 5.2 results in a Racah coefficient which differs

at most by sign.
In the limit of large j, A, A’, it is well known [c.f Edmonds 57, (A.2.2)] that the
d-function aymptotically approaches the SU(2) Racah coefficient

B & (= D™ 100 4 1y b+ 1) «

c b a
{j a+A b+A'} (53.15)

provided that a ,b ,c are all much bigger than iv A, A, and

a(a+1) + b(b+1) - c(c+1)

cos B = ;7  0LfB<m. (5.3.16)

2[a(a +1) b(b + 1)]}”



Figure 5.5 Asymptotic d-function
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Figure 5.5.a gives a vector diagram for this Racah coefficient. The Regge-Ponzano formula

(3.1.4) then implies

i A i
d (B = [—2__ - 1) b - Ty 5.3.1
W = [l (= 07 eos @ - 1 (53.17)
with i
H? = 2 — (A2 + A2 = 200’ cos B) / sin 28 (5.3.18)
and
® = j0+ Ao + ¢, (5.3.19)

where 8, ¢, ¢, are the dihedral angles shown in figure 5.5b. Regge and Ponzano also
derive an equivalent formula more directly by a WKB approximation [Regge and Ponzano 68,
Appendix G]. The oscillatory solution (5.3.17) is valid only in the classical regime H2>0,
corresponding to values of j,A\,A\’, and B consistent with the tetrahedron in figure 5.5b (H is
the height of this tetrahedron, as shown). For H2<0, we have exponential decay in the

tunneling region.

Now we apply this approximation to the edge functions in (5.2.30):

k y Y ¥ -
ef =~ [ 2 ] A= D rem oo [nb]:m—ﬂ (5.2.20)
wH;  sin 0y tm

- - -

Here H?m is the magnitude of the components of J normal to the plane of P, and P in the
k-frame. Our main interest is the phase term

k Kt Kt km
Prm = 0 O+ Mg S + Apm Sy (53.21)

-~

194 X km . s
where the angles ﬂi_-m. Smie» and P¢im e illustrated in figure 5.5c.

For manifestly invariant definitions of these angles, we define the 4-vectors

V‘L‘:', = *(W, A P. A P{)
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Vi, = (W AP AP

Vmke = " APLAP) = -V, (5.3.22)

Here the operator * indicates the dual to the volume spanned by the three vectors in the
exterior product. All of these dual vectors are orthogonal to P, and hence space-like. Let

u~

~ e A "anit" 4. . _
k2 Yim' UYmke = — Uy, Dbe the corresponding "unit" 4-vectors having length -1. In the

- —

k-rest-frame, these are the unit normals to the three planes defined by Jp. P, and P in the

figure 5.5c. Thus

k!
cos G*L;m = - (“E! . l.lijq)
m
ke
COS Omip = = (ug, e ug.,)
km
Cos ¢, = — (u;m . uﬂm). (5.3.23)

These scalar products expand into expressions involving W2, (Wi-Pj), and (Pi-Pj), and are

therefore completely determined by the spins, helicities, and masses.

5.4 Stationary phase conditions for Poincare fabrics

Now we consider the semiclassical limit of large Poincare fabrics. The amplitude of such
a fabric is an integral of a well-formed product of Racah kernels. In analogy with Regge-
Ponzano theory, we expect this integral to be dominated by "extremal geometries" -- that is,

by geometries for which the total phase is stationary under variation of all internal variables.

As a prerequisite for computing the stationary phase conditions, we must determine the
change in phase ® of the semiclassical d-function (5.3.14) under variation of spin, helicities,

and azimuthal angle. A tedious but straightforward calculation gives 6

6 There must be a simple derivation along the lines of (3.4.3-6), but I haven’t been able to find
it.
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d® = 6dj + ¢d\ + ¢'d\’ + HdB. (5.4.1)

Here the first three terms indicate that variations in j, A, and A’ occur as if the conjugate
angles 6, ¢ and ¢’ were constants (c.f. (3.3.6)). The final term has a similar action-angle
interpretation: H is the component of spin normal to the rotation plane of f. We note in

afl
passing that any function f(8) = U cos d, where ’ “1

U = [Hsin 3]‘3

and

with H given by (5.3.18) satisfies the differential equation

. ' - o
f + cotBf + H = Mf

U
Hence we have verified that in the WKB limit (of slowly changing U with small derivatives)

the semiclassical formula (5.3.17) is an approximate solution of the standard differential

equation (the Jz-eigenvalue equation) for the d-function:

(—-— +oipgdp ) dh) = 0.

YV
Applying this semiclassical formula (5.3.17) to the Poincare Racah coefficient (@),
we have a sum of 2% phase terms of form

4

3
+ 05 & 03+ D5+ 0) & of (5.4.2)

1
¢64
As in the SU(2) case, we may interpret this superposition as arising from ambiguity in the
orientation of the spin-momenta triad (figure 5.5c) for each of the six particles. The integral

over n Racah kernels will be a superposition of 26" distinct phase terms. As in Regge-

Ponzano theory, we analyze the positive-frequency component ®*. We find the conditions for



®* to be stationary under variation of the internal coupling variables A

edge variables j, and my.

