
Self-Adjointness and the

Renormalization of Singular Potentials

Sarang Gopalakrishnan
Advisor: Professor William Loinaz

Submitted to the Department of Physics of Amherst College in
partial fulfillment of the requirements for the degree of Bachelor

of Arts with Honors.

Submitted April 24, 2006



Abstract

Schrödinger operators with very singular potentials fail to produce reasonable spec-

tra, because the usual boundary conditions are insufficient to make them self-adjoint.

If one regularizes a singular potential at a length ε, the bound state energies diverge

as ε → 0. A meaningful spectrum can be restored by picking a self-adjoint exten-

sion of the operator, by renormalizing the theory, or by allowing nonunitary time

evolution. We show that renormalizations of the 1/r2 potential fall into two classes:

those that are asymptotically equivalent to self-adjoint extensions, and those that

reduce to treatments of delta functions. We also apply the apparatus of self-adjoint

extensions and renormalization to clarify aspects of anomalous symmetry breaking,

supersymmetric quantum mechanics, and one-dimensional quantum mechanics.



Lines composed upon reading
a thesis abstract by S. Gopalakrishnan

Think a moment, dear reader, of that long-legged fly,

The sprung meniscus underfoot,

And what asymptotes invisible to well-trained eyes

Still break the surface at its root.

How a singular potential picks tight-bounded energy

Apart till it no longer recognizes

Its own mirrored face, its extensions, or symmetry;

Unless one cautiously renormalizes.

You have tried in these pensive pages to show the stuff

Such theory’s made of, its quiddity

When logic is applied to the diamond rough,

And quantum notes ring purely.

May Apollo’s clarity pierce through your reasoning

And self-adjointed truth and fact

Elevate your thought to that sense so pleasing

When truth recovers nature’s pact.

Jesse McCarthy
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Introduction

This thesis is concerned with the quantum mechanics of singular potentials in general.

By a singular potential I mean anything that blows up at a single point, which is

chosen to be the origin. Such potentials have several curious features, which can be

summarized as follows:

1. Conditions such as square-integrability at 0 and ∞ do not unambiguously pick

an orthonormal set of eigenfunctions. This is the failure of self-adjointness.

2. Sometimes, even imposing the requirement that ψ(0) = 0 fails to pick an or-

thonormal set. This is usually due to the failure of boundedness.

3. If you perturb Schrödinger Hamiltonians with singular potentials and tune the

perturbation to zero, you might not recover the initial spectrum. This is known

as the Klauder phenomenon [17], and is related to the failure of analyticity.

4. Two of these potentials, the two-dimensional delta function and the 1/r2 po-

tential, are classically invariant under dilation, but acquire an intrinsic length

scale upon quantization. This is known as the anomaly, and is a failure of

symmetry.

Despite these failures, one can say rather a lot about singular potentials. Singular

potentials cause trouble by their behavior at the origin, and disciplining them there

by smoothing out the singularity (at, say, a short distance ε) gets rid of most of

the problems. This doesn’t quite do the trick on its own, though, because in the

ε→ 0 limit quantities such as bound state energies diverge. One way to remove these

divergences is renormalization. The idea behind this is that since we don’t know

how physics works at very short distances from the singularity (or, equivalently, very

high energies), we can access the form of the potential only down to certain distances.

We have to deduce its behavior beneath these distances, assuming that such behavior
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is finite and sensible, from some experimentally observed quantity like a bound state

or a scattering phase shift. Of course, given a bound state energy and a description

of long-distance behavior, there are infinitely many possible theories of short-distance

physics. The remarkable thing about renormalization is that all the theories that have

a bound state energy at E give the same values for all other low-energy observables.

That is, with the addition of one arbitrary experimental parameter, we can predict

all low-energy properties exactly.

There is an entirely different way to go about making these theories sensible,

which is to fix the failure of self-adjointness. In practice, this works by specifying

a bound state and deducing the rest of the spectrum from the requirement that

all other eigenstates be orthogonal to it. For low-energy observables this technique

produces exactly the same results as renormalization, and is mathematically more

rigorous. The trouble with renormalization is that it’s hard to prove something must

be true of all imaginable short-distance physics; however, requiring that the renor-

malized theory should coincide with a self-adjoint extension fixes this, because we

have a much better handle on the self-adjoint extensions of a Hamiltonian. We con-

sider the relation between renormalization and self-adjoint extensions in the context

of singular potentials—mostly delta functions and 1/r2 potentials—in the first five

chapters. Chapter 1 is about delta functions, Chapter 2 introduces self-adjoint exten-

sions, Chapter 3 introduces singular potentials and treats them with the apparatus

of Chapter 2, and Chapter 4 introduces various renormalization schemes. Chapter

5 discusses the renormalization group, a powerful way to study the behavior of

physical theories at various length scales.

The reason we like self-adjoint extensions—that they conserve probability—is

sometimes a limitation. Suppose we are looking at a system where a particle moving

in a singular potential falls into the singularity and gets absorbed: what then? This

question is of particular importance because a recent experiment [23] with cold atoms

moving in a 1/r2 potential noticed that some of the atoms were absorbed. Chapter 6

discusses nonunitary extensions of quantum mechanics that deal with such situations.

Chapter 7 is somewhat heterogeneous; it is about Klauder phenomena, non-

analyticity, and resonance phenomena. The link between resonance and Klauder

phenomena is that they are both universal. Klauder phenomena are independent of

what the original perturbation was, and resonant interactions in quantum mechanics

are the same for all potentials. Singular potentials are connected to resonance phe-
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nomena by the Efimov effect [27]. In a system of three identical bodies for which all

the two-body interactions are tuned to resonance, the three-body Schrödinger equa-

tion obeys a 1/r2 force law, and has infinitely many three-body bound states. This

effect too has recently been observed experimentally [39].

Chapter 8 discusses the one-dimensional hydrogen atom and other issues in one-

dimensional quantum mechanics that arise from the fact that R−{0} is disconnected.

Chapter 9 discusses the symmetry structures, broken and otherwise, of the 1/r2 prob-

lem. Chapter 10 summarizes everything and briefly discusses physical applications of

singular potentials.

Who Did What

Most of the key ideas in the first six chapters are not mine. The exception is the

explanation of the relationship between the very different spectra of the renormaliza-

tion schemes of Chapter 4 and Chapter 5. The treatment of self-adjoint extensions

for singular potentials is, however, more explicit and detailed than elsewhere in the

literature, and as far as I know this is the first detailed treatment of scattering observ-

ables in terms of self-adjoint extensions, and the first explicit treatment of nonunitary

extensions as complex boundary conditions within the deficiency subspace framework.

I’m not aware of any previous work on the universality of Klauder phenomena;

the idea isn’t a deep one, but it is relevant to the renormalization schemes studied

in Chapter 4. There have been several previous treatments of the one-dimensional

hydrogen atom, but as far as I know, mine is the first to apply ideas from renormal-

ization to the problem, or to characterize the family of extensions in terms of δ and

δ′ counterterms. My treatment of the two-parameter family was developed indepen-

dently of Ref. [95], but they had the key idea before I did. (On the other hand, my

treatment of the x2 +1/x2 potential follows theirs quite closely.) The approach to the

anomaly in terms of self-adjointness and finite dilations is, again, relatively obvious,

but it hasn’t been done in the literature. My approach to the SO(2, 1) algebra was

different from Jackiw’s [41]; for consistency with the rest of this thesis, I tried to

reduce it to a time-independent symmetry, but was unable to get very far.
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History of Previous Literature

There are, roughly speaking, three classes of singular potentials: mildly singular

(solvable with regular QM), singular (problematic, but with ground states), and very

singular (without a ground state). As the literature is considerable and I discuss most

of the important ideas later, I have left my history skeletal, to avoid overwhelming the

sequence of discoveries with irrelevant detail. For the most part, I have ignored ex-

clusively pedagogical articles. I have left the history of the one-dimensional Coulomb

problem, which is somewhat disjoint from this sequence, to the chapter on it.

Early Work

The first important paper on singular potentials was K.M. Case’s treatment in 1950

[1]. Previously, the nonsingular—repulsive or weakly attractive—regimes had been

treated by Mott and Massey (1933)[3] and by Titchmarsh (1946)[2]. The operator

theory behind quantum mechanics had been developed in the 1930s by John von

Neumann [4], Marshall Stone, and various others; Stone’s monograph, Linear Trans-

formations in Hilbert Space (1932) [5], is a standard reference in the literature. The

strongly attractive (very singular) regime of the 1/r2 potential is dismissed as un-

physical by the early writers; however, as Case notes, the Klein-Gordon and Dirac

equations for the hydrogen atom have similar singularities.

Case shows that the strongly singular regime of the 1/r2 potential, treated naively,

has a continuum of bound states. This implies that the operator is not Hermitian,

but Case restricts the domain of definition of H to restore Hermeticity, and finds a

point spectrum of bound states going all the way down to −∞. These restrictions

are Hermitian, but depend on an arbitrary phase parameter. He also shows that

potentials more singular than 1/r2 have similar properties. A more specific early

treatment of the 1/r2 case is due to Meetz (1964) [6], who discusses self-adjoint

extensions explicitly (though the idea was implicit in Case’s work). Meetz notes that

there is a singular regime to this potential in addition to the very singular regime;

this corresponds to the failure of self-adjointness for weakly repulsive and weakly

attractive 1/r2 potentials. Narnhofer (1974) [7] gives a detailed expository treatment

of this problem, and suggests that contraction semigroups might be helpful. She

shows that the “natural” continuation of the “natural” self-adjoint extension into the

very singular regime is nonunitary.
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Vogt and Wannier (1954) [8] give a nonunitary solution to the 1/r4 problem, and

preen themselves (rather ironically) about having avoided Case’s “involved” math-

ematics. Nelson (1963) [9] arrives at a nonunitary result for the 1/r2 case by ana-

lytically continuing the functional integral; he basically hits the same nonanalyticity

that Narnhofer does fifteen years later.

The 1967 review article by Frank, Land, and Spector [11] summarizes much of

the early work on these potentials, and also discusses applications of very singular

potentials. A lot of this work is on approximation schemes and applications. Spector’s

(1964) [12] analytic solution of the 1/r4 potential is an exception; unfortunately, it is

not a very easy solution to use. A particularly important application is the Calogero-

Sutherland model (1969) [13], which describes N bosons interacting with pairwise

inverse-square potentials.

Self-Adjointness of Singular Potentials

The failure of self-adjointness at λ < 3
4

seems to have already been familiar to math-

ematicians as an example of Weyl’s limit-point/limit-circle theorem (1910); it is re-

ferred to quite casually in Simon’s 1974 paper on self-adjointness [14]. The strictly

mathematical literature on when Schrödinger operators are self-adjoint is huge, but

Simon’s “Review of Schrödinger operators in the 20th Century” (2000) [15] is a help-

ful guide, as is Vol. 2 of Reed and Simon’s book on Methods of Modern Mathematical

Physics [75]. Of more recent work, the most relevant papers are two papers by Tsutsui

et al [95], [96] on one-dimensional quantum mechanics, and Falomir’s discussion [92]

of supersymmetry and singular potentials. An independent source of mathematical

interest was Klauder’s (1973) study of Klauder phenomena [17].

Nonunitary Solutions

The term fall to the center was first applied to singular potentials by Landau

and Lifschitz in their quantum mechanics text (1958) [18], where the strong-coupling

regime is compared with the classical situation, for which the particle’s trajectory is

defined only for a finite time. This comparison between classical completeness (i.e.

having a solution for all time) and self-adjointness is explored rigorously in Reed and

Simon vol. II [75], and makes its way into the pedagogical literature with an AJP

article by Zhu and Klauder [19] on the “Classical Symptoms of Quantum Illnesses”

(1993).
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Non-self-adjoint extensions of singular potentials are explored in some more detail

by Perelomov and Popov (1970) [20] and by Alliluev (1971) [21], using methods that

are equivalent to Nelson’s. The mathematical side of the semigroup theory had been

worked out previously by Hille, Yosida, Kato, Trotter, etc.; a classic text is Functional

Analysis and Semigroups by Hille and Phillips [10]. In 1979, Radin [22] observed

that Nelson’s nonunitary time-evolution operator could be written as an average over

the unitary operators corresponding to all the self-adjoint extensions. (This is not

especially shocking, since e.g. eiθ and e−iθ, which are unitary, average to cos θ, which

is not.)

This work found some physical application in 1998, when Denschlag et al experi-

mentally realized an attractive 1/r2 potential by scattering cold neutral atoms off a

charged wire [23], and found that the atoms were absorbed. This result was treated

variously by Audretsch et al (1999) [24] and by Bawin and Coon (2001) [25], who use

Radin’s result to “justify” the cross-section.

A related, and intriguing, result is Bawin’s proof (1977) [26] that spectra very

different from Case’s could be obtained by redefining the inner product.

Effective Field Theories

In his famous paper of 1971 [27], Vitaly Efimov noted that in certain regimes, the

three-body problem reduces to that of particles moving in an effective 1/r2 potential,

and this produces a large number of bound states. (There is a huge literature on

the Efimov effect, which we will not attempt to cover.) Efimov’s result made it

desirable to apply ideas from the effective field theory (EFT) program to the 1/r2

potential, and thus prompted the treatments of Bedaque, Hammer, and Van Kolck

(1999) [29], and of Beane et al (2001) [30]. The treatment in [29] uses field theoretic

methods, while [30] constructs an effective theory of the interaction by cutting off

the potential at short distances by a square well. In their paper, Beane et al find

that the renormalization group flow equations of the 1/r2 potential have two

sorts of solutions—continuous paths that don’t go all the way to the origin, and

log-periodic paths that represent limit cycles. Beane et al treat singular potentials

quite generally; more specific treatments of the 1/r2 case are done by Bawin and Coon

(2003) [31], who solve the RG flow equations analytically, and Braaten and Phillips

(2004) [32], who discovered that using a δ-function ring cutoff instead of a square well

cutoff forces one to choose the limit cycle. The idea of limit cycles in this context,
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and a lot of the conceptual basis for this work, is due to Kenneth Wilson’s (1971)

work on the renormalization group [34].1 The specific method that these authors use

was suggested by Lepage(1997) [33]. Recently, Alberg, Bawin, and Brau (2005) [36]

used a similar approach to treat the 1/r4 potential; however, they did not consider

δ-function regularizations.

After decades of strenuous effort, the Efimov effect was finally demonstrated in

the laboratory this year with cold atoms [39]. Another recent milestone in that area

was the long review article on universality by Braaten and Hammer [40], which uses

the same language as above-mentioned papers.

In general, solutions found by these methods are unitary and involve spectra with

arbitrarily many bound states.

Algebraic Structures

Anomalies are cases where a classical symmetry is broken by quantization. They are

pervasive and very important in quantum field theory. It has been known for some

time that the 1/r2 and δ2(r) potentials are examples of the anomaly in nonrelativistic

quantum mechanics. Jackiw [41] looks at the broken SO(2,1) algebra associated with

both potentials in his 1991 paper on delta function potentials; this is taken up in more

detail by Camblong and Ordonez (2003, 2005) [44], [43], who also discuss various

applications of conformal QM. A somewhat different algebraic treatment is given by

Birmingham, Gupta, and Sen (2001) [42], who study the representation theory of the

Virasoro algebra underlying this problem.

Renormalizing the Coupling

Gupta and Rajeev (1993) [52] renormalized the long-distance coupling of the very

singular 1/r2 potential, and got a renormalized spectrum with just one bound state,

which looked essentially the same as that of the δ2 potential. Their result was worked

out in just one dimension, but it was later generalized by Camblong et al (2000) [45],

who also got the same answer by dimensional regularization [47], [48]. Camblong’s

result was reworked in an AJP article by Coon and Holstein (2002) [46], and later by

Essin and Griffiths (2006) [51]. This approach to the potential also constituted the

bulk of Essin’s undergraduate thesis (2003).

1Limit cycles were, however, borrowed from dynamics, where they actually make sense.
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Notes to the Reader

Sequence

This thesis was written to be read in sequence, but it needn’t be. The first three

chapters are essential context for chapters 4-7 and 9. Chapter 5 uses the results

of Chapter 4 but not the details. Chapter 6 is independent of Chapters 4 and 5,

and may be skipped without loss of continuity. Chapter 7 deals with issues raised

in Chapters 4 and 5, so it should be read after them. Chapter 8 uses the entire

apparatus developed thus far, but is independent of Chapters 3 and 4. Chapter 9 is

independent of Chapters 4-8. In later chapters I sometimes use the terms “Chapter 4”

and “Chapter 5” renormalization to refer, respectively, to schemes that renormalize

the long-distance coupling and schemes that don’t.

The bulk of original work is in the later sections of Chapters 3 and 5, and all of

Chapters 7 and 8.

Units, Dimensions, Notation

I have set ~ = 2m = 1. Since the first term in Schrödinger’s equation is then just

−∇2ψ, which has dimensions [length]−2[ψ], consistency requires that V and E have

dimensions of [length]−2. This turns out to be an immense convenience, though it

might take some getting used to.

More irritatingly, I suppose, I have freely used the identity log kr = log k + log r

even if k and r have dimensions. The departure from dimensional consistency might

make the equations harder to check, but is standard in the literature and makes

several equations a lot tidier. The reader is requested to imagine, should s/he wish,

that there are ghostly η’s and η−1’s hovering by the dimensional quantities and just

canceling them out.

References of the form AS 1.1.1 are to identities in Abramowitz and Stegun [58].

Finally, I should comment on my inner products, which are always (ψ1, ψ2) and

never 〈ψ1|ψ2〉. In Dirac notation, one is used to thinking that a Hermitian operator

A in the middle of a bracket

〈ψ|A|φ〉

might be acting either to its left or to its right, depending solely on the reader’s

whim. When dealing with issues of self-adjointness, it is extremely important to know

13



whether one is operating on the bra or the ket, and the mathematicians’ notation,

which forces us to pick either (Aψ, φ) or (ψ,Aφ), has the merit of being entirely

unambiguous about this.
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Chapter 1

Delta Functions

Potentials shaped like Dirac delta functions are useful in the study of singular po-

tentials for several reasons, most of which will be left to subsequent chapters. There

are two general strands to the answer; the first is that delta functions are easy to

solve, and the second is that they are conceptually important to the effective field

theory (EFT) program, which I’ll discuss now. The two dimensional delta function

is independently interesting because it lacks an explicit scale; along with the 1/r2

potential, it is an example of the “anomaly” in quantum mechanics.

