Computation and the Periodic Table

John C. Baez
ATMCS 2008
y X
= f
X Y
Y

(Az:X.f(x))(a) = f(a)

for references and more, see
http: //math.ucr.edu/home/baez/periodic/

Once upon a time, mathematics was all about sets:

In 1945, Eilenberg and Mac Lane introduced categories:

Category theory puts processes (morphisms): @ — @
on an equal footing with things (objects): @

In 1967 Bénabou introduced weak 2-categories:

These include processes between processes, or ‘2-morphisms’:

We can compose 2-morphisms vertically:

f f
A
DR
f” f”
or horizontally:
f g /fg\/‘
ze of ~e | ez = xe a®8 ez
Vi g \f’g'/
and various laws hold, including the ‘interchange’ law:
f g
RN -
f” g//

(aa’) ® (BF") = (@ B) (' ® B')

The ‘set of all sets’ is really a category: Set.

The ‘category of all categories’ is really a 2-category:
Cat. It has:

e categories as objects,
e functors as morphisms,

e natural transformations as 2-morphisms.
3
C/. ﬁ L
°_
=

Cat is a ‘strict’ 2-category: all laws hold exactly, not
just up to isomorphism. But there are also many
interesting weak 2-categories!

For example, any topological space has a fundamental
groupoid:

It also has a fundamental 2-groupoid:

This is a weak 2-category with:
® points as objects,
e paths as morphisms,

e homotopy classes of ‘paths of paths’ as 2-morphisms.

In 1995, Gordon, Power and Street introduced weak
3-categories:

o =

NN S

®

Now people are studying weak m-categories and even
oo-categories. This is starting to have a big impact on
topology and physics. How about computation?

Is computation about processes between processes
between processes...?

Yes! But to orient ourselves, we need some
hypotheses about how n-categories work.

My favorite is the ‘Periodic Table’.

A category with one object is a monoid — a set with
associative multiplication and a unit element:

A 2-category with one object is a monoidal category
— a category with an associative ‘tensor product’ and
a unit object:

Now associativity and the unit laws are ‘weakened’:

(rQRQYRKz=ZzxR (YR 2), IQe=Zx=xR1

To regard a 2-category with one object as a monoidal
category:

e we ignore the object,
e we rename the morphisms ‘objects’,
e we rename the 2-morphisms ‘morphisms’.

Vertical and horizontal composition of 2-morphisms
become composition and tensoring of morphisms:

X X X’ X ® X’

l-<
I
|

In general, we expect an n-category with one object is
a monotidal (n — 1)-category.

For example:

e Set is a monoidal category, using the cartesian
product S X T of sets.

e Cat is a monoidal 2-category, using the cartesian
product C X D of categories.

e We expect that nCat is a monoidal (n 4+ 1)-category!

QUESTION: what’s a monoidal category with just one
object? It must be some sort of monoid...

It has one object, namely the unit I, and a set of
morphisms a: I — I. We can compose morphisms:

of3

and also tensor them:

a® 3

Composition and tensoring are related by the
interchange law:

(aa’) ® (BF") = (@ B) (' ® B')

So, we can carry out the ‘Eckmann—Hilton argument’:

all (8 1 | o
*Pl s 3 g1 |P@
a@PB =(a®1)(1RP) (18) ®@(al) = BR«

I |
(1)@ (18) = af = (1Qa)(BR®1)

ANSWER: a monoidal category with one object is a
commutative monoid!

In other words: a 2-category with one object and one
morphism is a commutative monoid.

What’s the pattern?

An (n+k)-category with only one j-morphism for 7 < k
can be reinterpreted as an n-category.

But, it will be an n-category with k ways to ‘multiply’:
a k-tuply monoidal n-category.

For example n = 1,k = 1: a 2-category with one object
is a monoidal category.

When there are several ways to multiply, the Eckmann—
Hilton argument gives a kind of ‘commutativity’.

Our guesses are shown in the Periodic Table...

k-tuply monoidal n-categories

n =20 n=1 n = 2
k=0 sets categories | 2-categories
k=1 monoids monoidal | monoidal

categories | 2-categories
k = 2| commutative| braided braided
monoids monoidal | monoidal

categories | 2-categories
k=3 ¢ symmetric| sylleptic
monoidal | monoidal

categories | 2-categories

k=4 ¢ ¢ symmetric
monoidal

2-categories

¢

¢

¢

Consider n = 1, k = 2: a doubly monoidal 1-category
is a braided monoidal category. The Eckmann—Hilton
argument gives the braiding:

(87

« «
1|5 B Bl

12
e
1
12
e
12
R

al S

Ba,,B: a®5;5®a

The process of proving an equation has become an
tsomorphism! This happens when we move
one step right in the Periodic Table.

