
§5.14 COHBINATORIAl QUANTUM THEORY AND QUANTIZED DIRECTIONS by R. Pern'ose 

According to conventional quantum theory, angular momentum can take only 

integral values (measured in units of 1/2 h) and the (probabilistic) rules 

for combining angula r moments are of a combinatorial nature. Also, accord 

ing to quantum theory, a system with zero total angular momentum must be 

spherically syntnetrical. A system must, thus, involve a relatively large 

angular momentum in order to determine a well - defined direction in space, 

and we may picture the axis of the angular momentum as giv ing such a 

direction. tn the limit of large angular momenta, we may therefore expect 

that the quantl.l11 rules for angular momentum ~1i1l determine the geometry of 

directions in space. We may imagine these directions to be detel"mined by 

a number of spinning bodies. The angles between their axes can then be 

defined in terms of the probabilities that their total angular momenta 

(i.e. their "spins") will be increased or decreased when, say. an electron 

is thrown from one body to another. In this way the geometry of directions 

may be built up, and the prob lem is then to see whether the geometry so 

obtained agrees with what we know of the geometry of space and time . 

Although there is a standard procedure for the treatment of such a 

problem (in the non- relativistic case: namely the use of 3-j and 6- j symbols, 

etc.), it is convenient to make use of an alternative (but equivalent) 

formalism which can be described very briefly as follows. Consider, first, 

an n-dimensional Kronecker delta cab' Then a set of "isotropic" Cartesian 

tensors can be built up from this one symbol and scalars by means of the 

operations of addition, outer multiplication , transposition of indices, 

and contraction. The only identities satisfied by cab which hold independ

ently of n are cab '" 0ba and 0ab 0bC = 0ac (sUlTlTlation convention assuned) " 

Also, we have 0aa = n (> 0) and a certain identity. which depends on n, 
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holds . Now consider an abstract structure which behaves formally exactly 

like the above set of tensors except that the fo nnal equation 0aa = - 2 is 

imposed, together with the one identity : cab 0cd + 0ac 0db + 0ad 0bc '" O. 

The "scalars" of this abstract structure wi ll be taken to be the !'ational 

numbers . The tensor - like quantities which can be constructed in this way 

I call bi noI's . It can then be shown that a necessary and sufficient con

dition for a binor Aab . .. d to vanish is that its roOm II A '" II :: Aab .. dAab . . d 

(a rational number) should vanish . 

To obtain the physical interpretation of the binors , 1 envisage the 

following type of situation . Imagine the univer se to be rep resented as a 

Fi gure A 

network of segments (see Fig . A) where , for simplicity, it will be assumed 

that each in ternal segment connects two vertices and each vertex joins 

just three segment ends. Associated with each segment is a non- negative 

integer . Each segment ;s to be thought of as representing the world line 

of a particle, nucleus, atom, etc . Or, generally, some structure which may 

be momentarily considered as stationary and isolated from the rest of the 
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universe . The network thus gives a kind of combinatorial space-time picture 

of the universe . The integer associated with each segment is twice the 

total intrinsic angular mOlJlentllll quantum nunber of the particle (or structure). 

Hence, for a pi-meson or ground state helium atom this integer is zero; for 

an electron or proton it is one; for a deuteron it is two; and so on . In 

order for the proposed calculus to give an accurate description of a part 

of the universe , it must be supposed that it is possible to neglect effects 

due to relative velocit i es of the particles (or structures) . In this sense 

the theory is a non- relativistic one . 

Corresponding to each possible such (open) network is associated a binor 

which is a contracted product of binors described as follows . Each segment 

nlAllbered 0 is represented by the scalar 1. Each segment numbered 1 is 

represented by a cab . Segments marked 2 by 0ac.bd = 1/ 2! (oab 0Cd - cad °cb ) , 

marked 3 by 

' ad ' ae ' af 

°abc, def • 1/3 ! ' bd ' be ' bf 

' cd ' ce ' cf 

and so on. The first group of ind i ces of 6 b d f h is to be associated a .. ,e . . 
with one end of the segment and the second group with the other end. (This 

is sYrTmetrical since 0ab • ' ba implies 6 b d f h" f h b d·) At a . . .e .. e . . ,a .. 
each vertex the three relevant groups of indices involved must all be paired 

off and contracted so that none of these ind ices remains uncontracted, and 

no two belonging to the same 6 ...• . .. are contracted together . This implies 

that the sum of the three integers involved is even, and is at least twice 

the greatest of them . Then, the result of these contractions will be unique 

up to sign . The free indices of the resultant binor are then j ust those 
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corresponding to the free ends of the network . 