1.1 Effective Field Theories

The idea behind effective field theories is that you can describe the low-energy, long-

distance behavior of a theory very powerfully by an “effective theory” without know-

ing much about its high-energy, short-distance behavior. This generally requires

renormalization, which casts our effective theory entirely in terms of low-energy

experimental observables; renormalization becomes necessary when our effective the-

ory has divergences due to high-energy behavior (where the approximation breaks

down), but isn’t always required. In the case of the hydrogen atom, for instance, the

effective model of a 1/r potential is not valid to arbitrarily short distances, but the

eigenvalues still converge, and so we needn’t worry about short-distance behavior at

all. On the other hand, some theories cannot be renormalized because their behavior

at all energies is strongly affected by the details of high-energy processes—so different

parameterizations of high-energy behavior lead to radically different theories.

Delta function potentials are frequently used in effective theories as a simple char-
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acterization of high-energy physics, because their action is entirely local, and they

are relatively easy to do calculations with—especially in momentum space, where

they are constant. They also provide particularly simple and instructive examples of

renormalization, which we shall see in the following sections. A detailed introduction

to EFT ideas is given in Ref. [33].

1.2 δ(x) in One Dimension

This is a classic problem discussed in introductory QM textbooks [53]. There are two

standard treatments, of which the quicker one is perilously glib. The idea is that if

you integrate the time-independent Schrödinger equation with ~ = 2m = 1:[
− d2

dx2
+ gδ(x)

]
ψ = Eψ (1.1)

from small −ε to ε, you get

−
[
dψ

dx

]ε
−ε

+ gψ(0) =

∫ ε

−ε
Eψdx ≈ 0 (1.2)

because ψ is required to be continuous and you can pull E out of the integral. Note,

however, that this logic assumes that E is finite, which turns out not to be the case

for the naive δ2(x, y) potential. Anyhow, it works here, and gives

ψ′(ε)− ψ′(−ε) = gψ(0). (1.3)

We’re looking for a bound state, with E = −k2 < 0. We know what it should

look like on both sides of the delta function, because there V = 0 and so

−d
2ψ

dx2
= −k2ψ

which has the familiar solutions

ψ = Aekx +Be−kx. (1.4)

Since a bound state must be normalizable, we can throw out the positive exponent

on x > 0 and the negative exponent on x < 0. Plugging into (1.3) we get

−2k = g ⇒ E = g2/4. (1.5)
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The wavefunction goes smoothly
to its limiting form.

Figure 1.1: Delta Function as Limit of Wells

Note that g must be negative for (1.5) to be consistent. This is as one would expect,

since a positive potential would be a barrier rather than a well.

The other—in some sense more obvious—way to do this problem is to treat the

delta function as the limit of narrower and deeper square wells. We’ll parameterize

these as follows:

Vn(x) =

{
Vn = gn/2 |x| < 1/n

0 |x| > 1/n
(1.6)

The square well is known to have only one bound state for sufficiently small |V a2|,
where a is the well width (see [54], 10.3). Since

|Vna2
n| =

g

2n

n→∞→ 0, an = 1/n,

this holds in our limit, and we needn’t worry about excited states. As for the bound

state, by even symmetry about the origin we need only to match at an. The solutions

are:

ψin = A cos(qx), ψout = Ae−kx

where q =
√
|Vn| − k2, k =

√
|En|. Matching the wavefunctions and their derivatives,

we get the equation

q tan(qan) = k. (1.7)
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Since 0 ≤ k2 < |Vn|, qx ≤
√
|Vna2

n| → 0 and we can use the small angle approximation

q2an = k ⇒ g

2
− k2

nan = kn (1.8)

where I’ve added subscripts to emphasize that the energy depends on n. Now this

can be rewritten as

g

2
= kn(1 + knan)

and since knan ≤ qnan → 0, we get (1.5) again.

Scattering

We can apply a similar analysis to the scattering sector—that is, positive-energy

states—instead of the bound state sector. Recall that in one-dimensional scattering

our usual “observable” is the asymptotic phase shift we get if we send in the wave

e−ikx. It’s convenient for later purposes to send in a rather unconventional waveform

that’s symmetric about the origin: so that there’s a wave Aeikx coming in from the

left, and a wave Aeikx from the right. This makes the problem symmetric about

the origin, so that we can reduce it to a problem on a half-line. From our previous

analysis we know that the boundary condition at the origin is

g

2
ψ(0) = ψ′(0+). (1.9)

The general form of the wavefunction (including the reflected wave) is Ae−ikx+Beikx

on the right half-line, and imposing the boundary condition on this we get

−i2k
g

=
A+B

A−B
(1.10)

Now we can replace g by 2kb where kb is the bound state energy1, because of our

previous calculation. (In the case of the δ function it’s just a renaming, but one

could also think of it as a trivial example of renormalization, as the short-distance

coupling has been replaced by a long-distance observable in the theory.) Rearranging

this expression, we get

B

A
=
k − ikb
k + ikb

(1.11)

1Strictly, Eb = k2
b is the bound state energy, but since kb is much more useful, we will freely refer

to it as an energy.
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B/A has magnitude one; the phase angle δ is what’s generally considered the most

useful scattering observable, since the asymptotic behavior of the wavefunction is

A(e−ikx + eiδeikx).

tan δ =
−2kkb
k2 − k2

b

. (1.12)

A feature of particular interest is the singularity in tan δ at k = kb; this is an instance

of a general result known as Levinson’s theorem [62], which we will discuss later (see

Chapter 7).

We could also have sent in a more conventional waveform e−ikx from the right, and

solved the problem without assuming symmetry. In this case we would have arrived

at the equation

i
k

kb
=
A+B

B
.

This can be rearranged as

B

A
=

kb
ik − kb

,

and evidently the magnitude isn’t always one. The phase shift is a less complete

description for this problem, but it also has a simpler form:

tan δ =
k

kb
.

Now let’s add a dimension.

1.3 The 2D Schrödinger Equation

Separating variables in polar coordinates in the two-dimensional Schrödinger equation

[60] gives us the equations

d2Θ

dθ2
+m2Θ = 0 (1.13)

and

1

r

d

dr

(
r
dR

dr

)
+

(
k2 − m2

r2
− V

)
= 0 (1.14)
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where m is a constant introduced in the separation of variables, and must be an

integer in order to have Θ(θ) be single-valued. (1.14) can often be rewritten in the

sometimes more useful form

d2R

dr2
+

1

r

dR

dr
+

(
k2 − m2

r2
− V

)
R = 0. (1.15)

In free space, this reduces to Bessel’s equation [56]

r2d
2R

dr2
+ r

dR

dr
+ (k2r2 −m2)R = 0 (1.16)

to which the two solutions are the functions Jm(kr) and Nm(kr) (a.k.a. Ym), called

respectively the Bessel and Neumann functions of order m. (Note that a constant

potential would add on to k2r2 and thus change the argument of the Bessel functions

to qr, just as we do with trig functions.) In fact, Bessel functions bear several re-

semblances to sines and cosines, as we’ll have occasion to see. Bessel’s equation does

not require m to be an integer, and in fact there are even Bessel functions of complex

order. But we’ll come to those as we need them. Figs 1.2 and 1.3 show the behavior

of the first few Jm and Nm.

2 4 6 8 10
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0.8

1

Untitled-1 1

Figure 1.2: J0(x) (red), J1(x) (orange), J2(x) (purple)

These are the eigenfunctions for positive energy. Negative energy states generate

the following equation:

r2d
2R

dr2
+ r

dR

dr
− (k2r2 +m2)R = 0 (1.17)

This is called the modified Bessel equation, and its solutions are Im(kr) and Km(kr),

which look vaguely like growing and decaying exponentials respectively.
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Figure 1.3: N0(x) (red), N1(x) (orange), N2(x) (purple)

1 2 3 4

2

4

6

8

10

Untitled-1 1

Figure 1.4: I0 (red), K0 (blue)

A peculiarity of Nm and Km is that they blow up at the origin; this is unacceptable

with finite potentials, and therefore (as in three dimensions) the requirement that the

wavefunction be finite at the origin picks out a solution [79].

1.4 The 2D Delta Function

Now let’s try to mimic the procedure of Section 1.2 with cylindrical wells. To ensure

that the volume of the well stays constant, we use the sequence

Vn = −gn
2

π
, an =

1

n
. (1.18)
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Note that there’s only one interior eigenvalue for any m, since the Neumann functions

are unacceptable at the origin for a potential without singularities. For the ground

state (m = 0) the solutions are

ψin = AJ0(qr), ψout = BK0(kr). (1.19)

Matching the wavefunctions and their derivatives at an gives us

q
J ′0(qa)

J0(qa)
= k

K ′
0(ka)

K0(ka)
, (1.20)

which we would like to simplify, but can’t, because

(qnan)
2 → gn2 − k2

n2
.

We have no justification, at this time, for assuming that the arguments are either

small or large, so we’re stuck. To see what’s going wrong here, let’s look at the

unseparated Schrödinger’s equation

−(∇2 + gδ2(r))ψ = −k2ψ. (1.21)

We are looking for a ground state, so we can restrict ourselves to m = 0, which

implies cylindrical symmetry. Since any solution must be a free-space solution except

at the origin, our eigenfunction must be of the form K0(kr) where −k2 is the bound

state energy. Suppose k < ∞. Then the rhs vanishes if you integrate the equation

over a small disc centered at the origin. The first term is ∇2(log r) near the origin.

Since log r is the Green’s function for Laplace’s equation in two dimensions [56] (it’s

parallel to 1/r in three dimensions), the volume integral returns a finite quantity

(the “enclosed charge”). However, K0 blows up at the origin and the second term is

infinite, so the lhs cannot add up to zero. Therefore there are no finite energy bound

states. However, since it’s the case that arbitrarily weak 2D square wells have bound

states, we would like the attractive delta function to have one. We can do this by

renormalizing the delta function.

1.5 Renormalizing the 2D Delta Function

Our theory diverges because the “real” short distance behavior isn’t accurately char-

acterized by our delta function. The first step is to regularize our theory by using
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Figure 1.5: Renormalization Group Flow for δ2(r)

some sort of regular approximation to it (say a square well of width a, where a is

called the cutoff ). Since the theory is still problematic in the limit a → 0, we need

to renormalize it as described previously, by replacing the coupling constant with

an experimental observable. (For the reasoning behind this procedure, see the Intro-

duction.) We choose the bound state energy to fix, because it’s most convenient, but

we could have chosen the more physical scattering amplitude as well. Anyway, here’s

how renormalization works if we fix the bound state. Let’s say we’ve measured its

energy to be E0, so we need a theory that gives us this answer. Recall the boundary

condition

q
J ′0(qa)

J0(qa)
= k

K ′
0(ka)

K0(ka)

Substituting

q2 = |V | − k2 =
g

πa2
− k2 (1.22)

we have an equation that’s entirely in terms of g, a and k. Fixing k reduces this to

an expression connecting g and a, which we can plot on Mathematica (Fig 1.5).

(Incidentally, a plot of this kind is called a renormalization group flow, and a

line of constant kb is referred to as a line of constant physics. We shall see more of

these later.) Our eventual goal is to take a to zero, and it’s clear from the picture

that as we do this g → 0 as well no matter what k might be. Our decision to fix k

means we can make ka as small as we like. By (1.22) and the figure, (qa)2 = g−(ka)2

also becomes as small as we like, and we can use the standard relations
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J ′0(x) = −J1(x), K
′
0(x) = −K1(x) (1.23)

and the small argument approximations

J0(x) ≈ 1, J1(x) ≈ x/2, K0(x) ≈ − log x,K1(x) ≈ 1/x (1.24)

to simplify the boundary condition to the form

q(−qa/2) = k
−1/ka

− log(ka)
, (1.25)

which simplifies to

−q2a2 =
2

log(ka)
. (1.26)

Using (1.22) and dropping the term that’s second order in a, we get

log(kbsa) = −2π/g, (1.27)

which can be rearranged to make E = k2 the subject:

Ebs =
1

a2
e−4π/g. (1.28)

Now we use this relation to calculate other quantities in terms of the BS energy. Let’s

consider the scattering problem. Lapidus [59] works out the m = 0 scattering phase

shift for a square well to be

tan(δ0) =
kJ ′0(ka)J0(qa)− qJ ′0(qa)J0(ka)

kN ′
0(ka)J0(qa)− qJ ′0(qa)N0(ka)

(1.29)

by the usual procedure of matching wavefunctions and their derivatives at the bound-

aries. Since k is fixed independently (by the incoming wave), for small a we can use

(1.22), leaving out the second order (in ka) terms, to get

qa =
√
g = −1/

√
log(kbsa). (1.30)

Since our renormalization scheme has g → 0, we can use small-argument approxima-

tions for all the Bessel functions. The leading terms are:

J0(x) ≈ 1, J1(x) ≈ x/2, N0(x) ≈ (2/π) log x,N1(x) ≈ (2/πx)

Plugging in the expansions and dropping second-order terms, we get

24



tan δ0 =

π
log(kbsa)

2− 2 log(ka)
log(kbsa)

(1.31)

which simplifies to

tan δ0 = − π

2 log(kbs/k)
. (1.32)

The important thing about this result is that our final answer is independent of

the value of a, so the a → 0 limit is simple. This is the hallmark of a correctly

renormalized theory.

Refs. [55] and [46] prove the renormalizability of the scattering problem using the

Born approximation and Fourier transform methods.

1.6 Scale Invariance and the Anomaly

An interesting thing about the Schrödinger equation with ~ = 2m = 1 is that all

dimensions can be expressed in terms of lengths. One can see from the form of the

equation

−∇2ψ + V ψ = Eψ

that (if the energy terms are to be dimensionally consistent with the first term) energy

must have dimensions [length]−2. Mass has no dimensions, by construction, and the

dimensions of time can be seen from the uncertainty relation

∆E∆t =
1

2

to be [length]2. With most normal potentials, one can use dimensional analysis [47]

to predict the bound state energy (to within a multiplicative constant) from the scales

intrinsic to the problem. Two examples:

• The Harmonic Oscillator. The scale is set by the constant in ax2, which has

dimensions [length]−4. So if we want to construct a bound state energy it must

be of the form
√
a up to a multiplicative constant. a is normally written as ω2,

which gives E = ω, as we expect.

• The Infinite Well. The only intrinsic parameter is the width L. To construct

an energy out of this we clearly need L−2.
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It should be noted that this reasoning sometimes breaks down. A good example is

the case of singular potentials 1/rn, n > 2, where the bound state energies depend on

scales set by the short-distance physics, rather than the intrinsic scales of our effective

theory.

A particularly interesting situation arises with the δ2 and 1/r2 potentials, since the

coupling constant is dimensionless and so there is no intrinsic scale to the problems.

The Hamiltonians are scale invariant, i.e. they are invariant under a dilation r → λr.

This is obvious in the case of the inverse square potential in 1D:

Hx = − d2

dx2
+

g

x2
, Hλx = − d2

d(λx)2
+

g

(λx)2
=

1

λ2
Hx (1.33)

Since Hλxψ(λx) has the same eigenvalues as Hxψ(x) (it’s just a relabeling of vari-

ables), it follows from our result that

Hxψ(x) = Eψ(x) ⇒ Hxψ(λx) = λ2Eψ(λx) (1.34)

Therefore, if E is an eigenvalue then so is λ2E, and if there are any (finite energy)

bound states then all negative energy states are bound states. This is impossible

because it violates the requirement that eigenfunctions be orthogonal2 (which is re-

lated to self-adjointness), so a scale invariant QM potential can have no bound states

except at −∞. The proof for δ2(x) is similar, but depends on the well-known fact

that

δn(ax) =
1

an
δn(x)

(to compensate for the Jacobian).

This is what happens with the naive δ2(x) potential. What renormalization does

is to introduce a scale—the renormalized bound state energy—into this problem by

hand, thus breaking the scale invariance of the classical potential. This phenomenon

is known as the anomaly in quantum mechanics, and is an example of a common

occurrence in field theory known as dimensional transmutation, which is said to

occur when a dimensionless quantity (the coupling) is traded in for a quantity with

dimensions (the bound state energy).

2Intuitively, the eigenvectors corresponding to infinitesimally separated eigenvalues should look

exactly alike, in which case they certainly can’t be orthogonal.
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1.7 The 2D Delta Function as Limit of Rings

This is the method used by [55]. The “regular” approximate potential is a ring of 1D

delta functions of radius ε:

V =
gδ(r − ε)

2πε
(1.35)

(The denominator is clearly needed to have g be dimensionless, and it’s also in-

tuitive that the 1-D delta functions must get stronger as their “density” decreases.)

We’re looking for a bound state with m = 0, which implies spherical symmetry. We

can move to momentum space, where the ∇’s turn to p’s, and our equation has the

following form:

−p2φ(p) + gψ(ε) = k2φ(p) (1.36)

We can solve this for φ(p):

φ(p) = gψ(ε)

(
1

p2 + k2

)
(1.37)

We can transform this back into position space. The inverse Fourier transform of the

quantity in parentheses is known (see [56]) to be K0(kr)/2π, so we get

ψ(r) = gψ(ε)K0(kr)/2π (1.38)

Plugging in r = ε and cancelling out the ψ’s3, we get the condition

2π = gK0(kε) (1.39)

Since K0 is logarithmic at the origin, we can rearrange this expression as

k =
1

ε
e−2π/g

which is of the same form as (1.27). The rest of the renormalization proceeds just as

it did with the square well, and we won’t go into the details.

3This requires ψ(ε) 6= 0, but otherwise our wavefunction would be trivial.
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1.8 The 3D Delta Function

Again, we might want to solve this potential as a limit of spherical wells, of the form

V = − g
4
3
πa3

(1.40)

The radial Schrödinger equation with l = 0 looks exactly like its 1D counterpart in

terms of u = ψ/r. The difference is that in order to ensure that ψ stays regular at

the origin we require u(0) = 0. This means that the ground state is a sine and not

a cosine—and that for sufficiently weak coupling there is no ground state. Matching

equations and derivatives at the boundaries, we get

q cot qa = k ⇒
√

g

a3
− k = k tan

(√
g

a3
− ka

)
(1.41)

There are three possibilities. One is that q → 0 slower than a, in which case the

argument of tan qa gets very big, and we know that x intersects tanx infinitely often,

so the equations don’t flow anywhere in particular. The second is that g → 0 fast

enough, so that we’re in the small argument regime. In this case, we can expand

cot qa ≈ 1/qa, so q cot qa→ 1/a, and we can’t renormalize because the coupling has

disappeared from the equations. The third possibility is that g falls off at exactly

the same rate as a, but this is not a helpful regime for analytic work. In fact this

approach is problematic for several reasons, one of which is that the regular solutions

all obey ψ(0) = 0 and the “real” solution doesn’t. It turns out that one can regularize

the problem with a square well, but needs to parameterize the wells in a non-obvious

way to have the limit work out [64]. The easiest solution is by means of self-adjoint

extensions (see Chapter 2); however, delta function shells also do the trick. If we solve

the equation by Fourier transformation as before, and recall that the appropriate 3D

Green’s function is e−kr/r, our consistency criterion becomes

1 = −ge
−kba

2πa
. (1.42)

We can use this to solve the scattering problem in the usual way, remembering that

the derivative jumps at the delta function:

C sin(ka) = Aeika +Be−ika (1.43)

kC cos(ka) +
gC sin(ka)

2πa2
= ik(Aeika −Be−ika). (1.44)
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And so

k cot(ka) +
g

2πa2
= ik

[
Aeika −Be−ika

Aeika +Be−ika

]
. (1.45)

The rhs simplifies considerably if we drop all higher-order terms. Substituting for γ

from (1.39) we get

cot(ka)− 1

kae−kba
= i

[
A−B

A+B

]
(1.46)

Expanding the lhs and keeping terms of up to zeroth order in a, we get the singular

terms to cancel out and leave us with

i
kb
k

=

[
A−B

A+B

]
(1.47)

from which we can derive an expression for the phase shift that is consistent with

self-adjoint extensions (Chapter 2).