Figure 5.6 Join of two Racah kernels
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r¢ and the internal

For the case of the coupling variables AL ;» we refer to figure 5.6a, which gives the vector

diagram of two Racah kernels T and T’ meeting at an internal coupling

(124). The apices of

the two tetrahedra are generated by adding two different (J,P)-vectors 3 and 3’ to 4, giving 6

g ——

/
and 6" !“respectively, in the labelling convention of figures 5.2-3.

The two independent helicities of (124) are A4 and A, 4» Wwhich determine ?\4'2 by

5.3.11) The part of the total ®* which depends on A, , is therefore
p 14

4

From (5.4.1), we compute

+ —~ -~ ~ ~
L 14 14 4 42

2
. T Pe1a t o Sgy + desy + $6'42 = 0.

1.4

(5.4.3)

(5.4.4)
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Similarly, under variation of Aoy

905, 24 24 42 2
N, - Ps2e F 95y = G64y — Sy, = 0. (5.4.5)
9N, 4

In order to interpret these two conditions, we investigate the imbedding of T in Minkow-
ski space in the classical limit. Recall that the configuration of the three 4-momenta PP,
and P, is completely determined by the masses m,,m,,m; and the composite ma;ses m,,mg,
and mg -- up to an overall Lorentz transformation. Moreover, the components of W, in the
k-rest-frame are fixed by the length ji and two projections Au and A, ., provided that the
"transverse spin squared” HZ is positive at each edge (and the momenta are mot colinear).
Hence in the generic case, the configuration in Minkowski space of the six W-vectors and six
P-vectors is determined by the conservation laws and 20 invariants associated with the Racah

kernel T, up to Lorentz transformation.

Now we investigate the conditions for imbedding both T and T’ in the same Minkowski
space. In the rest frame of particle 4, the 3-momenta of T fall in a plane, as shown in figure
3.3b. The momenta of T’ fall into another plane in the same frame. Figure 5.6b shows the
intersection of these two momenta-planes, along with the three intrinsic spin W-vectors
associated with the common face (124). In general, this joint configuration is not imbeddable
in a single Minkowski space. The requirement that \-‘;4 coincide in the T and T’ configurations
determines the angle between the momenta planes (642) and (6'42) to be

a2 a2
Pea2 t g4z (5.4.6)

= " Y 5

The conditions for W, and W, to coincide as well are precisely (5.4.,?) and (5.4.9) respective-

ly. Hence finally

Proposition 1: The phase of two Racah kernels meeting at a common coupling is stationary

under variation of the corresponding helicities just when the vector diagrams for the kernels
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can be jointly imbedded in Minkowski space.

Figure 5.7 Hinge of m Racah kernels

Now suppose we have n Racah kernels joined up into a weft that has phase stationary
under variation of all internal variables. Then each pair of adjoining kernels is imbeddable in

Minkowski space, but obstructions may arise if we follow a sequence of couplings around in a

o

Wt S ‘.’3-’)"
loop. The basic loops are those that link a single edge. Hence it-suffices to consider the
simple case of an internal edge 0 which is the hinge for m Racah kernels Ty,....T,, as in

figure 5.7. From (5.4.1), the stationary phase condition under variation of the spin j, is

apt ol 02 om-—1 om
3; = 8"0-'2 + 333 + « + 83'“ + 931 = 0. (5.4.7)
[+]

Here the sum is of all the angles contained between the projections of the successive momenta
S - P, onto the o-plane: that is, the plane '(W0 A P_) normal to J, in the o-rest-
frame. Since j, varies by integer steps, we may introduce into ®* an additional phase factor

-27(j, + X,), Where X, is a constant 1/2 or 0 , as required to make Jo an integer. Then

(5.4.7) states:
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Proposition 2: The phase of m Racah kernels hinging at a common edge 0 is stationary under
variation of the spin Jo just when the successive momenta P..P,,..... P, that couple with 0

produce vanishing defect angle in the S-plane.

Finally, we consider the stationary phase condition under variation of m,. From (5.4.1) ,

k 6.ﬁl:.r:'»
™ 9m, ’

apt
= H
amo Lzrs

(5.4.8)

where the sum is over the 6m combinations of edge indices k,rs which occur in the d-functions

of the m Racah kernels T,,...,T,. This sum can be simplified by noting that
Hy = (Weeu)/m,. (5.4.9)

The derivatives of the B-angles can be computed from (5.3.4), and simplifed with the techn-
ques of (3.3.3-5). Despite these simplifications, I have not been able to cast (5.4.8) into a
form that admits geometric interpretation as straightforward as propositions 1 and 2. At least
some of the conditions (5.4.8) are redundant: in particular, the angles 8 are unchanged under

simultaneous scaling of all the masses.