Indeed, a different proof of commutativity becomes a
different isomorphism:

Bﬁ_’;:a@)ﬁ;ﬁ@a

This explains the existence of knots!

Shum’s theorem: 1Tang,, the category of 1d tangles in
a (142)-dimensional cube, is the free braided monoidal
category with duals on one object.

A triply monoidal 1-category is a symmetric monoidal
category. Now we have ‘three dimensions of space’
instead of just two. This makes the two ways of moving

o past 3 equal:
Q 8 « I6;
L)

So, the situation is ‘more commutative’. This happens
when we move one step down in the Periodic Table.

We can untie all knots in 4d:

Theorem: 1Tangs, the category of 1d tangles in a (1 +
3)-dimensional cube, is the free symmetric monoidal
category with duals on one object.

However, k-tuply monoidal n-categories seem to
become ‘maximally commutative’ when k reaches n 2.

For example, you can untie all n-dimensional knots in

a (2n + 2)-dimensional cube. Extra dimensions don’t
help!

Stabilization Hypothesis: k-tuply monoidal n-categories
are equivalent to (k 4+ 1)-tuply monoidal n-categories
when k£ > n + 2.

We call these stable n-categories. These should serve
as abstract contexts for computation in which data doesn’t
get ‘tangled up’ as it moves.

nCat should be a stable (n + 1)-category.

Now, what about computation?

Topological quantum computation uses bratded monoidal
categories, but more often we use symmetric monoidal
categories where:

e objects are types X,Y, Z, ...

e morphisms f: X — Y are equivalence classes of
terms of type Y with free variable of type X.

For example: Lambek showed that any theory in the
simply typed A-calculus gives a cartesian closed cate-
gory. Two terms give the same morphism if they differ
by certain rewrite rules, such as G-reduction:

(Az: X.f(x))(a) = f(a)

Identifying terms that differ by rewrite rules amounts
to 1gnoring the process of computation! To avoid this,
use a 2-category where:

e objects are types X,Y, Z, ...

e morphisms f: X — Y are terms of type Y with free
variable of type X.

e 2-morphisms a: f = g are equivalence classes of
sequences of rewrites going from f to g.

Any theory in the simply-typed A-calculus should give
a ‘cartesian closed 2-category’ this way.

More generally, we should get ‘monoidal closed 2-categories’
where the 2-morphisms are processes of computation.

In a monoidal closed 2-category, any pair of objects
(types) X,Y has a ‘function type’ X — Y:

X ey

Any morphism f: X — Y:

has a ‘name’ "f': I — (X —Y):

We also have an ‘evaluation’ morphism:

eVX,Y:X®(X—OY)—>Y

But, evaluating the name of f does not give f. It gives
a morphism zsomorphic to f via some 2-morphism:

In the A-calculus, this 2-morphism corresponds to
B-reduction:

(Az: X.f(z))(a) = f(a)

This 2-morphism exists in any monoidal closed 2-category.
For example 2Tang,, which has:

e collections of oriented points in the 1-cube as objects:

x x x*
— oo —

e 1d tangles in the 2-cube as morphisms:

T x*t T

xr

e isotopy classes of 2d tangles in the 3-cube as 2-morphisms:

r* T

Tangle Hypothesis: nTang, is the free k-tuply monoidal
n-category with duals on one object.

The 2-morphism analogous to 3-reduction in 2Tang, is
the fold catastrophe:

Like B-reduction, it ‘straightens out a zig-zag’.

This is the beginning of a long, unfinished story relating
computation, topology and the Periodic Table.

k-tuply monoidal n-categories

n =20 n=1 n = 2
k=0 sets categories | 2-categories
k=1 monoids monoidal | monoidal

categories | 2-categories
k = 2| commutative| braided braided
monoids monoidal | monoidal

categories | 2-categories
k=3 ¢ symmetric| sylleptic
monoidal | monoidal

categories | 2-categories

k=4 ¢ ¢ symmetric
monoidal

2-categories

¢

¢

¢

See my webpage for links to references, e.g.:

e R. A. G. Seely, Modeling computations in a 2-categorical
framework, LICS 1987.

e Barnaby P. Hilken, Towards a proof theory of rewrit-
ing: the simply-typed 2A-calculus, Theor. Comp.
Sci. 170 (1996), 407.

e Albert Burroni, Higher-dimensional word problems

with applications to equational logic, Theor. Comp.
Sci. 115 (1993), 43.

e Yves Guiraud, The three dimensions of proofs, Ann.
Pure Appl. Logic 141 (2006), 266.

e Vladimir Voevodsky, A very short note on the
homotopy lambda calculus, 2006.

and also my seminar and work with Mike Stay.