1.9 More Dimensions, etc.

Since most of this thesis takes place in three or fewer dimensions, the properties of

higher-dimensional delta functions are not that relevant. In five or more dimensions all

cutoff regularizations give a trivial result, though the popular (in QFT) technique of

dimensional regularization sometimes allows bound states. (See [68] for more details.)

Which of these regulation schemes do we trust, and to what extent are these effects

scheme-independent? We will look at these issues again in later chapters, in the richer

context of power-law potentials.

1.10 The δ′(x) Potential

The delta function and its derivatives are less unfamiliar in momentum space than in

position space. We know that the Fourier transform of δ(x) is∫
δ(x)ψ(x)e−ipxdx = ψ(0),

a constant. Now δ′(x) is a little more interesting.∫
δ′(x)ψ(x)e−ipxdx = −

∫
δ(x)[ψ′(x)− ipψ(x)]e−ipxdx = ipψ(0)− ψ′(0),
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so δ′(x) is basically dual to the entirely mundane operation of multiplication by p in

momentum space. That a function appears in a certain context in quantum mechanics

does not make it useful as a potential, but it sometimes appears as a short-distance

“counterterm” in renormalization. (We’ll see what this means in Ch. 5.)

The 1D delta function derivative is particularly nice because, along with the 2D

delta function, it possesses the mysterious property of scale invariance. (δ′(x) has

dimensions of length−2.) If you integrate the Schrödinger equation around zero,

− dψ

dx

∣∣∣∣ε
−ε

+ g

∫ ε

−ε
δ′(x)ψ(x) = k2

∫ ε

−ε
ψ(x)

the potential term can be integrated by parts to give

−g
∫ ε

−ε
δ(x)ψ′(x) = −gψ′(0)

For this to be meaningful the derivative must be continuous at zero, so we can throw

out the derivative terms. But if we do so the result is bound to be trivial for finite

energies, since ψ is regular and its integral vanishes. However, a bound state with

infinite energy is still a possibility. Its integral in a region right around the origins

would go roughly as ψ(0)a for tiny a. (It turns out that integrating from −ε to ε

doesn’t work, because the function we’re looking for is odd.)

It might seem silly to force this problem to have a bound state. However, we do

have a bound state in mind, and it’s an odd version of the delta function’s bound

state:

ψ = sgn(x)e−k|x|

Our desire for a bound state is motivated partly by Simon’s theorem (see Chapter 3),

which states that there should be one for any short-range not-too-pathological odd

potential.

The situation is symmetric to the delta function; there we had a discontinuity

in the derivative proportional to ψ(0); here we have a discontinuity in the function

proportional to ψ′(0), but the derivative is continuous. The fact that the wavefunction

is discontinuous is enough to irritate most people with the δ′(x) potential, and maybe

its physical applications are limited. However, if you think of wavefunctions as waves

on a string, it is possible to make sense of this potential. First, notice that the delta

function is a cusp, of the sort that would correspond to having a bead at the origin

(or a spring pulling down). The “mass” is proportional to the derivative at the origin,
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and hence to g. Now, suppose that instead of a bead you had a spring of the sort in

Fig 1.6.

Figure 1.6: The δ′(x) potential. When you stretch one side of the spring the other

side stretches in the opposite direction. Assume the spring can move only vertically,

so that we can ignore torques.

This boundary condition is identical to a δ′(x) potential. However, like the 2D

delta function, it is pathological and needs to be renormalized. In a way their problems

are exact opposites. The trouble with δ2(r) is that for any finite value of k the

ground state blows up. With δ′(x), if you make k finite then ka vanishes and the

state becomes trivial. This potential is surprisingly hard to renormalize, and was

successfully treated only rather recently in Ref. [97]; they discovered that they were

forced to take the coupling to ∞. The δ′(x) potential is one of the cases where the

machinery of self-adjoint extensions (see Chapter 8) is much simpler than any other.

As far as scattering goes this potential is much like δ(x); in fact, it’s basically just

an odd-parity version of δ(x). The main difference is that the boundary condition

must be expressed in terms of the bound state energy, because the potential needs

renormalization.

We will see more of δ′(x) in later chapters. Higher derivatives of δ(x) are less

interesting because they all produce the same spectra. This was to be expected;

when the e−kx function is continuous then so is its second derivative and its fourth

derivative and so on—and if f ′(x) is continuous then so are f (3,5,7...)(x). There are
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two distinct δ function like interactions in one dimension; even this is anomalously

rich, as in two or three dimensions all point interactions are delta functions, and in

d ≥ 4 there are no point interactions at all [68].
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Chapter 2

Self-Adjoint Extensions

The first three sections are meant to be a hurried and heuristic introduction to some

ideas from functional analysis. Formal proofs have been avoided wherever possible;

they can be found in Refs. [71], VIII-X; [69], 11-14; and [75], X.

2.1 Hilbert Space

Operators are “functions” that act on functions, which is to say, they take functions

to other functions. So, if we’re talking about functions of a single real variable x,

f → f 2 is an operator, and so is f → df
dx

. Now, we want to distinguish operators that

behave sensibly from operators that don’t; and part of this is determining whether

they act similarly on similar functions, e.g. we’d worry about an operator that sent

x2 to x4 and x2 + εx3 (arbitrarily small ε) to zero. A useful approach is to treat

functions as “points” in an abstract space, and to introduce a concept of distance

between two functions. This is the basic idea behind Hilbert spaces.

Of course, we aren’t interested in all functions but only in those that are relatively

well-behaved. As a first guess we might want to restrict our attention to continuous

functions. However, many of the properties of our space depend on its “completeness”

(the existence of limits, in the space, to convergent sequences in the space) and it’s

easy to create sequences of continuous functions that have discontinuous limits, so

that won’t quite do.

It turns out that achieving completeness is pretty difficult. The details are highly

technical and irrelevant to our purposes, so we’ll just state the definitions and request

the reader not to look at them too closely.
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Figure 2.1: xn on [0, 1]

Definition 1 The space L2([a, b]) consists of all functions f : [a, b] → C (resp. R)

with the property that ∫ b

a

|f(x)|2dx <∞

One could think of this as the space of all normalizable wavefunctions. (Hence-

forth, unless otherwise stated, all the underlying spaces are either finite intervals or

R, and all integrals are over the whole underlying space.)

Definition 2 L2 has an inner product (f, g) defined by

(f, g) =

∫
f(x)g(x)dx

and (correspondingly) a norm given by ‖f‖ = (f, f), and a distance function d(f, g) =

‖f − g‖.
If (f, g) = 0 then we say f and g are orthogonal.

Prop 1 (Lots of Little Results) The space L2([a, b]) is a vector space over C, i.e.

for all f, g ∈ L2, z ∈ C, f + g, zf ∈ L2.

The inner product (f, g) has the following properties:

1. (f, f) ≥ 0, equality iff f = 0

2. (f, g) = (g, f) (complex conjugation)

3. (f, λg) = λ(f, g)
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4. (f, g + h) = (f, g) + (f, h)

The norm has the following properties:

1. ‖f‖ ≥ 0, equality iff f = 0

2. |(f, g)| ≤ ‖f‖‖g‖ (Cauchy-Schwarz inequality)

3. ‖f + g‖ ≤ ‖f‖+ ‖g‖ (the triangle inequality)

There are some subtleties about f = g. Because point discontinuities don’t affect

the integral, two functions that differ at isolated points are considered the same (i.e.

we think of them as the same point in our function space). There’s a more general

form of this equivalence, called “equality almost everywhere,” but that need not

concern us.

The upshot is that for many (though not all) purposes, L2 behaves like Rn, if you

think of the inner product as a dot product.

An important difference between L2 and physical space is that L2 is infinite-

dimensional, i.e. you can’t write all functions as a finite sum of basis functions.

This is clear enough, since there are so many different types of functions. It is a

remarkable property of L2([a, b]) that it does have a countably infinite basis, because

every function in it can be written as the sum of its Fourier series. As is usual with

infinite series, there are issues involving convergence. Our definition of convergence

is as follows:

Definition 3 We say fk → f if ‖f − fk‖ gets arbitrarily small for large k, i.e. if∫
|f − fk|2 → 0

This definition is quite different from pointwise convergence, which implies that the

function converges to its limit at every point. (i.e. |f(x)−fk(x)| gets arbitrarily small

for each x with sufficiently large k). It’s possible for either form of convergence to

hold without the other, as shown by the two examples below. (The first is a standard

example in analysis textbooks; the second is a variant of a standard example.)

Example 1

Consider the sequence of triangles fk (Fig 2.2) with one leg fixed at zero and the

other moving towards zero so as to leave the area fixed.

{fk} converges pointwise to zero everywhere, but not in area, since ‖fk − 0‖ = 1.
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Figure 2.2: The Vanishing Triangles

Example 2

This example is slightly more involved, but the nice thing about it is that fk does not

converge pointwise anywhere. fk is the unit square with increasingly thin slivers of the

same depth but diminishing width cut out of it (Fig 2.3). f1 = 1
2

on (1
2
, 1), f2 = 1

2
on

(0, 1
2
), f3 = 1

2
on (3

4
, 1), f4 = 1

2
on (1

2
, 3

4
), and so on. This sequence clearly converges

in norm to the whole unit square; however, it doesn’t converge at any point because

any x will always be in a pit for fk further down the line, and so |f(x)− fk(x)| = 1
2

very far into the sequence, and convergence doesn’t hold.

(There’s a classic theorem of Dirichlet that establishes pointwise convergence of

Fourier series under certain additional assumptions, but that’s way off topic.)

We need two more basic definitions:

Definition 4 A function f in a Hilbert space H is said to be orthogonal to a set

A ⊆ H if it is orthogonal to all functions in A.

Definition 5 A set A ⊆ H is said to be dense if every point in H is the limit of a

sequence in A. (For example, Q is dense in R.)
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Figure 2.3: The Disappearing Gash

(So, for instance, the space consisting of all functions

f(x) =
k∑

n=1

ane
inx (2.1)

is dense in L2([−π, π]) by virtue of the convergence of Fourier series.)

The following proposition will be useful later.

Prop 2 If A is dense in H and f is orthogonal to A, then f = 0.

Proof. Suppose f⊥A, f 6= 0. Pick a sequence fk ∈ A that converges to f .

(f, f) = (f, f)− (f, fk) = (f, f − fk)

since (f, fk) = 0 by hypothesis. Now we can use the Cauchy-Schwarz inequality:

‖f‖2 = |(f, f)| = |(f, f − fk)| ≤ ‖f‖‖f − fk‖

and since f 6= 0 we get
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‖f‖ ≤ ‖f − fk‖

which is impossible because f 6= 0 but f − fk gets arbitrarily small.

And we’ll close this section with a major result in real analysis that will be useful

to us:

Theorem 1 (Stone-Weierstrass Approximation Theorem) C∞
0 (I), the set of

all bounded, infinitely differentiable functions on I, is dense in L2(I), where I ⊆ R is

a finite or infinite interval.

This means that every function can be approximated arbitrarily well by a very

well-behaved function. For finite intervals, this result follows since all finite Fourier

series sums are members of C∞
0 . In practice we normally need just C2[⊇ C∞

0 ] with

maybe a few pointwise conditions (say, “everything and its derivative must vanish at

the origin”) and the issue of density is rarely relevant. We generally assume that all

sets we are working with are dense.

2.2 Linear Operators and their Domains

A linear operator L : D ⊆ H → H acts linearly on the function space, so L(af+bg) =

aLf+bLg (and L(0) = 0). dn

dxn is a linear operator, as is multiplication by a constant or

a function in the space. For many purposes linear operators are just infinite matrices,

and the familiar equation

Hψ = Eψ

is called an eigenvalue equation because of that analogy. However, the analogy some-

times breaks down, and a good example of how this happens is the issue of domains.

For example, the function f(x) = x−0.1 is a respectable member of L2([0, 1]), but its

derivative is not. What can be said about domains generally is stated in the following

proposition:

Prop 3 The domain of an operator A will be denoted as D(A).

1. D(λA) = D(A), λ ∈ C
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2. D(A+B) = D(A) ∩D(B)

3. D(AB) = D(A) ∩R(B), where R(B) is the range of B

Definition 6 An operator A is said to be bounded if there’s a number λ such that

‖Af‖ ≤ λ‖f‖ for all functions in D(A).

The importance of operator domains is suggested by the following theorem:

Theorem 2 (Hellinger-Toeplitz) A Hermitian operator defined everywhere is bounded.

As luck would have it, Schrödinger operators are virtually never bounded.

Hermitian Operators and Adjoints

A Hermitian operator H has the property that, for all f, g ∈ D(H), (f,Hg) =

(Hf, g). Hermitian operators always have real eigenvalues and orthogonal eigen-

functions. However, the following commonly assumed properties are not generally

true of Hermitian operators:

1. They always generate unitary time evolution.

2. They always have well-defined adjoints.

3. Their adjoints are Hermitian.

4. They always have a complete set of eigenfunctions.

The rest of this section will be dedicated to discussing these points. First, the issue

of adjoints. The action of an adjoint H† is defined by (Hf, g) = (f,H†g), so of course

D(H†) ⊇ D(H), but the adjoint might be well-defined outside of D(H). Here’s a

simple example involving the 1-D infinite well (taken from Ref. [77]):

The Frailty of Hermeticity

This example, from [77], illustrates what can happen if we don’t think about operator

domains. The Hamiltonian for this system is

H = − ~
2m

d2

dx2
, |x| < L/2

Now consider the (not normalized) wavefunction
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ψ = −
√

30

L5

[
x2 − L2

4

]
Evidently

Hψ =
~2

m

√
30

L5
, 〈E〉 = (ψ,Hψ) =

5~2

mL2

This is also what we get if we write ψ in terms of the infinite well eigenvalues and

calculate

〈E〉 =
∑
n

|(ψ, φn)|2En

The paradox is that these two methods give wildly inconsistent results for E2.∑
n

|(ψ, φn)|2E2
n =

30~4

m2L4

but

(ψ,H2ψ) = (ψ, 0) = 0

since Hψ is a constant. The latter result is clearly wrong (e.g. it implies an imaginary

∆E), but this is a little surprising, because

〈E2〉ψ =
∑
n

|(ψ, φn)|2E2
n

=
∑
n

En(φn, ψ)(ψ, φn)En

=
∑
n

(Enφn, ψ)(ψ,Enφn)

=
∑
n

(Hφn, ψ)(ψ,Hφn)

=
∑
n

(φn, Hψ)(Hψ, φn)

= (Hψ,Hψ)

= (ψ,H†Hψ) 6= (ψ,H2ψ)

The answer is that Hψ is in the domain of H† (since (Hφ,Hψ) is perfectly well

defined) but not in the domain of H, since it doesn’t vanish at the ends of the square

well.
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The domain of the adjoint is every φ such that (Hψ, φ) makes sense for

all ψ ∈ D(H).

All of this assumes that the action of H† is uniquely defined. Let’s see if that

works. Suppose we have an operator A, with two adjoints B1 and B2. Given x ∈
D(A), y ∈ D(B1) ∩D(B2), it follows that

(x, (B1 −B2)y) = (x,B1y)− (x,B2y) = (Ax, y)− (Ax, y) = 0.

This implies that (B1 − B2)y⊥D(A). In general it’s impossible to improve on this,

but if D(A) is dense, it follows from prop 1.1.2 that (B1−B2)y = 0, and since this is

true for all y we have uniqueness of the adjoint.

For the rest of this chapter we assume that all our operators are densely

defined.

Definition 7 A self-adjoint operator is a Hermitian operator that has the same do-

main as its adjoint. (Equivalently: a Hermitian operator with a Hermitian adjoint.)

It turns out that only self-adjoint operators generate unitary time evolution; there-

fore it’s important for our Hamiltonians to be self-adjoint. Since D(H) ⊆ D(H†)

generally, one must extend a non-self-adjoint operator to make it self-adjoint. From

the definition of D(H†), as D(H) grows each f ∈ D(H†) needs to have well-defined

inner products with more vectors—it needs to make more sense, so to speak—so ex-

tending the operator domain involves constraining the adjoint domain... and, indeed,

failures of self-adjointness manifest themselves in physics mostly through ill-defined

boundary conditions.

Our next goal is to see how to construct self-adjoint extensions of a Hamiltonian.

2.3 Self-Adjoint Extensions

I recognize that this section is unpleasantly technical, but the central result sounds

pretty mysterious without justification. The idea is that H†, being potentially non-

Hermitian, might have complex eigenvalues, and you can restrict it to a Hermitian

operator by allowing only some combinations of the corresponding eigenvectors in the

domain. (The freedom you have in choosing this is normally indicative of additional

physics, which must be imposed by means of a boundary condition.) The key objects

in this process are
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Definition 8 The positive (resp. negative) deficiency subspace, N±, of H is

the eigenspace of H† corresponding to eigenvalues ±i. The deficiency indices n±

are the dimensions of N±.

It turns out that any χ ∈ D(H†) can be written uniquely as follows:

χ = aφ+ bΨ+ + cΨ− (2.2)

where

φ ∈ D(H),Ψ± ∈ N±

In other words, D(H), N+, and N− are linearly independent. Be warned, however,

that the three spaces are not mutually orthogonal, since nothing is orthogonal to

D(H). If n+ = n−, we can define an “extension” Hθ to have the same action as

H† and be defined on D(Hθ) = {φ + A(Ψ+ − UθΨ+) : φ ∈ D(H),Ψ+ ∈ N+},
where Ψ± are vectors, A is a matrix, Uθ : N+ → N− is a unitary (strictly speaking,

“norm-preserving”) operator that characterizes the particular extension chosen. By

definition of N±,

Hθχ = Hφ+ i

n+∑
k=1

λk(Ψ+,k + Uθ,kjΨ+,j) (2.3)

for all χ ∈ D(Hθ). For deficiency indices (1, 1), this is a subspace of D(H†) with b/c

fixed at a phase angle. A schematic and unfaithful representation of what’s going on

is given in the figure below.1

(We will typically use the characterization:

D(Hθ) = {φ+B(Ψ+ + VθΨ−)} (2.4)

(Vθ unitary) which is equivalent because all vectors in N− are equivalent to Ψ− under

a unitary transformation.)