Consider, now , a situation in which a portion of the universe is 

represented by a known network X (see Fig . B) having, among its free ends, 

one nllTlbered m and one numbered n. Suppose the particles or structures 

represented by these hlo ends combine together to form a new structure. 

(See Fig. C). We wish to know, for any allowable p, what is the probability 

p 

p 

x x m n p 

B .... c .... D .... E .... 

Figure B Figure C Figure 0 Figure E 

that the angular momentum nurt\l)er of this new structure be p . Fig. 0 is the 

network representing the combining of these two structures to form the 

third, but ignoring the rest of the universe; Fig. E is the "network" for 

the final structure alone. let B ... , C ... , D ... , E ... , be the binors 

representing the networks of Figs . B, C, 0 and E, respectively. Then, 
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(in"ct Il E . . . 1I o ( - l)p(p+ 1) 'nd 11 0 . . . 11 o(_1)(m+n+p)/2(m+~p)! 

(n+rm)] (p~n)! (m+n;p+2)!/m!n!P!) . As a particula r case of this we 

can deduce the result that the binor correspondi ng to a network vanishes 

if and only if the situation is "forbidden" according to the rules of 

quantum theory. 

Consider now the situation of Fig . F invo lvi ng two bodies with lruoge 

angular momenta r~ and N. We might define the a1'lf!Ze between the axes of the 
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bodies in terms of the relative probability (defined in terms of an ensemble 

of systems with the same Fig . F network) of occurrence of N+ 1 and N- 1. 

respectively. in the "experiment" given by Fig. G. However. part of this 

probability may be due to ignorance of the re lationship between the bodies . 

(This may manifest itself in the absence of sufficient connecting links in 

the known network X.) To eliminate the possibility that part of the prob

abil ity be due to ignorance we envisage a repetition of the "experiment" 

as given in Fig . H. If the probability gi ven in the second experiment is 

essentially unaffected by the result of the first experiment then we may 

say that the angle e between the axes of the bodies is well -defined and is 

determined by this probability. It then turns out that the binor of Fig . I 

is essentially 1/2 cos e times the binor of Fig. F and from this fact. and 

certain binor identities, it is possible to show that the angles obtained 

in this way satisfy the same laws as do angles in a three -dimensional 

Euclidean space . 

This is very satisfactory and is perhaps a little surprising in at least 

two respects. In the first instance . since no complex nunbers were used in 

the binor calculus it is somewhat remarkable that a full array of directions 

in three-dimensional space has been built up, rather than in. say . just a 

two -dimensional subspace, since in ordinary quantum theory, in order to 

build up all the wave functions for all the possible spin directions for 

an electron, compZex linear combinations must be used. Secondly, according 

to standard quantun theory. the wave function of a system of high angular 

momentlll1 will not normally determine a well-defined axis in space contrary 

to what has apparently been aSSlll\ed here . 

The answer to both these poi nts seems to 1 ie in the fact tha t the 

"directions" that emerge in the theory described here are things vlhich are 
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defined by the systems in relation to one another and they will not generally 

agree with the directions in a proeviousZy given (and unnecessary!) back

ground space. The space that is obtained here is to be thought of (indeed 

Irru.st be thought of) as being the one deteI'mined by the systems themselves. 

It is to be hoped that some modification to the above scheme might enable 

the effects due to relative velocities of systems to be taken into account 

so that perhaps a four-dimensional space- time might be constructed. (Time 

is absent from the above theory even to the extent that the time ordering 

of events is irrelevant!) Two additional features would have to be involved. 

The first is that the relativistic addition of angular momenta includes the 

possibility of multiple pair creation and many of the additional compli 

cations implied by relativistic field theory. The second is that relative 

velocity implies the possibility of a mixing of spin with orbital angular 

momentlfll so that the idea of "distance" between the world lines or particles 

is involved. Particularly because of this second feature, the fully 

relativistic theory would seem to be of a different order of difficulty 

from the one treated above. 
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