Recall that the positive-frequency action ®* in the semiclassical limit of n Racah kernels

~

** = E(jkgf,’n + Ak,{¢:£-{ + A ¢§En)' (5.4.10
k/m

where the sum is over all k,/m combinations occurring in the d-functions of the kernels. The
A -stationarity conditions (5.4.4-5) together with the A -conservation laws (5.3.10) imply that
the summation over the A¢-terms in (5.4.10) vanishes identically. Except for surface terms,
we are left with a summation over jO-terms which involves angle defects identical to those
arising in the Regge calculus version of the 4-d vacuum Einstein action. However, these angle

defects appear in the sum with weights which differ from those in the Einstein case in such a
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way that the action is stationary under variation in the spins only when the curvature vanishes.

It remains to be seen how a fabric can be constructed which will correctly model curved
spaces in the semiclassical limit. A term must appear in the action to break the mass scale-
invariance and account for the inhomogeneous source in Einstein’s equations (i.e., the
eoergy-momentum density). A fabric for curved space might correspond to some generaliza-
tion of the local space-time symmeltry group. The natural way scalar curvature arises even in
the simple case of the Poincare group will probably play a role in applying fabrics as models in

the quantization of gravity.



REFERENCES

[V.K. Agrawala and J.G. Belinfante 68] "Graphical Formulation of Recoupling Theory for any
Compact Group" Annals of Physics 49, 130-170

[L.C. Biedenharn 53] "An Identity Satisfied by the Racah Coefficients" J.Math.Phys. 31,
287-293 o

[J-R. Derome 66] "Symmetry Properties of the 3j-Symbols for an Arbitrary Group"

_ IMath Phys. 7. 612-15

[E. EIBaz and B. Castel 72] Graphical Methods of Spin Algebras (Marcel Dekker, New York)

[J.P. Elliott 53] Proc.Roy.Soc. A218. 370

[R.P. Feynman and A.R. Hibbs 65] Quantum Mechanics and Path Integrals (McGraw Hill,
New York)

[B. Hasslacher and M. Perry 81] "Spin Networks are Simplicial Quantum Gravity" Physics
Letters 103b 21-24

[LN. Herstein 64] Topics in Algebra (Ginn)

[W.H. Klink 71] "Multiparticle Partial-Wave Amplitudes and Inelastic Unitarity I General
Formalism: Racah Coefficient for the Poincare Group" Phys.Rev. D 4, 2260-80

[W.H. Klink 75] "Two applications of the Racah Coefficients of the Poincare Group"
J.Math.Phys. 16, 1247-52 '

[L.H. Loomis and S. Sternberg 68] Advanced Calculus (Addison-Wesley)

[J.P. Moussouris 79] "Chromatic Evaluation of Spin Networks" in Advances in Twistor
Theory, eds. L.P. Hughston and R.S. Ward (Pergamon)

[R. Penrose 68] "Structure of Space-time", in Battelle Rencontres 1967, eds. C.M. De Witt
and J.A. Wheeler (W.A. Benjamin)

[R. Penrose 71] "Angular Momentum: An Approach to Combinatorial Space-time" in
Quantum Theory and Bevond, ed. T. Bastin (Cambridge University Press)

[R. Penrose 72] "On the Nature of Quantum Geometry", in Magic Without Magic: John
Archibald Wheeler, ed. J.R. Klauder (W.H.Freeman & Co., San Francisco)

[R. Penrose 72b] "Applications of Negative Dimensional Tensors" in Combinatorial Theory
and Applications, ed. D. Welsh (Wiley)

[G Ponzano and T. Regge 68] "Semiclassical Limit of Racah Coefficients" in Spectroscopic
and Group Theoretical Methods in Physics, ed. F. Bloch (North Holland Publ. Co., Amster-
dam)

[T. Regge 61] "General Relativity without Coordinates” Nuovo Cimento 19, 558-571

[M. Rocek and R.M. Williams 81] "Quantum Regge Calculus" Physics Letters 104B, 31-37




[K. Schulten and R.G. Gordon 75] "Semiclassical approximations to 3j- and 6j-coefficients for
quantum-mechanical coupling of angular momenta" J.Math.Phys. 16, 1971-89

[R. Sorkin 75] "Time-evolution problem in Regge Calculus" Phys.Rev. D 12, 385-396

[G.C. Wick 62] "Angular Momentum States for Three Relativistic Particles" Annals of Physics
18, 65-80

[EP Wigner 59] Group Theory and its Application to the Theory of Atomic Spectra
(Academic Press, New York)

[A.P. Yutsis, LB. Levinson and V.V. Vanagas 62] Mathematical apparatus of the theory of
angular momentum (Israel Program for Scientific Translations, Jerusalem)