It’s straightforward to show that Hθ is symmetric. The importance of these ex-

tensions is that they are self-adjoint because of the following theorem:

Theorem 3 If n+ = n− = 0, H is self-adjoint or has a unique self-adjoint extension.

1Among other things that are wrong with the picture, the subspaces are not supposed to be

orthogonal, the angle is supposed to be a phase between vectors of equal magnitude, and D(H) is

infinite dimensional.
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Figure 2.4: “Artist’s Impression” of D(H†)

Our deficiency indices are in fact zero, by the following logic. We know that H†
θ

is a restriction of H† because Hθ extends H. Suppose n+ 6= 0, then that’s got to be

because some members of the positive deficiency subspace are still in D(H†
θ). Let one

of them be ζ. Now,

ζ + Uθζ ∈ D(Hθ) ⊆ D(H†
θ)

Either Uθζ ∈ D(Hθ) or Uθζ ∈ N−. Both cases lead to an immediate contradiction with

(2.9), since you can write ζ+Uθζ as an element of D(Hθ) and as a linear combination

of terms in N±, which contradicts linear independence. And once we’ve established

that the deficiency subspaces are trivial, it follows by (2.9) that D(H†
θ) = D(Hθ) so

H is self-adjoint.

For completeness, note that the converse of our result is also true. (We will not

prove this.)

Theorem 4 If n+ 6= n− then H has no self-adjoint extensions.

These results are very helpful, because they reduce the difficult question, “Where

does the adjoint make sense?” to the relatively simple one of whether the equation

Hφ = ±iφ has normalizable solutions.

The following list suggests how tricky self-adjointness can be:

• The free-particle Hamiltonian on all of R is self-adjoint.
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• The free Hamiltonian on [−L,L] has deficiency indices (2,2). One of its self-

adjoint extensions corresponds to the particle in a box.

• The Hamiltonian with Coulomb potential in three dimensions is self-adjoint,

but the radial equation is not.

• The Hamiltonian with a/r2 potential is self-adjoint for a > 3/4 but has defi-

ciency indices (1,1) below that.

• Hamiltonians with −xn potentials in one dimension (bottomless hills) are self-

adjoint for 0 < n ≤ 2 but need extensions for n > 2.

• The momentum operator on R+ has deficiency indices (0,1) and can’t be made

self-adjoint.

Generally, Hamiltonians of the usual form −∇2 + V , where V is reasonably well-

behaved, do have self-adjoint extensions. This is a consequence of the following

theorem:

Theorem 5 If H commutes with complex conjugation, i.e. if Hψ ≡ Hψ then H has

equal deficiency indices.

(For a proof, see [75].) Note that p does not commute with complex conjugation,

but is often self-adjoint in any case.

2.4 The Physics of Self-Adjoint Extensions

There is generally some physical reason behind the failure of self-adjointness, most

commonly an unspecified boundary condition. Our strategy will be as follows:

1. Find as small a domain as possible for the operator. How small we can make

this is limited by the requirement that H be dense. However, we can normally

restrict our original domain to C2
0 with the pointwise constraints that all func-

tions and their derivatives should vanish at boundaries, singularities, and other

dubious points.

2. This leaves the adjoint domain as essentially L2, so we don’t need to worry

about whether a particular normalizable solution is in the adjoint domain.
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3. Calculate the deficiency indices and determine the corresponding eigenspaces.

4. Use Ψ± to determine the boundary conditions.

For all the examples below, we’ve assumed that the original operator is Hermi-

tian, the domain of definition is C2 vanishing at the boundaries (except as otherwise

specified), and that the adjoint domain is sufficiently large. The examples considered

below are all standard in the literature. A detailed treatment of how one finds the

adjoint domain is given in Chapter 8 for the one-dimensional free particle.

First, we consider a case where the operator is essentially self-adjoint, i.e.

where its deficiency indices are (0,0) but it still needs extension.

Momentum for Free Particle on the Real Line

Let our original domain be C∞
0 , which we know to be dense, and the operator be i d

dx
,

which we know to be Hermitian. Solving for deficiency indices

i
dψ

dx
= ±iψ

we get Ψ± = e±x. Neither of these is normalizable; therefore there are no eigenfunc-

tions for ±i in L2 and our deficiency indices are (0,0). However, the adjoint domain

is considerably larger than the original domain and includes just about anything in

L2, since the result ∫
ψ
dφ

dx
dx = −

∫
dψ

dx
φdx

certainly does not require ψ ∈ H† to be infinitely differentiable. There’s no new

physics involved in finding a self-adjoint domain, however, so the distinction is not

important to physicists. For our purposes an essentially self-adjoint operator is self-

adjoint.

Free Particle on x > 0

This problem is underspecified; to see why, consider the corresponding problem with

waves on a string. Since we want to conserve amplitudes on our domain, the wave

must be reflected at the origin, but the reflector could be either fixed (a clamped end)

or movable (a ring sliding on a rod). The reflection coefficient is one both ways, but

the phase shifts are different, so the physics is not completely specified unless you

know the exact boundary condition.
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Now let’s look at the quantum mechanical situation. Solving for imaginary eigen-

values:

−ψ′′(x) = iψ(x) ⇒ Ψ+ = Ae(1−i)x/
√

2 +Be−(1−i)x/
√

2 (2.5)

The second solution, which decays exponentially, is normalizable; similarly we have

a normalizable solution

Ψ− = e−(1+i)x/
√

2

for the negative case. A single function defines a one-dimensional subspace, so our

deficiency indices are (1,1) and our extensions will be parameterized by U(1). We

would like to add the function Ψ+ + UθΨ+ to our domain. As we noted in the last

section, UθΨ+ is a normalized vector in N−; since N− is one dimensional the only such

vectors are of the form e−iθΨ−. So we add the function Ψ+ + e−iθΨ− to our domain.

Since all the functions in our original domain—and their derivatives—vanish at the

origin, any behavior at the origin is determined by what the function we added does

there.

Ψ+ + e−iθΨ− = e−x/
√

2(eix/
√

2 + e−ix/
√

2e−iθ)

This can be written a little more simply as

Ψ+ + e−iθΨ− = 2e−x/
√

2−iθ/2 cos

(
x√
2

+
θ

2

)
. (2.6)

So θ is the phase at the origin, in agreement with our classical analysis. The solution

corresponding to an infinite step is θ = π. For our purposes it’s useful to have a single

condition relating ψ(0) and ψ′(0)—the two quantities determined by the deficiency

subspaces—to θ, and we can get this by calculating ψ′(0) and dividing, to get

ψ′(0)

ψ(0)
= − 1√

2
(1 + tan(θ/2)). (2.7)

Since it doesn’t matter very much how we parameterize our self-adjoint extensions,

we can define the rhs of this equation to be α, to get the condition

ψ(0) + αψ′(0) = 0 (2.8)

which must hold for all functions in the operator’s domain. It’s clear that for scat-

tering solutions the boundary condition (2.8) determines the phase shift. A more
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interesting feature of this potential, pointed out by Faraut et al [77], is that you can

have bound states of the form

E = − 1

α2
, ψ =

√
2

|α|
e−x/|α| (2.9)

as with the delta function. Here, again, one needs to remember that there could be

all sorts of things at the origin that affect the behavior of the particle, including an

attractive delta function. The only constraint is unitary time evolution in the region,

which forbids situations—such as a porous barrier—that would allow probability to

leak out of the system at the origin. Let’s define r = A/B for a wave ψ = Ae−ikx +

Beikx, and the reflection amplitude R = |r|2. Then imposing (2.8) we get

r = −1 + iαk

1− iαk
⇒ R = 1 (2.10)

since α is real. Allowing α to be complex would let us deal with a wider range of

situations, but our solutions would be incomplete because the time evolution of a

particle that went through the origin would be entirely unspecified.

Free Particle in an Unspecified Box

Both solutions in (2.5) are normalizable in this case, leading to deficiency indices

(2,2) which correspond (naively) to multiple boundary conditions and something of

a mess. The details are in [77], and are best left there. The thing is, we don’t know

it’s a box until we’ve specified the boundary conditions (and therefore the self-adjoint

extension). It’s clear from the previous example that there are at least two sets of

boundary conditions, since either end of the “box” could be a fixed end, (ψ(a) = 0) a

loose end (ψ′(a) = 0), or anything in between. But there’s more to the story. Suppose

we require that all wavefunctions have some parity (whether even or odd) about the

middle of the box. Now the purpose of self-adjoint extensions is to come up with a

complete orthogonal set of eigenfunctions, and even functions are orthogonal to odd

functions no matter what, so the boundary conditions on even and odd functions

are entirely independent. These two families are different, since most members of

the first have boundary conditions without parity, and most members of the second

have two distinct sets of boundary conditions at the same wall. In fact these are just

two two-parameter subfamilies of the U(2) family that have fairly obvious physical

significance. A more detailed treatment of the spectra can be found in [77].
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Delta Functions

The method of self-adjoint extensions is particularly important for studying delta

functions because it is mathematically rigorous, and avoids the infinities and poten-

tially dodgy reasoning of other renormalization schemes. The dread symbol δ(x) is

avoided altogether; we will deal only with the extensions of free-particle Hamiltoni-

ans on Rn − {0}. The full 1D case is relegated to Chapter 8; here we neglect some

subtleties and identify the 1D delta function with the extensions on the half-line. If

you pick one of the extensions with bound states, you can compare the bound state

energy (2.9)

E = − 1

α2

with our previous expression for the strength of the delta function

E = −g
2

4

to get a relation between the self-adjoint extension chosen and the strength of the

delta function. It’s not strictly correct to say that you can solve delta function

potentials by the method of self-adjoint extensions; what you can do is show that our

delta function Hamiltonian corresponds to a self-adjoint—i.e. physically sensible—

operator. This might seem pedantic in the one-dimensional case, but it is reassuring

in two dimensions, because it isn’t a priori obvious that renormalization gives us a

sensible theory.

The two dimensional radial Hamiltonian, with m = 0, is

d2

dr2
+

1

r

d

dr

so the deficiency index equations are

d2ψ

dr2
+

1

r

dψ

dr
∓ iψ = 0

These are modified Bessel equations, and have the solutions I0(
√
∓ir) and K0(

√
∓ir),

of which only the K’s are normalizable. Therefore our deficiency indices are (1,1) and

we have a family of self-adjoint extensions characterized by the functions

Ψ = K0(
√
ir) + eiθK0(

√
−ir)

It’s somewhat harder to get a boundary condition out of this, since K0 blows up at

the origin. Remembering, however, that
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K0(x) ≈ log(x/2) + γ,K ′
0(x) ≈ 1/x

for small arguments, we can turn this expression into

Ψ = log r + γ +
π

4
tan

θ

2
+ γ (2.11)

(γ being the Euler-Mascheroni constant.) And we can condense all the random stuff,

as before, into a new parameter B, which gives us that

Ψ = log(Br) (2.12)

around the origin. This expression will be massaged further, but we can draw an

important consequence immediately. Recall that the bound state wavefunction for

this potential is K0(kbr). Near the origin, it’s going to have behave like log(Br) and

that’s only possible if 1
2
kbe

γ = B. Therefore, our self-adjoint extension parameter

picks a scale for this problem. Note that scale invariance can be preserved by setting

θ = π, in which case the log terms cancel out; this corresponds to a trivial delta

function.

For scattering calculations it is useful to express (2.12) as a boundary condition

on φ ∈ HB. It’s easy to see that the condition

lim
r→0

[
φ− r

dφ

dr
(log kbr + γ − log 2)

]
= 0 (2.13)

follows from the form of (2.12). Now let’s solve the scattering problem using (2.13).

The solution for the free particle Schrödinger equation is

AJ0(kr) +BN0(kr)

and the s-wave phase shift is given by

tan δ0 = −B/A.

Plugging the asymptotic form of our wavefunction into (2.13) and rearranging we find

that

A− 2B

π
log kr −

[
A

(kr)2

2
− 2B

π

]
log kbr → 0 (2.14)
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and if we drop the second order term this simplifies to

Aπ = 2B log(kb/k) (2.15)

and our phase shift agrees with what we got previously. For m > 0 the free particle

Hamiltonian is self-adjoint, as we’ll see in the next chapter, so a delta function at the

origin can have no impact. The centrifugal barrier shields the particle from seeing the

delta function at all. For the delta function it’s clear enough why this happens: as

you take the cutoff to zero, the repulsive 1/r2 centrifugal potential—which integrates

to ∞ around the origin—drowns out the delta function.

The 3D delta function, from the point of view of self-adjoint extensions, is the

same as the particle on a half-line in the l = 0 channel, since it has the same differen-

tial equation and the same boundary conditions. (The solution using regularization

methods is ψ = e−kr/r, or u(r) = e−kr.) The s-wave phase shift should therefore

be the same as in the 1D case, and it is according to the regularization scheme of

Chapter 1, so once again we’re consistent.

As we will see in the next chapter, all delta functions are self-adjoint in the l > 0

channels.

Fall to the Center

Consider the classical two-body problem with V (r) = ρ/r2. This potential just

modifies the centrifugal barrier term, and when it is repulsive or weaker than the

barrier term the problem is well-behaved. However, if it is strong enough to overcome

the centrifugal barrier, the particle falls to the origin in a finite time, and its behavior

after that point is not well-defined. The general equation of motion is (Thornton and

Marion [82], 8.20)

d2u

dθ2
+ u = − µ

l2u2
F (1/u) (2.16)

where u = 1/r. As Thornton shows (Example 8.1), an inverse square potential

(equivalently an inverse cube force) leads to solutions of the form

r = Ae−kθ +Bekθ (2.17)

for some constant k. Evidently, there are no periodic combinations of these solutions,

so the particle must spiral in or out. The solution that spirals outwards is not inter-

esting; the important thing about the inward spiral is that as the particle approaches
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the origin, its velocity must be infinite to conserve angular momentum. We can see

this directly from Thornton’s expression for the radial velocity:

ṙ =

√
E − U − l2

r2
. (2.18)

In our case, this is

ṙ =

√
E +

λeff
r2

.

As the particle approaches the origin this expression blows up. If we separate the

equation and integrate, we see that

tf − ti =

∫ R

0

dr√
E +

λeff

r2

∝
√

1 +R2 (2.19)

so any particle reaches the origin with an infinite velocity in a finite time. This

phenomenon is known as fall to the center. The equations of motion cease to be well-

defined when the particle reaches the origin, and therefore our solution doesn’t work

for all time. Solutions of this type are called classically incomplete. On quantizing

the theory this turns into a failure of unitary time evolution, and therefore of self-

adjointness. However, as Ref. [19] points out, one could make the classical theory

well-defined for all time by requiring that the particle be reflected whenever it gets to

the origin—i.e. running our time evolution forwards and backwards endlessly. This

corresponds, in the quantum problem, to picking a self-adjoint extension.

Note that there’s a slight subtlety here. Mildly singular quantum mechanical

problems are regular even in the l = 0 channel, whereas classically they collide with

the origin after a finite time. In general, the “centrifugal potential” (the l term) in

quantum mechanics works quite differently from its classical counterpart; this is why

it’s misleading to think of the critical value of the 1/r2 potential (see Chapter 3) as

the point at which the particle overcomes the centrifugal barrier.

Because of the importance of singular potentials, I will leave the quantum me-

chanical treatment to a later chapter, noting only that the deficiency indices are (1,1)

as we’d expect (one boundary condition at the origin).

Fall to Infinity

Consider the classical 1D Hamiltonian
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H =
p2

2
− q4. (2.20)

By Hamilton’s equations,

q̇ =
∂H

∂p
= 2p.

Since the total energy E = H is conserved, we can rewrite this as the relation

E = q̇2 − q4 (2.21)

which can be rearranged to give

dq

dt
=
√
E + q4. (2.22)

Solving this equation for t, we find that

tf − ti =

∫ qf

qi

dq√
E + q4

. (2.23)

For a particle with E > 0 this integral converges from −∞ to ∞, so any particle

reaches infinity in a bounded time, and the solution is not complete. In fact, we need

to add two boundary conditions—reflection at ∞ and at −∞—to make the solution

complete.

One might expect the same result to hold for the upside down oscillator:

H = p2 − q2. (2.24)

However, the integral in this case,

tf − ti =

∫ qf

qi

dq√
E + q2

= sinh−1 qf/
√
E − sinh−1 qi/

√
E (2.25)

does not converge, and we have a complete classical solution.

As you might expect, these potentials have deficiency indices (2,2) and (0,0) re-

spectively. In general, power-law potentials are classically complete if and only if

they are quantum mechanically complete. However, this is not generally true of quan-

tum mechanical potentials. There are exceptions to this rule both ways, given in [75].

An interesting one is the following potential, a bottomless hill with increasingly tall

and narrow spikes at integer values of x:
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V (x) = −x4 + g(x)

g(x) = |N |, | x−N | < 1/N.

This is classically complete, since a particle of any energy eventually runs into

a sufficiently tall barrier. However, the quantum mechanical problem is still patho-

logical, because a particle can tunnel through all the barriers. Similarly, the delta

function is classically well-behaved since it has zero range and nothing scatters off

it; however, wavefunctions are spread-out so it has a nontrivial quantum mechanical

scattering range, which needs to be specified by picking a self-adjoint extension.

A useful general result due to Weyl is the following:

Theorem 6 (Weyl) A Hamiltonian of the form

H = − d2

dx2
+ V (x)

is essentially self-adjoint on (0,∞) iff the equation Hψ = iψ has at least one solution

that fails to be square integrable near zero, and at least one solution (possibly the same

one) that fails to be square integrable near infinity.

The forward direction is trivial from the definitions; the reverse is proved in Reed

and Simon (X.7). This result makes life a little simpler in some cases because we

can treat short-range and long-range singularities as independent. If there’s only one

solution at 0 (∞), the potential is said to be limit point at 0 (∞); otherwise it’s

said to be limit circle. The terms are basically conventional.

2.5 Boundedness and the Friedrichs Extension

An upper semi-bounded operator A has the property that for functions in its

domain, (φ,Aφ) ≥ c‖φ‖, where c ∈ R is a fixed number. Most operators that we deal

with in physics have this property; it is basically the same thing as requiring that the

system have a ground state. Most operators are not bounded above; for instance the

harmonic oscillator has arbitrarily high bound states, and so does any operator with

a scattering sector. On the other hand, we have seen two instances of operators that

are bounded neither above nor below—attractive singular potentials and upside down
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polynomials. These operators are fundamentally unbounded, in that the Hamiltonian

itself has no lower bound. On the other hand, in cases like the 2D delta function, it is

only the adjoint that is unbounded from below, and picking a self-adjoint extension

bounds the operator.

Most of quantum mechanics is done with the assumption of semiboundedness,

however, and the particular extension that is typically picked out is the Friedrichs

extension. A rough and ready way to obtain the Friedrichs extension on a domain

D is by imposing the boundary condition ψ(x) = 0 on all x ∈ ∂D. This is the

correct boundary condition for most cases that we are interested in: the particle in a

box, the 3D Coulomb problem, and so on. But sometimes, as with δ(x), there might

be a specific motivation for choosing a non-Friedrichs extension, and sometimes—

e.g. one-dimensional quantum mechanics, discussed later—the Friedrichs extension

is blatantly unphysical, and leads to strange spectra.

There are two subtleties with the Friedrichs extension that show up in later chap-

ters. The first has to do with the free-particle Hamiltonian in two dimensions, for

which neither solution vanishes at the origin, and the second, with the weakly attrac-

tive 1/r2 problem in one dimension, for which both solutions vanish at the origin.

In the second case, if one substitutes v(r) = u(r)/
√
r, one gets a new differential

equation for which only one of the solutions vanishes. The Friedrichs extension of the

substituted differential equation is also the Friedrichs extension of the original differ-

ential equation. However, in general, even when the Friedrichs extension doesn’t set

all boundary conditions to zero, it is the extension that corresponds to throwing out

the more singular solution.

Friedrichs extensions are defined only for semibounded Hamiltonians; if the origi-

nal Hamiltonian is unbounded from below, then so are all self-adjoint extensions, and

there is no Friedrichs extension.

2.6 Rigged Hilbert Space Formalism

(The introductory material follows Refs. [79] and [83].) To understand the need2 for

a rigged Hilbert space, consider an operator like x. This is a self-adjoint operator, and

we are used to saying that a self-adjoint operator has a complete set of eigenvalues,

but x in fact has no eigenvalues, since the formal solutions δ(x − λ) are not in the

2Or what some consider the need.
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Hilbert space. Similarly, a Schrödinger operator with a continuous spectrum, such

as H = −∇2, has no eigenvalues in the Hilbert space, and the square well has only

a few. The rest of the spectrum is normally accounted for by means of projection

operators and the spectral theorem ([71]). The rigged Hilbert space is an expanded

Hilbert space that includes several non-normalizable solutions.

The rigged space is constructed as follows. We first construct a nuclear space

Ω, which is a subset of the Hilbert space. Recall that the Hilbert space contains all

convergent sums of Fourier series. Now Ω includes only those sums that have the

property that for all positive m, ∑
n

|cn|2nm <∞.

A continuous version of this might be∫ ∞

0

|ψ|2xmdx <∞

and in fact de la Madrid [83] derives the nuclear space from the requirement that

wavefunctions in it should be in the domain of the operators xm and pm for all m.

The space we are really interested in is ΩD, the dual space of Ω, or the space

of all linear functionals f : Ω → C. The correct way to think of a dual space is as

a one-sided inner product: ΩD consists of all the bras that are well-behaved with

respect to the kets in Ω. The stronger the restrictions on the kets, the more bras we

are likely to find that work, so one would expect ΩD ⊇ H ⊇ Ω. H is special in that

H = HD.

In fact, because wavefunctions in Ω are required to vanish so much more rapidly

than in H, the continuous spectrum is normally in ΩD. This is the basis of the

generalized spectral theorem, which is the key to interest in rigged Hilbert spaces:

Theorem 7 (Generalized Spectral Theorem) A self-adjoint operator has a com-

plete set of eigenfunctions in the rigged Hilbert space.

The theory just outlined raises a few questions about our understanding of self-

adjoint extensions. For instance, if, as de la Madrid claims, the nuclear space Ω is the

physical sector of the Hilbert space, it follows that self-adjoint extensions introduce

new physics only if they have some impact on members of Ω. But this implies that Ω

should never be a subset of a non-self-adjoint original domain DH . If this is true, then
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(since self-adjoint extensions affect a domain by throwing out several states in the

adjoint domain) there must be vectors in Ω that didn’t make it to DHθ
. Therefore, Ω

consists of more than just physically meaningful states, since functions outside DHθ

are physically irrelevant.

Besides, this raises the question of what happens if the momentum operator fails

to be self-adjoint: can one still define a rigged Hilbert space from the physicality

requirement? We have not had the time to address these questions, but they seem

relevant if the nuclear space is to be interpreted in physical terms.
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Chapter 3

Singular Potentials

Singular potentials are poorly behaved in classical mechanics too, as we saw in the

previous chapter, but at least one has a fairly good physical idea of what is going

on there. In quantum mechanics, this is somewhat harder to obtain. In some ways

the cleanest way to look at singular potentials is through the formal apparatus of

Chapter 2, so that’s what we’ll do first. We focus on the inverse square potential, not

because it’s the most typical case (it isn’t), but because it is exactly solvable.

3.1 The Inverse Square Potential

The 3D radial Schrödinger equation looks like this:

−d
2u

dr2
+
λ

r2
u+

l(l + 1)

r2
u = k2u (3.1)

in terms of u(r) = ψ/r. This substitution is convenient because it makes the 3D

problem look like a 1D problem. It’s especially convenient that the space of functions

u : (0,∞) → C corresponding to ψ ∈ L2(R3) is almost exactly L2(0,∞) because the

1/r’s cancel the spherical Jacobian. The additional constraint [79] is that usually we

enforce u(0) = 0 to have the wavefunction be regular at the origin. This constraint

leads to some of the important differences between 3D and 1D quantum mechanics,

e.g. the fact that 3D square wells do not always have bound states; however, we shall

sometimes have reason to relax it.

With an inverse square potential, the “one-dimensional” Hamiltonian becomes

H = − d2

dr2
+
λ

r2
+
l(l + 1)

r2
= − d2

dr2
+
λeff
r2

(3.2)
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Since—as investigators of EFTs—we are most interested in low-energy aspects of

this problem we shall normally have l = 0, and for simplicity we shall generally write

λeff as λ. The eigenfunctions of (3.2) can be expressed in terms of Bessel functions

as follows:

√
rZζ+1/2(kr)

where

ζ(ζ + 1) = λ. (3.3)

Now we’d like to use Weyl’s result to check for self-adjointness. The eigenfunctions

corresponding to i are
√
rIζ+1/2(

√
ir) and

√
rKζ+1/2(

√
ir). As r → ∞, we can see

from the asymptotic expansions

Iν(z) ∼
ez√
z
⇒ |Iν(x+ iy)| ∼ ex√

x

Kν(z) ∼
e−z√
z
⇒ |Kν(x+ iy)| ∼ e−x√

x

that for any ζ, we always have exactly one integrable solution at∞. At zero, however,

the expansions are:

Iν(z) ∼ zν ;Kν(z) ∼ z−ν .

Depending on ζ, we could have three different situations. The boundary between

the first two is based on integrability of bound state wavefunctions; the more drastic

change in behavior takes place when the discriminant of (3.3) changes sign and ζ

becomes complex.

3.2 Strongly Repulsive Regime (λ ≥ 3
4, ζ ≥

1
2)

Kζ+1/2(
√
ir) ∼ r−(ζ+1/2) (3.4)

The solution with K fails to be square integrable at the origin because

|r1/2Kζ+1/2(
√
ir)|2 ∼ r−2ζ (3.5)

which is more singular than 1/r at the origin. Therefore, by Weyl’s theorem, the

Hamiltonian is self-adjoint.
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3.3 Weak Regime (−1
4 < λ < 3

4, |ζ| <
1
2)

Both solutions are square integrable at the origin, though their leading behavior is

different, so we have deficiency indices of (1,1). The fact that one of the solutions is

Kν is suggestive of the presence of a bound state, and (as we will see shortly) most

of the self-adjoint extensions permit one. In fact, we already knew this was going to

happen, at least for the case λ = 0, the free particle Hamiltonian on R3, which we

extended while solving for the 3D delta function.

In the weakly repulsive case (0 < λ < 3
4
) the plain 1/r2 potential ought to have

no bound states; the trouble is that a sufficiently strong attractive singularity at the

origin might overcome the repulsive barrier. We can make this problem regular by

the simple expedient of enforcing the u(0) = 0 boundary condition, but this needs

some justification. First, we show that there is a self-adjoint extension with u(0) = 0.

Self-Adjoint Extensions

The deficiency index calculation gives us the following function to add to our domain:

Ψ =
√
r
[
Kζ+1/2(e

iπ/2r) + e−iθKζ+1/2(e
−iπ/2r)

]
(3.6)

We are interested in its asymptotic behavior near the origin. Using the small

argument forms from [58], this is

Ψ →
√
r

[
Γ(ζ + 1/2)

2

(
eiπ/4r

2

)−ζ−1/2

+ e−iθ
Γ(ζ + 1/2)

2

(
e−iπ/4r

2

)−ζ−1/2
]
.

We can simplify this to the form

Ψ → Γ(ζ + 1/2)√
2

(r
2

)−ζ [
eiπζ/4 + e−iθ−iπζ/4

]
. (3.7)

We can make the term in brackets vanish by picking θ = θf ≡ π(1− ζ/2). We are

free to do this because ζ is fixed. Since our original domain, as usual, included only

functions that vanished at the origin, so does the extended domain. A particularly

important feature of θf is that it’s the only extension that retains scale invariance; the

others all introduce bound states. Scale invariance is generally not preserved under

self-adjoint extensions, but sometimes there are specific extensions that preserve it.

We will discuss these issues in Chapter 9.
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Figure 3.1: Regularized Inverse Square Potential

Naive regularization schemes automatically pick this extension, as we shall see.

In the repulsive case we don’t really need this reassurance; however, it’s not obvious

that the weakly attractive (−1
4
< λ < 0) inverse square potential should have no

bound states.

Regularization

We regularize the singularity with a square well, following [6]. We replace the λ/r2

potential with a nonsingular understudy:

Va(r) =
λ

a2
θ(a− r) +

λ

r2
θ(r − a) (3.8)

where θ(x) is the Heaviside step function.

Since this potential is regular we can impose u(0) = 0. Let v = ζ + 1/2. Suppose

there were a bound state. Imposing the usual boundary conditions on our solutions

and their derivatives we’d get:

A sin qa = BKv(ka)

qA cos qa = kBK ′
v(ka)

qa cot qa = ka
K ′
v(ka)

Kv(ka)
. (3.9)

The quickest way forward is to make a small angle approximation; this might seem a

little suspect, but

ka ≤ qa ≈
√
−λ− k2a2 ≤ 1/2 (3.10)
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and while this might not seem like a sufficiently tight constraint, 1/2 is actually a

pretty small angle—sufficiently small that first-order terms dominate the behavior of

the trig functions. Expanding out both sides,

1 = ka
(−v/2)(ka/2)−v−1

(ka/2)−v
⇒ 1 = −v (3.11)

and this is inconsistent, so there can be no bound states. This treatment might

be somewhat sloppy, but it’s valid for small λ at any rate, and is meant merely

to provide a heuristic justification for picking the Friedrichs extension. A hand-

wavy mathematical reason for picking the Friedrichs extension over this domain is

as follows. The problem is analytic in λ on (−1
4
, 0), and there are no singularities

or zeros of cot qa, so we don’t expect θ (or the number of bound states) to behave

non-analytically in λ. Since θ = θf on (−e, 0) ⊆ (−1
4
, 0) for some e, it should be

constant for all e.

There’s a tighter argument in Radin’s paper [22]. Radin also observes that the

regularized theory has singularities only in the l = 0 sector. One of the flaws of earlier

treatments is that they regularize the centrifugal barrier term as well as the potential;

Radin conscientiously avoids this.

The boundary between weak and strong regimes at λ = −1/4 is still weak, but

has a slight calculational subtlety.

3.4 Critical Value (λ = −1
4)

Since the treatments of the next chapter come down to solving this regime, it is of

some historical importance. The solution of the weak regime isn’t directly applicable

here, because both solutions go as
√
r, and we’re missing one independent solution.

A way to see what’s going on is to notice that the Schrödinger equation, under the

transformation v(r) = u(r)/
√
r, is exactly the free Bessel equation in two dimensions.

(This is no accident, see the definition of spherical Bessel functions in [56].) The

independent solutions are therefore
√
krK0(kr) ∼

√
kr log kr and

√
krI0(kr) ∼

√
kr.

We could take the Friedrichs extension, throw out the K0 solution, and retain scale

invariance, so we aren’t yet in the strong regime.
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3.5 Strongly Attractive Regime (λ < −1
4)

Solving (3.3) for ζ, we get

ζ = −1

2
±
√
λ+

1

4
. (3.12)

In this regime, the square root is imaginary; let’s call it iΞ. The solutions to

Schrödinger’s equation are now

√
krZ±iΞ(kr)

All Bessel functions of nonzero order have the behavior Zv(x) ∼ x±v at the origin.

This means that that they either blow up or vanish at the origin as long as <(v) 6= 0,

but when <(v) = 0,

x±iy = e±iy log x = cos(y log x)± i sin(y log x)

The solutions differ from each other by a phase, but the phase isn’t even well-defined

at the origin, since both solutions are oscillating infinitely rapidly there. Since all

solutions of this form are certainly integrable near the origin, we have deficiency

indices (1,1), and a one-parameter family of self-adjoint extensions, which select the

phase. We can pick the correct self-adjoint extension by the same method as before,

and we do this a few sections down, but there is a simpler procedure due to Case [1].

Case’s Way

The failure of self-adjointness manifests itself very dramatically in the fact that every

negative energy has an eigenfunction. With most potentials the boundary conditions

keep the bound state spectrum discrete by forbidding most energies. However, with

our potential, KiΞ is always sufficiently well-behaved at infinity and at the origin.

Near the origin it goes like

√
r cos(Ξ log(kr) +B),

where B is energy-independent. We can rewrite this, with our usual abuse of notation,

as

cos[Ξ log r + (B + Ξ log k)] = cos(log r +B′) (3.13)
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and this behaves the same way for all energies at the origin, because log r blows up.

Evidently, this violates orthogonality, since functions for infinitesimally separated k

look alike and certainly are not orthogonal. However, we can restore orthogonality

by hand, as Case does, by the following procedure. Consider the two Schrödinger

equations

D2ψ1 +

[
λ

r2
− k2

1

]
ψ1 = 0

D2ψ2 +

[
λ

r2
− k2

2

]
ψ2 = 0.

(The derivative commutes with complex conjugation.) If we multiply the first equa-

tion by ψ2 and the second by ψ1, and then subtract, the inverse-square term cancels.

This leaves us with the following equation

ψ1
d2ψ2

dr2
− d2ψ1

dr2
ψ2 = (k2

1 − k2
2)ψ1ψ2. (3.14)

If we integrate this over all space, the rhs becomes

(k2
1 − k2

2)

∫ ∞

0

ψ1ψ2 dx = (k2
1 − k2

2)(ψ2, ψ1).

To have orthogonality, therefore, the integral over all space of the lhs must be zero.

Since

(fg′)′ = f ′g′ + fg′′

we can simplify the integrand on the lhs to

(ψ1ψ′2)
′ − (ψ′1ψ2)

′

and use the fundamental theorem of calculus to get the following condition:[
ψ1
dψ2

dr
− ψ2

dψ1

dr

]∞
0

= 0. (3.15)

Since everything vanishes at ∞ because of the exponential falloff of KiΞ, all we

need is equality at zero. Plugging in the small-argument form (3.13) and simplifying,

we find the constraint:

sin(B′
2 −B′

1) = 0. (3.16)
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In terms of the energy-dependent phase this equation implies

Ξ(log ka − log kb) = nπ (3.17)

and the bound state separation is given by

ka
kb

= enπ/Ξ. (3.18)

Fixing any one of the bound state energies determines the entire spectrum, and—

as we expect—specifies a self-adjoint extension of the Hamiltonian. The bizarre thing

about this spectrum is that it is unbounded from below, since n can be either positive

or negative; there are infinitely many bound states going all the way up to 0 and all

the way down to −∞. Case dismissed the potential as unphysical for this reason, but

it might still be useful from an effective field theory point of view because deep bound

states are not obviously low-energy observables. In fact, as Refs. [30], [32] show, if

we regularize the potential with a square well or a delta function ring of radius a, we

can take a→ 0 without affecting the shallow bound states at all. The accumulation

of bound states at E = 0 is a result of the long-range nature of this potential, and

can be avoided—as with the hydrogen atom—by cutting off the potential at large

distances.

3.6 Singularity vs. Anomaly

The literature on the inverse square potential has two threads—one addresses its

pathologies as a result of scale invariance, the other, as consequences of fall to the

center. Pathologies like a continuum of bound states might seem characteristic of

scale invariant potentials. However, let’s look at the close-in behavior of potentials

more singular than 1/r2.1 These are generally not analytically solvable; however, we

can still investigate the behavior near the origin, since, in the Schrödinger equation

u′′(r) =
(
k2 − α

rn

)
the energy k2 becomes negligible as r → 0. So we solve the simpler equation

Hψ = 0. (3.19)

1With highly singular potentials there is no qualitative difference between the 1D and 3D prob-

lems, so I’ll switch back and forth at will.
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The solutions to this equation are called zero-energy wavefunctions, and are very

helpful in the study of singular potentials. In general the two independent solutions

to the zero-energy equation

d2u

dr2
+
α

rn
u(r) = 0 (3.20)

can be written as follows:

u(0, r) ∼
√
r
[
(AJ1/(n−2)

(
r(2−n)/2

)
+BJ−1/(n−2)

(
r(2−n)/2

)]
. (3.21)

There is a particularly nice solution for n = 4:

u(0, r) = x cos

(√
α

r
+B

)
. (3.22)

(3.21) oscillates wildly near the origin for n < −2, and all solutions of form (3.22)

behave the same way at the origin because the phase is negligible compared with the

singularity in r. So, once again, we have a failure of self-adjointness and a continuum

of bound states. The fix a la Case is the same as before, since the derivation in the

previous section holds for basically arbitrary f(x) in place of sin(log x). However, we

get less information out of the condition on B than we formerly did. In particular,

without a solution to the actual Schrödinger equation, we can’t get much information

about the eigenvalues and their spacing. For E → −∞, Perelomov [20] uses the

quasiclassical approximation to obtain

Ek
E0

= k2N/(N−2) (3.23)

for the 1/rN potential. However, this is not the sector we are interested in. The

case N = 4 is slightly better than others because Schrödinger’s equation is exactly

solvable in terms of Mathieu functions [12]. The asymptotic form of the solution near

the origin is

φ(r) → r cos

(√
α

r
− νπ

2
+ χ

)
(3.24)

where ν is (in the words of Ref. [12]) a “very complicated function” with a less

than straightforward dependence on k. The presence of energy-dependent phases

was expected; however, the relation is sufficiently unpleasant that we have no hope of

getting a simple general expression for the energy level spacing. An interesting feature

of this problem is the way both short-distance and long-distance length scales enter
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into the treatment—the levels are determined by ν, which depends on k, therefore

on the self-adjoint extension, and finally on the short-distance physics; however, the

frequency of oscillation near the origin is determined by the “intrinsic scale” of α.

This is an example of when dimensional analysis breaks down, since there are two

entirely different scales that influence both long-distance and short-distance behavior.

That multiple scales are necessary can be seen from the following dimensional

argument. The coupling of the g/rn potential is a positive power of inverse length

(i.e. an energy) for n < 2, but a positive power of length for n > 2. Suppose n > 2,

and g is the only scale. Then the magnitude B of the ground state energy must

scale with g. Since g is a length and B is an inverse length, it follows that B must

decrease as the coupling increases; that is, the ground state must get shallower as the

potential well becomes deeper. This doesn’t make physical sense, and the only way

to rescue the situation is to put the ground state at −∞, or to introduce a new scale

using self-adjoint extensions or renormalization.

With weakly singular potentials like 1/r, the coupling is an energy, so the ground

state energy scales as it should. However, the scattering length is an inverse energy,

so it should decrease as the coupling increases. Again, this makes no sense, and the

only way out is for the scattering length to be infinite.

Something that Newton [62] considered terminally weird about the 1/r4 and more

singular attractive potentials, is that for these the full 3D Schrödinger equation has

no solutions at all. The pathology is essentially the same as that of the point source

in electrostatics.

∇2(1/r) = −4πδ3(r) 6= 0.

It has been shown in the literature ([62],[11]) that the correct radial part of the

Hamiltonian in this case is

∂2

∂r2
+

2

r

∂

∂r
+ δ(r)

∂

∂r

so that our correct radial Schrödinger equation has an extra term, which looks like

a δ′ potential. Newton used this as an excuse to dismiss the potential as unphysi-

cal; however, to our EFT-indoctrinated minds, all this shows is that some form of

renormalization is essential.

We’ll consider the 1/r4 potential again, in the context of limit cycles, but the

point of this detour was to point out that at least some of the features of the 1/r2

potential are shared with potentials that are not scale-invariant.
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3.7 Non-Friedrichs Extensions of the 1/r2 Poten-

tial

Case’s method is quite broadly applicable as a way of doing self-adjoint extensions.

For example, we could use it to solve the two-dimensional delta function. Suppose

we fix a bound state kb. Because the particle is free except at the origin, this would

have to have the wavefunction K0(kbr). Suppose there were another (m = 0) bound

state, ks. It would also have to have the wavefunction K0(ksr) almost everywhere.

Both wavefunctions are nodeless and always positive, so∫ ∞

0

K0(kbr)K0(ksr) ≥ 0

and the states cannot be orthogonal, so the operator cannot be self-adjoint. This tells

us that there’s at most one bound state with arbitrary energy.

However, a limitation of Case’s method is that it doesn’t tell us about the Friedrichs

extension, or about extensions without bound states. In particular, it does not tell us

a very important thing about the 1/r2 potential, which is that the Friedrichs exten-

sion ceases to exist for λ < −1/4. This is important because it shows that—unlike

the “2D delta function,” which has an anomaly only because it’s defined as an exten-

sion with an anomaly—anomalous symmetry breaking is inevitable for a strong 1/r2

potential.

This section treats the inverse square potential using the apparatus of self-adjoint

extensions that we developed in the previous chapter. The expressions obtained here

are used in later chapters; however, the algebra is unpleasant and not dissimilar to

what we did in Chapter 2.

3.7.1 One Dimension

In the regime −1/4 < λ < 3/4, both solutions to the Schrödinger equation are

square-integrable at the origin, so probability conservation is no longer adequate to

distinguish between them. Let λ = ζ(ζ+1); then the regular and less regular solutions

go as xζ+1 and x−ζ near the origin respectively. As λ decreases and becomes negative,

the regularity gap between the two solutions closes; for λ < 0 both functions vanish

at the origin. For λ = 0 the irregular solution is a constant, like e−kx or cos kx; this

is the case of δ(x). For λ = −1/4 the irregular solution is
√
kxK0(kx), which goes as

√
x log x; the regular solution is

√
x.
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The attractive region is weird because neither of the solutions behaves as one would

expect: for both solutions, ψ(0) = 0 and the derivative has an infinite discontinuity.

(The latter feature is shared with the one-dimensional Coulomb potential, see Chapter

8.)

Energies and Extensions

To a better approximation than (3.3), the small-argument form of (3.6) is

ψ ∼ x1+ζf(ζ)
[
eiπζ/4 + ei(θ−πζ/4)

]
+ x−ζg(ζ)

[
ei(θ+πζ/4) + e−iπζ/4

]
. (3.25)

If we rewrite this as

ψ ∼ Ar1+ζ +Br−ζ

we can rearrange it to read

ζψ + xψ′

(1 + ζ)ψ − xψ′
=
A

B
x1+2ζ . (3.26)

The effective length scale is set by A/B, which has dimensions k1+2ζ and is a function

of θ. We could work this out explicitly with gamma-function identities, but it’s

simpler in this case to point out that, by tweaking θ, we can have A = 0, B 6= 0

and vice versa. Absorbing the θ-dependence into our length scale, we get a boundary

condition of the form

ζψ + rψ′

(1 + ζ)ψ − rψ′
= F (ζ)(κr)1+2ζ (3.27)

where β is an arbitrary constant, and |κ| ∈ (0,∞) parameterizes the extension chosen.

If we plug in a bound state of the form
√
kbxKζ+1/2(kbx), we swiftly discover that

F (ζ) =
Γ(−ζ − 1/2)

Γ(ζ + 1/2)

so the bound state energy is proportional to κ, as we expect, and our final boundary

condition is

ζψ + xψ′

(1 + ζ)ψ − xψ′
=

Γ(−ζ − 1/2)

Γ(ζ + 1/2)
(kbx)

1+2ζ . (3.28)
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This is a useful form for the boundary condition, because it’s cast solely in terms of ob-

servables and the long-distance coupling. We can derive the s-wave phase shift by ap-

plying the boundary condition to a scattering state,
√
kx(AJζ+1/2(kr)+BNζ+1/2(kr)).

The leading behavior of scattering states is

Jν ∼
(
kr

2

)ν
1

Γ(1 + ν)

Nν ∼
1

π
Γ(ν)

(
kr

2

)−ν
+

cos πν

π
Γ(−ν).

(
kr

2

)ν
Applying the boundary condition to this gives

Aπ +B cos[π(ζ + 1/2)]Γ(−ζ − 1/2)Γ(ζ + 3/2)

BΓ(ζ + 1/2)Γ(ζ + 3/2)

(
kr

2

)1+2ζ

=
Γ(−ζ − 1/2)

Γ(ζ + 1/2)

(
kbr

2

)1+2ζ

(3.29)

which looks slightly less unpleasant rearranged:

B

A
=

π

Γ(ζ + 3/2)Γ(−ζ − 1/2)

1

cos[π(ζ + 1/2)]− (k/kb)1+2ζ
. (3.30)

(Let’s write ν = ζ + 1/2.) One further simplification comes from the reflection

formula Γ(1
2
+ z)Γ(1

2
− z) = π sec πz. For us, z = ν+1/2, we get the expression down

to

B

A
=

cos[π(ν + 1/2)]

cos πν − (k/kb)2ν
. (3.31)

Now B/A is a quantity related to the l = 0 phase shift; its dependence on k breaks

scale invariance, and we have (once again) an anomaly.

The scattering phase shifts of the 1/x2 potential are a little tricky because, like

the Coulomb potential, it’s a long-range interaction and the asymptotic forms are
√
kxZζ+1/2(kx) rather than eikx. It’s slightly easier because the Bessel functions are

just phase-shifted sines and cosines (AS 9.2.3). (Henceforth we’re going to write

ζ + 1/2 = ν.)

√
kxJν(kx) = cos

(
kx− πν

2
− π

4

)
√
kxNν(kx) = sin

(
kx− πν

2
− π

4

)
.

And one can check that
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A
√
kxJν(kx) +B

√
kxNν(kx) ∼ C cos

(
kx− πν

2
− π

4
− tan−1 B

A

)
. (3.32)

Because of Levinson’s theorem [62], which we discuss later, we expect the phase shift

at k = kb to be π/2. Let’s check this. 3.31 simplifies to

B

A
=

cos[π(ν + 1/2)]

cos πν − 1
. (3.33)

With the help of two well-known trig identities one can get this down to

B

A
= − cot(πν/2)

which means that

tan
B

A
=
πν

2
− π

2
.

Putting this back into 3.32 we see that

√
kx(AJν(kx) +BNν(kx)) ∼ C cos

(
kx+

π

4

)
. (3.34)

This is not quite what we expect from a normal potential. However, if we look at the

behavior of 3.31 at very high energies, B/A = 0, and the phase shift is −(πν
2

+ π
4
)

rather than 0, as we have been bred to expect.

3.7.2 Two Dimensions

In two dimensions with m = 0, the bound-states Schrödinger equation with a 1/r2

potential is

r2d
2ψ

dr2
+ r

dψ

dr
± k2r2 + λψ = 0 (3.35)

and the solutions to this are simply the relevant Bessel functions Zν(kr), where ν =
√
λ. So everything goes pretty much as in the 1D and 3D cases, except for the

clutter of
√
kr terms. The self-adjointness calculation is more straightforward in two

dimensions, but the details are similar enough to be beneath repetition.

νψ + rψ′

νψ − rψ′
=

(
βr

2

)2ν

(3.36)
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where β is a parameter related to the self-adjoint extension and the bound state

energy. This sets us up to calculate an energy dependent scattering phase shift, as we

did in one dimension. We can replace β with a bound state energy as we did before,

and get

νψ + rψ′

νψ − rψ′
=

Γ(−ν)
Γ(ν)

(
kbr

2

)2ν

. (3.37)

Plugging in the general scattering solution, which is AJν(kr) + BNν(kr), we get

3.31 once again. The treatment of scattering works identically, except that in 2D

scattering [60] we don’t subtract the π/4, since it’s built into the asymptotic forms of

the Bessel functions. Therefore the phase shift at k = kb is π/2, which is consistent

with Levinson’s theorem.

Now let’s do the same calculation in the strong regime. First of all, the equivalent

of 3.25 is

ψ ∼ xiνf(ν)
[
e−πν/4 + ei(θ−iπν/4)

]
+ x−iνg(ν)

[
ei(θ+iπν/4) + eπν/4

]
(3.38)

Since x±iν look the same at the origin, there isn’t a preferred extension. Setting a

phase between the two solutions means introducing arbitrary new physics, but that’d

be true in some sense even if there were a Friedrichs extension: the special thing about

the Friedrichs extension is that by throwing out one of the states altogether, we can

escape the anomaly. We would avoid the anomaly, even here, if we could arbitrarily

throw out one of the solutions. However, if we look at the ratio of the coefficients in

this case (leaving out stuff independent of θ), it is

Π1

Π2

=
e−iθ/2e−πν/4 + eiθ/2eπν/4

eiθ/2e−πν/4 + e−iθ/2eπν/4

and since the numerator and denominator are conjugates, |Π1/Π2| = 1 and the solu-

tion with vanishing x±iν is not a self-adjoint extension, so there is absolutely no way

to preserve scale invariance.

The rest of the self-adjointness calculation goes the same way it did before,

iνψ + rψ′

iνψ − rψ′
=

(
βr

2

)2iν

= e2iν logBr (3.39)

or, in terms of a bound state energy,
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iνψ + rψ′

iνψ − rψ′
= e2i{ν log(kbr/2)−arg[Γ(iν)]} (3.40)

Having emphasized the modulus-one-ness of everything, we revert to our previous

notation. None of the identities we used previously depended on ν ∈ R so we can

skip the details. Sending in AJiν(kr) + BNiν(kr) we get an expression parallel to

3.31:

B

A
=

cos[π(ν + 1/2)]

cos πν − (k/kb)2ν
(3.41)

In the k = kb case one can whittle this down, as usual, to

B

A
= − cot iπν/2,

which gives a net phase shift of π/2 in this case, just as it did before. The dif-

ference between this result and the previous ones is that (k/kb)
2iν is log-periodic, so

(k/kb)
2iν = 1 has infinitely many solutions, and the scattering sector notices infinitely

many bound states. This is more an internal consistency check than a new statement,

but all the same it is comforting to know.

3.7.3 Three Dimensions

The calculations are identical to the 1D case. An interesting contrast between this

problem and the Coulomb problem is that here the Friedrichs extension is in fact a

choice on our part. Consider the full Schrödinger equation:

−∇2ψ +
λ

r2
ψ = k2ψ.

If we integrate this over a tiny ball around the origin, assuming that ψ is spherically

symmetric, we get the form

−
∫
∇2ψdV + 4πλ

∫
ψdr = k2

∫
ψr2dr

Normalizability forbids ψ from blowing up more rapidly than r−3/2, but that leaves

open the possibility that ψ falls off faster than 1/r. The only way to throw out the

non-Friedrichs extensions is to use a regularization scheme such as Meetz’s.
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3.8 Infinite Well with an Inverse Square Term

The boundary condition (Case’s phase) is not influenced by long-distance physics, so

it’s the same in all cases where you have a nonsingular potential plus an inverse square

potential. This is because there are arbitrarily deep and localized bound states, and

whether one is orthogonal to these can have nothing to do with one’s long-distance

behavior.

We’re interested in states with E > 0, E � 0 if we must. The wavefunctions are

of the form
√
kx(AJiν(kx) + BNiν(kx)) inside the region. We need two boundary

conditions to get a quantization condition; Case’s phase gives one, and the other

is the requirement that the wavefunctions vanish at R, the well radius. The latter

condition can be written as

AJiν(kR) +BNiν(kR) = 0

and so

−B
A

=
Jiν(kR)

Niν(kR)
≈ cot(kR− iπν/2− π/4).

We can plug this value into our boundary condition 3.31 with imaginary ν to get

− cot(kR− iπν/2− π/4) =
cos[π(iν + 1/2)]

cosh πν − (k/kb)2iν
, (3.42)

which is the eigenvalue equation. The long-distance boundary condition here might

be a little more complicated than in the simple 1/r2 potential, but there is a long-

distance boundary condition there too—square integrability, which throws out the I

solution and makes it so that all contributions to the phase shift come from the energy.

We can plot this on Mathematica (see figure), but unfortunately this transcendental

equation cannot be solved analytically.

In this limit ν → 0 we have the following behavior:

− cot(kR− π/4) =
cos(π/2 + iπν)

1− e2iν log(k/kb)

So for the most part the rhs vanishes and we have bound states at

k =
π + 4πn

4R

so basically the dependence on ν disappears. However, near the resonance k = kb,

the rhs is a 0/0 limit and the boundary condition becomes (with some expanding and

simplifying)
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Figure 3.2: Magnitude of boundary condition. Intercepts are bound states.

cot(kR− π/4) = − π

2 log k/kb
.

This is the characteristic Klauder phenomenon of the −1/4r2 Hamiltonian, and it

leads to a bound state at −π/4R if the boundary conditions match up.

3.9 The Classical Limit

The behavior of the classical 1/r2 potential has been discussed in Chapter 2. Note that

the classical Hamiltonian p2+q−2 is scale-invariant like the quantum Hamiltonian, for

exactly the same reasons. (Therefore, the coupling is dimensionless in the appropriate

units.) Classical scattering in a 1/r2 potential is worked out in [62]; the cross-section

is derived to be

dσ

dΩ
=

λ

2π

1− y

Ey2(2− y)2 sin πy
(3.43)

where πy = θ, the classical scattering angle [62], which depends only on the angular

momentum of the incoming particle:

y = 1− L√
L2 +mλ

.

One of the conditions for scattering to be classical (i.e. for the quantum mechanical

uncertainties to be small) is derived in [18] and cited by [81]:

Lclθcl � ~.
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Kayser uses this to deduce that mλ � ~2—and therefore, in our units, λ � 1.

Therefore, Kayser [81] argues, a classical repulsive 1/r2 potential is strongly repulsive.

(In fact, it is known [62] that the classical limit is the strong-coupling limit even

for attractive coupling.) For a sufficiently attractive potential, we’ve seen that the

classical solution is incomplete [75]: the particle collides with the center of the field

at a finite time t0 and after that the motion isn’t well-defined. However, as Zhu and

Klauder [19] point out, one can have the origin reflect everything back exactly the

way it came in, and so the scale symmetry isn’t obviously broken.

We observe that Case’s spectrum approaches continuity in the limit |Ξ| → ∞,

since the level spacing kn/km = e(n−m)/Ξ → 1 as Ξ → ∞. Consider two self-adjoint

extensions, one with a bound state at ka and another with a bound state at kb. Clearly,

for any Ξ there is an m such that kae
mπ/Ξ ≤ kb ≤ kae

(m+1)π/Ξ. As Ξ →∞, therefore,

kb gets sandwiched arbitrarily closely between two wavefunctions of the extension ka,

and the self-adjoint extensions corresponding to a and b become indistinguishable.

This establishes2 that the anomaly disappears in the classical limit, which makes its

existence a little less disturbing.

There is only one “unitary” (non-dissipative) classical solution, since the phase is

irrelevant, and therefore the disappearance of phase differences is not undesired.

2Well, maybe not. k, l and λ are all large in the classical limit. However, as long as k doesn’t

grow exponentially faster than λ we’re safe.
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Chapter 4

Global Renormalization

Now that all the expressions, and the naive formal solution, have been presented, let

us consider more physical approaches to the strongly attractive potential. There are

three questions involved: (1) do we really need self-adjointness? (2) is the coupling

constant determined by long-distance physics? (3) how many bound states should

the system have? This determines the different choices of regularization scheme, and

the different spectra, deduced by Refs. [45], [30], [86], and [22]. In this chapter, I’ll

merely introduce the schemes; their physical implications will be discussed in later

chapters.

4.1 Hardcore Cutoff

This method is due to [52] and is followed by [45] and [46]. One replaces the potential

at a short distance a with an infinite repulsive barrier. This forces the wavefunction

to vanish at that point, so that

KiΞ(ka) = 0.

Now there are two regimes of KiΞ(x), the small x regime where it oscillates wildly,

and the big x regime where it is a decaying exponential with no roots. It has a largest

zero at some xn. By making k sufficiently large we can cram all the small x behavior

into (0, a) and set a = k/xn, so the function vanishes as we require it to, and looks

like a ground state. As it happens, xn is still a “small argument,” and we can say to

good accuracy that the expression

KiΞ(ka) ∼ sin

[
Ξ log

(
ka

2

)
− arg[Γ(1 + iΞ)]

]
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is valid. So, if we require it to vanish,

Ξ log(ka)− Ξ log 2− arg[Γ(1 + iΞ)] = nπ. (4.1)

This might look a little like our previous result; the key difference is that our

cutoff allows us to pick a lowest-energy allowed state (since the boundary condition

rules out k′ > k whose first zero is too close in). Our goal is to fix the energy of this

state as our parameter of “constant physics,” and scale the coupling appropriately as

the cutoff goes to zero. Since the first term can’t be allowed to blow up, we know

Ξ → 0. To get its exact scaling behavior we need to simplify the third term a little,

with the identity (AS 6.1.24):

arg[Γ(1 + z)] = arg Γ(z) + tan−1(y/x).

In our case, the second term is π/2, and the first is given by the series expansion

Γ(iΞ) ∼ − i

Ξ
− γ

where γ is the Euler-Mascheroni constant. This is approximately along the −y axis,

so its argument can be expanded about −π/2 to give

arg[Γ(iΞ)] ∼ −π
2
− γΞ

and putting it all together for small Ξ, we get

arg[Γ(1 + iΞ)] ≈ −γΞ.

Now we can put this back in (4.1) to get the scaling behavior

log(ka) = log 2 + γ +
nπ

Ξ
. (4.2)

For fixed k and a → 0 the lhs is negative, so n < 0 for Ξ > 0. We choose n = −1

because that happens to correspond to the rightmost zero of the Bessel function. 1

The ground state energy is

Egs =

(
eγ

a

)2

e−π/Ξ. (4.3)

1One could use, say, n = −5; it would just change the scaling properties of Ξ.

77



1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

Untitled-1 1

Figure 4.1: Evolution of u(r) as a→ 0

An important feature of this method is the existence of a unique bound state. For

l > 0 we’re no longer in the strong regime, so there are no bound states; for n > 1 we

can see from (4.2) that

En
Egs

= e(n+1)π/Ξ

so En → 0 as Ξ → 0, and n < 0 because our regularization scheme rules out the other

cases by construction.

4.2 Square Well Cutoff

We could follow the same cutoff procedure with an attractive square well instead of

an infinite barrier. The 3D square well has issues as a calculational scheme because

it doesn’t always have bound states, so let’s work in one dimension.

V =

{
λ/x2 x > a

λ/a2 x < a

The ground state wavefunction will be

uin(x) = A cos(qx)

uout(x) = B
√
kxKiΞ(kx)

q =

√
λ

a2
− k2.
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If we choose to work in the small-coupling regime, we can use the usual asymptotic

form for uout near the origin:

uout ∼ B
√
kx sin(Ξ log(kx) + δ).

Matching wavefunctions and their derivatives at a, we get

−qa tan(qa) =
1

2
+ Ξ cot(Ξ log(ka) + δ). (4.4)

Dropping all terms in (ka)2 and rearranging,

−
λ− 1

2

Ξ
= cot(Ξ log(ka) + δ). (4.5)

In the Ξ → 0 limit, λ→ 1/4 and the LHS blows up, so

Ξ log(ka) = nπ + δ (4.6)

as we had earlier, and we can follow through with the same logic. We will always

have a ground state this way too, since the regularized theory always has one, and

4.6 forces all the excited states to zero.

4.3 Dimensional Regularization

In [48], Camblong renormalizes the inverse square potential by means of dimensional

regularization (DR), a popular method in QFT. The idea behind DR is that problems

are sometimes better-behaved in complex dimensions, and their bad behavior shows

up as a pole at d = 3, which we can renormalize away. So instead of a cutoff, we

scale the coupling against ε, if our regularized theory lives in d± ε dimensions. This

procedure involves a lot of machinery that we don’t need for anything else, so I’ll

leave out the details; however, the point of the technique is to continue the potential

analytically in a way that does not leave it scale invariant. In our case, this means

making it a 1/r2−ε potential in 3 − ε dimensions. This is equivalent to the next—

conceptually simpler—method we consider.

4.4 Schwartz’s Way

In his 1977 paper, Schwartz [86] solved potentials of the class
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V =
λ

r2

(
r

r0

)ε
.

These are not exactly solvable in general, but there’s a trick for small ε. It has been

well-known for centuries [89] that negative power-law potentials have dual positive

power-law potentials, with the remarkable property that equations of motion for one

are equivalent to those for the other under a change of variable. For example, the

Kepler and harmonic oscillator problems are equivalent under the change of variables

rkep = r2
sho.

This result was first discovered by Newton. Generally, as [48], [90], and [89] show,

dual power-law potentials obey the relation

(N + 2)(N ′ + 2) = 4

which is a 1-1 correspondence between (−2, 0) and (0,∞). This correspondence

carries over into quantum mechanics. The important consequence, for us, is that

N → −2 is dual to N ′ →∞, which looks like an infinite square well. We can use this

duality to solve almost singular potentials; however, let’s first look at the square well

as a limit of rn potentials.

Particle in a Box, Revisited

Consider the potential

V (r) =
λ

r2
0

(
r

r0

)n
(4.7)

where λ is dimensionless, and n very large. We know there are basically two regimes:

one with r � r0, where V is essentially zero; and one with r > r0, where V �
E. Inside, our solution is the free particle wavefunction for a particle of angular

momentum l:

uin(r) = A
√
krJl+1/2(kr) (4.8)

whereas outside the “well” it’s the zero-energy solution to the potential since E � V

(we needn’t worry about l since the centrifugal term is negligible outside the well).

For normalizability we choose the exponentially decaying solution (let p = n+ 2):
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uout(r) = B
√
krK1/p

[√
λ

p

(
r

r0

)p/2]
. (4.9)

In our limit it’s a pretty good approximation to say that everything2 is in one of these

regimes, so we can guess that our full wavefunction has the form

u(r) = krJl+1/2(kr)K1/p

[√
λ

p

(
r

r0

)p/2]
. (4.10)

It’s clear that this vanishes outside the well in the limit; the “inside” behavior of the

decaying part is a little more interesting. We use the asymptotic form

K1/p(x) = 2
1
p
−1

(
1

p
− 1

)
!x−1/p.

Plugging our argument in, we see that the decaying part goes as

λ−2/p

(
r

r0

)−1/2

.

Now, k is approximately nπ/r0, which is its value for the square well, so the factor of√
r/r0 cancels a

√
kr in the prefactor and leaves us with

uin =
√
krJl+1/2(kr)

as we wanted. An interesting feature of this derivation is the parallel between how

λ becomes less important for n → ∞ and how the same thing happens to r0 as

n → −2. In fact, there’s something very like dimensional transmutation about this

duality transformation near the limit, since the square well has a dimensional scale

but no coupling, and the inverse-square potential has a coupling but no dimensional

scale. The correspondence isn’t as simple as it looks, though, because the duality

transformation works in a rather odd way that’s easier to demonstrate than to explain.

Back in the Inverse Square

Schwartz implements the duality transformation by the following change of variables:

r =
y2/ε

2k
;ul(r) = y−( 1

ε
+ 1

2
)v(y). (4.11)

Upon these substitutions, the Schrödinger equation

2Except r = r0, of course.
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−d
2u

dr2
+
l(l + 1)

r2
u− λ

r2

(
r

r0

)ε
u = −k2u

becomes [
− d2

dy2
+

[(2l + 1)/ε]2 − 1
4

y2
+
y4/(ε−2)

ε2

]
v = Λv (4.12)

where

Λ =
4λ

ε2
(2kr0)

−ε

(The details of this procedure are worked out in Appendix A.) For sufficiently small ε,

this is basically the Schrödinger equation for a state of very high angular momentum

in a square well. Therefore, the appropriate solution is of the form

v(y) =

√√
ΛyJν(

√
Λy) (4.13)

for y < 1, where

ν ≈ 2l + 1

ε

and by (4.10) otherwise. We can match the functions and their derivatives at y = 1;

this is done in [48], but it turns out that we get essentially the same result if we

just require v(1) = 0, which happens if Jν(
√

Λ) = 0. Schwartz quotes the following

formula for Bessel functions of very large order:

Zn = ν + Cnν
1/3

where Zn is the nth zero, and Cn is basically independent of ν. So if we require that

√
Λ = ν + Cnν

1/3 (4.14)

and write everything out in terms of the original variables, we see that√
4λ

ε2
(2r0k)−ε =

2l + 1

ε
+ Cn

(
2l + 1

ε

)1/3

. (4.15)

This can be rearranged in the form

log(2kr0) = −2

ε
log

[
2l + 1

2
√
λ

+
Cnε

2/3(2l + 1)1/3

2
√
λ

]
(4.16)
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where the second term in the argument of the logarithm is small relative to the first,

and can be expanded to first order using log(1 + x) ∼ x to give us

log(2kr0) = −2

ε

[
log

(
l + 1/2√

λ

)
+

Cnε
2/3

(2l + 1)2/3

]
. (4.17)

Exponentiating this gives us Schwartz’s final form

En = − 1

4r2
0

exp

[
2

ε
log

λ

(l + 1/2)2

]
exp

[
− 4Cn
ε1/3(2l + 1)2/3

]
. (4.18)

In particular, for l = 0 states this is

En = − 1

4r2
0

(4λ)2/ε e4Cn/ε1/3

. (4.19)

What our energy states look like in the limit depends on whether λ > 1/4; if so, all

the energies go to −∞, otherwise they all go to zero. We could regularize this scheme

by fixing En and scaling λ with ε, just as in our two previous schemes, and it works

in essentially the same way. The strangest consequence, though, is that

En
Em

= exp

[
−4(Cn − Cm)

ε1/3

]
(4.20)

which always blows up. The Cn increase with n, so any higher-level energy state

vanishes relative to the ground state as ε → 0. What’s strange about this result

is that it is independent of the coupling. This means that the bare, unregularized

limit of this theory looks very different from what we derived in chapter 3 from the

Schrödinger equation—there is neither a continuum of states nor a tower.

As Schwartz’s approach and dimensional regularization turn out to be inconsistent

with those we consider next, we should point out some of the reasons they might be

inappropriate. First, there’s no reason to suppose that the limit is unique, since we

have an essential singularity in ε. In fact, we have good reason to believe it isn’t, since

things don’t look the same at all for r2+ε potentials. Suppose 4.20 held for complex

ε; we would have wildly oscillatory behavior rather than what we see.

Another way to think about it is as follows. All the bound states associated with

the Schwartz family—which all have finite numbers of nodes by construction—go

down to −∞, but a new family of bound states, each with infinitely many nodes

and finite energies, appears at the transition. (These are shallower than the previous

states, so their appearance isn’t too mysterious.) The former statement follows from

the fact that
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En = − 1

4r2
0

(4λ)2/ε e4Cn/ε1/3

and as ε→ 0 keeping everything else fixed, the behavior is dominated for all n by the

exploding first term.

A further strike against dimensional regularization in quantum mechanics is the

fact [68] that it gives nontrivial scattering phase shifts for the d-dimensional delta

function whenever d is odd. Cutoff regularization gives trivial scattering phase shifts

for d ≥ 4, as [68] shows. This is supported by Simon’s result [14], which says that

the Hamiltonian −∇2 + V is self-adjoint in d dimensions if

V ≥ −(d− 1)(d− 3)− 3

4r2
.

If d ≥ 4, the free-particle Hamiltonian meets this criterion; therefore the free-particle

Hamiltonian is self-adjoint. Since delta functions are self-adjoint extensions of the

free-particle Hamiltonian, delta functions cannot exist in d ≥ 4.

4.5 Summary

We have looked at three different ways of renormalizing the 1/r2 potential, all of which

involve renormalizing the global coupling. All of these ways give us a renormalized

spectrum with one bound state, in which the coupling goes to a critical value (−1
4

in

one and three dimensions) as we take the renormalization parameter to zero. This

disagrees with both Chapter 3 and Chapter 5. We show in Chapters 5 and 7 that

the results of this chapter are a limit, and not a very useful one, of the more general

treatments of Chapters 3 and 5.
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Chapter 5

Limit Cycles

A feature common to the methods we looked at in Chapter 4 is that they all involve

renormalizing the coupling. This might go against our original conception of renor-

malization as modifying only short-distance behavior, since the coupling also affects

the long-distance behavior of our theory. For instance, we saw in Chapter 3 that the

potential had many shallow bound states; even if bound states are not treated as

observables, the scattering poles associated with them certainly count as low-energy

observables. But if the coupling is fixed, what parameter are we to trade in for our

energy? A scheme to do this was implemented in Ref. [30], and later by Refs. [31],

[36], and [32]. The technique was first laid out by Lepage in Ref. [33] in a more

general context.

5.1 Running Square Well

We regularize with the following potential:

Va = − λ

r2
θ(r − a)− ρ

a2
θ(a− r) (5.1)

The important difference between this scheme and that in Section 4.2 is that ρ is

variable, so that the potential is discontinuous at r = a. (This is just a finite dis-

continuity, though, and we see its like in the finite well every day.) The parameter ρ

gives us something to trade in for our “energy,” and has the advantage of describing

exclusively short-distance interactions. Now our question becomes how to alter ρ as

a→ 0 to keep the “physics” fixed. But what is the physics?

Before we answer this, let’s generate a renormalization group flow for this scheme.
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As usual, we use the square well matching relation for small a

qa cot qa =
1

2
+ Ξ cot(Ξ log ka+ δ).

Since q ≈
√
V , we can write this—defining χ ≡ √

ρ, and combining the logarithmic

terms into − log a0—as

χ(a) cotχ(a) =
1

2
+ Ξ cot

(
Ξ log

a

a0

)
. (5.2)
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Figure 5.1: Multivalued solution, continuous path, log-periodic path. χ vs log ka

What the cutoff at a does is separate our domain into a region of high-energy/short-

distance physics and one of low-energy/long-distance physics. As we take a to 0, the

shallow bound states (i.e. those with a0 � a) have hardly any of their probability in

the region of high-energy physics, so their form is mostly unaffected by the nature of

the interaction there. This means, for instance, that they basically regain the discrete
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scale symmetry. Of course, if we kept χ fixed as a→ 0, a0 (and therefore the bound

state energy) would have to scale with a for the boundary conditions to match, so

the lines would cease to represent constant physics.

The situation is different with deep bound states (a0 < a), since much of their

probability is in the high-energy region, and they are affected by the details of high-

energy behavior. The flip side is that their wavefunctions are so localized that we need

very high resolution to observe them—i.e. we need to scatter high-energy states off the

potential, by E = hν. Therefore these bound states are not low-energy observables,

and we need not require them to be invariant under renormalization.

The most intuitive paths through the RG flow are given by the continuous lines

in the figure, which one gets by picking a bound state, fixing it, and changing χ

continuously and monotonically. χ decreases as a → 0—i.e. becomes weaker and

then repulsive. A heuristic way to understand what’s happening is as follows: let’s

think of the state index as the number of nodes in the the wavefunction, as we do

in nonsingular cases. (Since our theory is regularized, this is finite to start with.)

As we move a closer in, the inverse-square sector of our wavefunction gains wiggles

rapidly, and so the high-energy sector must lose them correspondingly, which it does

by increasing the potential. Even if the inside were a hard core, as we’ve seen in

Section 4.1, the wavefunction would have arbitrarily many wiggles as a got smaller—

and after that we would have no way to keep the state index. There is, therefore,

a minimal length ε down to which our effective theory is valid for a given a0. If we

had higher resolution, we could pick a lower a0—i.e. a deeper bound state—to treat

as a low-energy observable, so this isn’t necessarily a strike against the procedure.

However, if we want a procedure that gives us bound states all the way down, we

must use the so-called limit cycle (Fig 5.1).

This scheme is based on the fact that the regularized potential has infinitely many

shallow bound states with a discrete scaling symmetry. (The infinitely many shallow

bound states exist because of the slow falloff of the potential.) In the asymptotic

region, fixing any bound state to be at a certain energy gives you the same self-

adjoint extension and the same physics. (This corresponds to the picture of Chapter

3, where none of the wavefunctions has an index because they’re all at ∞.) The

log-periodic path exploits this fact by jumping discontinuously from fixing one bound

state to fixing the one just deeper than it every time the wavefunction grows another

node in the low-energy region.
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Figure 5.2: Where the Wiggles Go

This gets us all the way to the origin on any given path, but it doesn’t give us a

coupling corresponding to a→ 0, since our flow oscillates wildly near that point.

5.2 Flows, Revisited

We have already seen a couple of RG flows. The point of these diagrams is to give

us an idea of how the lines of constant physics behave as a → 0. The nomenclature

comes from Wilson’s analogy [34] with nonlinear dynamics. In nonlinear dynamics

we are interested in what a system evolves to as t → ∞. This is often dependent

on initial conditions, e.g. for a free particle. However, it is often possible to make

statements that hold for most initial conditions. For instance, a damped pendulum

goes to the origin as t → ∞ no matter what the initial conditions were. A feature

like this is called an attractor. Another simple possibility is the limit cycle, which

means that the system settles down into some sort of periodic behavior. This is the

case, for instance, with the damped driven oscillator, which ends up moving at the

driving frequency no matter what the initial conditions are. The natural properties of

the oscillator show up only as a phase shift, analogous to Case’s phase. These ideas

can be mapped onto renormalization group flows by having − log ka = log(a0/a)

correspond to t. In the RG, one thinks of short-distance behavior as a transient, and
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Figure 5.3: Delta Ring Cutoff, χ vs. log ka

therefore not an important part of the asymptotic description of the system. We are

eventually interested in the ka→ 0 sector, which is the log(a0/a) →∞ sector (which

corresponds to t→∞ sector)—that is, energies that are arbitrarily weak relative to

the cutoff.

5.3 Running δ-function

Instead of a square well, we could regularize the theory using a δ-function ring at

radius a. This would give us the regularized potential

V (r) = − λ

r2
θ(r − a)− χ2

a2
δ(r − a) θ(a− r) (5.3)

We know how the 1D δ-function behaves, and we can use our matching strategy to

obtain the RG flow equation:

χ(a) =
1

2
− Ξ cot

(
Ξ log

a

a0

)
(5.4)

This is a very different equation from that governing our previous flow, since χ isn’t

multivalued. This flow is plotted in Fig 5.3.

A limit cycle is our only solution. Intuitively the difference between this scheme

and the previous one is that this time we don’t have direct control over the number

of wiggles inside the shell—or, therefore, on the total number of wiggles. The delta

function cutoff is equivalent to sticking in a phase shift by hand. The dependence of

deeper bound states on a under this scheme is explored in Ref. [32].
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Renormalization theory is interested with properties that are independent of the

cutoff potential chosen; this makes the limit cycle a more appealing solution. (It might

seem glib to infer universality from multiplicity, but limit cycle behavior is related

to the discrete scale symmetry of the spectra.) Still, the difference is not terribly

important in any particular case because both states produce the same asymptotic

spectra.

5.4 The 1/r4 Potential

This was worked out in [36]. Most of our observations still hold; an important differ-

ence is that the zero energy wavefunction is

ψ(0; r) ∼ r sin

(
λ

r

)
.

(Let’s ignore the phase for a moment.) This oscillates rapidly at the origin, as we

have learned to expect, but in the infrared regime it has no nodes for r > λ/π—as

opposed to the 1/r2 potential, which has infinitely many nodes both ways. So if you

impose an ultraviolet cutoff, ψ(0; r) has only finitely many nodes, and—since it is the

shallowest bound state—ψ(−E; r) has as many or fewer. Therefore, the regularized

solution has only finitely many bound states, and the continuous path preserves the

number of bound states.

As before, we can regulate the potential with a square well cutoff or a ring cutoff.

The procedure is a little harder than before because we lack usable analytic expres-

sions for anything but the zero energy solution. However, the state we are fixing is a

shallow state, so for a short-distance cutoff it’s reasonable to take |E| � |V | and use

the zero energy outside solution. With this, our wavefunction is

ψ(0; r) =

{
A sin qr r < a

Br cos
(
λ
r

+ φ
)

r > a
(5.5)

φ is a phase shift between the cosine and sine exterior solutions. The boundary

condition one gets by imposing continuity at r = a is

q cot qa =
1

a
+
λ

a2
tan

(
λ

a
+ φ

)
,

which we can rewrite as
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qa cot qa = 1 +
λ

a
tan

(
λ

a
+ φ

)
. (5.6)

Now qa is just the inside coupling, which we can call αin, and we can write λ/a as

αout. (λ is fixed for our purposes, so this is an inverse cutoff radius.) This gives us

the final flow equations:

αin cotαin = 1 + αout tan(αout + φ).

Evidently there is a branch that’s periodic in αout, but this doesn’t correspond to any

particularly nice symmetry.

Figure 5.4: RG Flow for 1/r4 potential. Reproduced from [36].

Following what Braaten and Phillips do, we might try regularizing with a δ-

function ring. The internal zero-energy solution is Ar+B, and the boundary condition

at the δ-function at a is

ψ′(a+)− ψ′(a−) =
1

a
γψ(a).

where the delta-function ring has strength γ/a2 since we’re working in three dimen-

sions. Dividing through by ψ(a) and plugging in the functions, we get

1 + αout tan(αout + φ) = γ(a)

[
+
A

B
a

]
, (5.7)
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Figure 5.5: χ vs. α−1

and the last term can be dropped for small a. Similarly to the 1/r2 case, this cutoff

scheme gives us only limit cycle-like behavior.

Note that as a → 0, the lhs goes through infinity repeatedly, as you’d expect, so

there are no fixed points of the flow.

5.5 Scaling Properties

Refs. [37] and [38] use a somewhat different way of looking at renormalization group

flows. The idea behind their work is to replace the potential with a boundary con-

dition at some length scale, and investigate how the boundary condition behaves at

different length scales. As their paper is fairly detailed, we merely present an outline

of the strategy.

To specify a solution to a Schrödinger equation on (a,∞) it suffices to give the

logarithmic derivative g(r) = rψ′(r)/ψ(r) for all energies at r = a. The purpose

of their work is to see how g scales with a. This is one of the general aims of

renormalization theory, which is concerned with the separation of energy scales that

makes renormalization possible. It’s helpful to recast the Schrödinger equation in

terms of dimensionless variables x = r/a, κ = ka, U = V a2, so that our boundary

condition is applied at x = 1:[
− d2

dx2
+ U(x)

]
ψ(x) = κ2ψ(x)
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x
ψ′(x)

ψ(x)

∣∣∣∣
x=1

= g(1, κ)

(We use a slightly nonstandard form of the logarithmic derivative in order to make

g dimensionless.) Of course, we could impose the boundary condition at any other

value of x, say x = λ. It would be useful to have the new equation be as close to

the form of the old ones for comparison, so we might want to express the boundary

condition as x/λ = 1. What we really want to do is rescale the Schrödinger equation

so that the boundary condition is of the form x = 1 (we will see the benefit of this

when we are done); this is done by dilating the Schrödinger equation, as we did in ch.

1, but since we are not necessarily working with scale invariant potentials we have to

be careful. The first step is to dilate the wavefunction:

ψλ(x) = ψ(λx)

So when you differentiate it with respect to x a factor of λ pops out, and for the

Schrödinger equation to retain its form the potential must scale appropriately, so

that

Uλ(x) = λ2U(λx)

and

κλ = λ2κ.

The boundary condition scales as it should:

gλ(x, κλ) = g(λx, κ).

In terms of these variables our scaled equations look like our original equations:[
− d2

dx2
+ Uλ(x)

]
ψλ(x) = κ2

λψλ(x)

x
ψ′λ(x)

ψλ(x)

∣∣∣∣
x=1

= gλ(1, κλ)

We can write formal expressions for how Uλ and gλ depend on λ. We are interested

in two cases, the λ → 0 limit, which corresponds to probing the system at short

distances and is related to our cutoff schemes, and the λ → ∞ limit, since that

corresponds to asymptotic low-energy properties.1 It’s possible to get a fair amount

1Mueller and Ho [37] are interested mostly in the λ→∞ properties.
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of information out of the problem from the form of Uλ. For a potential that falls

off slower than 1/r2, Uλ tends to become very large as λ → ∞, and for one that

falls off faster it tends to vanish. Scale invariant potentials don’t do anything at all.

This is linked to the fact that some potentials are more “active” in some regimes; for

instance, the 1/r potential has infinitely many shallow bound states, while the 1/r4

potential has infinitely many deep bound states.

The relation for the boundary condition is derived from the following form of the

Schrödinger equation in terms of logarithmic derivatives:

x
∂g

∂x
= x2(U(x)− E) + g(x)− g(x)2

If we plug in all the scaling factors and do out the algebra, the scaled version of this

is

λ∂λgλ(x, κλ) = x2(Uλ(x)− Eλ) + gλ(x, κλ)− g2
λ(x, κλ) (5.8)

We are not interested in the dependence of gλ on x, since we only ever evaluate it at

x = 1, so we can write it as gλ(κλ), and expand out in powers of κ. We are most

interested in low-energy solutions, so we can drop all powers of κ and investigate

leading behavior. (At least, it’s worth a try.) For the case of the inverse-square

potential, since U doesn’t flow, we find that the equation is

C + g − g2 = 0. (5.9)

For C > −1/4, this equation has two real roots; otherwise, it has complex roots, which

do not correspond to a self-adjoint boundary condition. (For more on this, see ch. 6.)

This shows that there isn’t a single asymptotic solution for the boundary condition.

These properties are the same at both the infrared and ultraviolet ends, which is

expected since the 1/r2 potential done by the method of self-adjoint extensions has

an exact limit cycle at all levels.

The scaling method also gives us a pleasing duality between the behavior of long-

range forces like 1/r in the infrared and shorter-range forces like 1/r4 in the ultraviolet.

(We are thinking of the attractive behavior; the repulsive potentials always have a

fixed point at the Friedrichs extension.) The fixed point, as λ → 0 or λ → ∞, is

U → −∞ in this case. Ref. [37] works out the infrared case; we do the ultraviolet,

which is more relevant to our purposes. By construction of our boundary condition,

x = 1 always, so for a low energy state,
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λ∂λgλ = −U(1)
1

λm
+ gλ − g2

λ (5.10)

where m = −n + 2 for an xn potential. Since the only dependence is on λ, we can

rewrite the partial derivatives as total derivatives, and consider

λ
dg

dλ
− g + g2 = − a2

λm

which can be solved in terms of Bessel functions of argument 1/xm/2. For the partic-

ular case of the 1/r4 potential, Mathematica yields

g(λ) =
(−λ+ aA) cos

(
a
λ

)
− (a+ Aλ) sin

(
a
λ

)
λ
[
cos
(
a
λ

)
+ A sin

(
a
λ

)]
Asymptotically this is

g(λ) ∼ a

λ

A cos
(
a
λ

)
− sin

(
a
λ

)
cos
(
a
λ

)
+ A sin

(
a
λ

) .
The form of boundary condition that we’ve used earlier is λg(λ), so this is consistent.

The condition is periodic in 1/λ, as we found by our previous methods. One can

escape the periodicity only by allowing λ to take on complex values in order to turn

the trig functions into hyperbolic functions. Doing this corresponds to the complex

boundary conditions that we discuss in the next chapter. Interestingly, the flow

behavior of long-range potentials as λ → ∞ is very similar to this (for details, see

[37]).

The λ→∞ limit of this potential is also interesting because it actually has a fixed

point. In this case, U → 0 for the 1/r4 potential, and therefore (for the zero-energy

solution) the equation becomes:

λ
dg

dλ
= g − g2

The solution to this is

g(λ) =
λ

−C + λ

which flows to 1 as λ→∞. This is a manifestation of the fact that the potential has

no infrared pathologies because it falls off sufficiently fast. However, the short distance

physics still affects our low-energy observables, and renormalization of the ultraviolet

spectrum is still required; for example, the zero-energy phase shift is determined by

Case’s phase/a regularization scheme:
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ψ(0, r) = Br cos

(
λ

r
+ φ

)
and therefore the scattering length a is given by

a = λ cotφ.

The scaling technique is equivalent to the δ-function ring cutoff in the ultraviolet,

since both in effect specify the logarithmic derivative of the function at the boundary

point. The difference is one of interpretation. In one case, you squeeze the function

in and out of the r = 1 area by stretching and contracting the coordinate variable

and find out how the logarithmic derivative evolves; in the other, you counteract the

changes of the outside region by adding a term to the logarithmic derivative that’s

big enough to cancel it out.

5.6 Consistency with Chapter 4

We now have two different pictures of the 1/r2 potential—one with a single bound

state and another with infinitely many. The cutoff methods and self-adjoint extensions

both give the (asymptotic) relation

En
Em

= e2(n−m)π/Ξ.

As Ξ → 0, if we fix an arbitrarily chosen bound state Em at k, both methods agree in

sending all others with n < m to zero. However, the method of self-adjoint extensions

sends a whole family of states m < n to −∞, whereas the cutoff schemes of Ch. 4 do

not have these states at all. Don’t the deep states matter? The answer is that they

don’t, from our EFT perspective, because they are highly localized, and therefore

cannot be probed unless we have arbitrarily good resolution—in which case we know

the theory exactly at all energies and renormalization is unnecessary.

For example, one of the ways to detect a bound state is to look for poles in the

scattering length or, equivalently, in tan δ0. Levinson’s theorem (see Chapter 7 or

[62]) says that the scattering phase shift goes through Nπ as k is increased from 0

to ∞, where N is the number of bound states. (We require that it be a monotonic

function of k, which is why it goes through π instead of going back to zero.) However,
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to detect a bound state with energy kb you need to be able to send in a beam of energy

kb, and this ensures the privacy of deep bound states.

From what we’ve seen so far it seems that RG flows asymptotically produce the

same behavior as self-adjoint extensions. This is not too surprising if you think of

self-adjoint extensions as corresponding to the possibilities for point interactions at

the origin. The renormalization techniques we have used in this chapter work by

adding smeared-out point interactions, and self-adjoint extensions are the limiting

forms as ka → 0. This would explain, for example, why the self-adjoint extensions

of the 1/r2 potential have a limit cycle going all the way down. This is also why

self-adjoint extensions are not a complete treatment of any physical problem; at some

energy level we enter the regime of transient (high-energy) physics, where the true

potential differs from its asymptotic form.

Spectra Unbounded from Below

Strongly attractive power-law potentials have very often been rejected as unphysical

because they have spectra unbounded from below. But as our treatment in this

chapter has shown, as far as the two-body self-adjoint problem is concerned the

unboundedness is not an issue, and in fact it’s impossible even to tell—except with

infinite energy resolution—whether a given potential is unbounded from below. No

doubt there are several physical situations where such a potential would be entirely

unacceptable; however, as we see in the context of the Efimov effect [27], there are

some where it gives a powerful description of the physics.

The fact that the asymptotic solution is unbounded also gives us a way of classify-

ing renormalization schemes. We saw earlier in this chapter that the continuous paths

would not go all the way down, and mentioned that this was due to unboundedness.

This connection is important, so let’s go over it more carefully. Given a regulariza-

tion scheme Σ of the λ/r2 potential, we denote the regularized potential by V (Σ, a, x)

and the lower bound (see Chapter 2) of the Hamiltonian by B(Σ, a). For |x| > a,

V (Σ, a, x) ≡ V (x) for all regularization schemes. Clearly, if V (Σ, a, x) ≤ V (Σ′, a, x)

at all x ∈ Rn, then B(Σ) ≤ B(Σ′). Therefore, for all cutoff regularization schemes,

B(Σ, a) ≤ B(Σ0, a), where Σ0 is an infinite barrier for |x| < a. Since B(Σ0, a) → −∞
as a → 0 (new wiggles, and new states, keep appearing at a log-periodic rate),

B(Σ, a) → −∞ too.

Now suppose we want to fix a bound state of index j. This is the same as fixing
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the ground state (or bounding the ground state energy from below), and is therefore

equivalent to fixing B(Σ, a) as we take a → 0. We know we can’t do this because

B(Σ, a) → −∞ as we just proved. This shows us that no regularization scheme

that keeps the long-distance physics fixed can also fix the bound state with j nodes;

thus the suggestion in [31] that the unbounded spectrum might result from using the

wrong point interaction is invalidated. For the 1/r4 potential, it shows that there is

no way to renormalize the system to arbitrary distances so that it has a fixed number

of bound states. On the other hand, it also shows that any renormalization scheme

that maintains the lower bound of the spectrum must force the coupling up to the

critical value, where it becomes a Klauder phenomenon, as discussed in Chapter 7.

This argument is harder to make rigorous for schemes like Schwartz’s, but clearly

the basic idea carries through. The bound of the regularized theory goes smoothly

to −∞, and if you fix it the only way to keep the bound is to change the theory

continuously so that in the limit you get a bounded theory. This clearly can’t still be

very singular, so one has to push it up to the critical point where the theory becomes

bounded. For the 1/r2 potential this is at λ = −1
4
; for more singular potentials it’s

at zero coupling (the renormalized theory is a delta function).

5.7 RG Treatment of Weak Coupling

Let’s return to the non-Friedrichs extensions we discussed in chapter 3 with our new

apparatus, which allows us to talk about the extensions of the 1/r2 potential from a

more physical point of view.

5.7.1 What Sort of Physics?

A curious feature of these extensions is that a potential that appears to be everywhere

positive has states of negative energy. It has been suggested ([20],[51]) that this is

due to δ-function interactions. It is certainly true that all short-distance physics is

due to delta function-like operators from an EFT point of view; however, it turns out

not to be true that

V =
λ

x2
θ(x− a)− β

a
θ(a− x)

produces one of these extensions as a→ 0. From our usual boundary condition
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qa tan qa =
1

2
+ ka

K ′
ζ+1/2(ka)

Kζ+1/2(ka)

since qa ∼
√
βa → 0, we can use the small-angle approximation, so that (letting

ξ ≡ (ka/2) and ν = ζ + 1/2)

βa =
1

2
+ ν

ξνΓ(−ν)− ξ−νΓ(ν)

ξνΓ(−ν) + ξ−νΓ(ν)
(5.11)

There are two easily solved cases. The first is when ν is sufficiently big that we can

drop the xν terms; the other is when ν → 0. In the first case, the equation reduces to

0 ≈ βa =
1

2
− ν ⇒ ν = 1/2 ⇒ λ = 0 (5.12)

so the only solution is our old acquaintance the delta function. When ν � 1 we can

use Γ(ν) ∼ 1/ν to get

0 =
1

2
− ν

ξν + ξ−ν

ξν − ξ−ν

and the rhs is recognizably hyperbolic:

1

2
= ν coth(ν log ξ) ⇒ ν ≤ 1

2
⇒ λ ≤ 0 (5.13)

and therefore the potential must be attractive for bound states to exist. This is telling

us less than we assumed, since anything in the ν ≈ 0 regime is attractive.

So what sort of attractive point potential would work? The following theorem,

due to Simon [85], is suggestive:

Theorem 8 (Simon, 1975) Given a (not wildly pathological) 1D function V (x)

such that ∫ ∞

−∞
(1 + x2)|V (x)|dx <∞,

the Hamiltonian with potential λV has a bound state for small λ > 0 iff∫ ∞

−∞
V dx ≤ 0,

and if the integral is zero, then the potential has a bound state for all λ > 0.
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As it happens our inverse square potential doesn’t fit Simon’s hypotheses because

of its long-range character, but if we cut it off at a suitable R � 1/k the theorem

becomes applicable. Consider the potential

V =
λ

x2
θ(R− x)θ(x− a)− β

a2
θ(a− x)

If β > λ > 0 then this potential supports a bound state for arbitrarily large R. Of

course, the bound state energy might depend on R—though this is unlikely, since the

state is much more localized than the potential. Anyway, Simon’s theorem motivates

us to see if this potential works. We are forced to choose the weak interior coupling

regime to expand out tan qa =
√
β. The boundary condition permits nontrivial

results this time: β = −λ for biggish λ, and β < −λ for small λ. However, the limit

is problematic, and you can see this directly from the fact that the only dimensional

parameter in the problem is a.

So we have an irregular theory, and some kind of renormalization is called for.

What we need to do is run either β or λ against k and see if the theory can be

renormalized. Simon’s theorem might suggest that somehow one should try and keep

the integral fixed; this entails fixing a relationship between β and λ. This is a bad

idea, since one will have to force the external coupling to zero as a→ 0, and this will

give us back the delta function.2 So we run the coupling of the short-distance term

against the cutoff radius a. (For the moment let’s assume ν ≈ 0.) The flow equation

is similar to that in Beane’s case:

−χ(a) tanχ(a) =
1

2
− ν coth(ν log(a/a0))

where we’ve used the previous approximation. But the flow looks like this:

Unexpectedly, χ blows up at a0, which means that β blows up at a0. There are

infinitely many choices of path for smaller values of χ, but all of them flow to χ = 1/2

or some bigger χ. Using a delta function regulator forces χ to flow to 1/2. Both

solutions correspond to a counterterm of the form δ(x)/x, but it’s unclear why the

square well regularization gives you so much freedom.

Looking at the wavefunctions makes it evident that the potential is pathological

in one dimension, at least in the attractive case, since both solutions x1−ζ and xζ

vanish at the origin. For one dimensional potentials a ground state that vanishes

at the origin is abnormal, and has been conjectured [98] to imply an impenetrable

barrier at the origin.

2We’re assuming a result from Chapter 7.
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Figure 5.6: RG Flow for Weak 1D Case. χ vs. a

Now let’s consider the weakly repulsive regime; in this case the boundary condition

(using a delta function regulator) is

−χ(a) =
1

2
− ν

[
1− 2

Γ(−ν)
Γ(ν)

(
ka

2

)2ν
]

(5.14)

where ν > 1/2. This time it’s evident that as a→ 0,

χ(a) =
1

2
− ν

so χ flows to 1
2
− ν = −ζ, and once again the result is a function of the form δ(x)/x.

This is independent of k, so it’s a fixed point (attractor) of the RG flow.

5.7.2 Critical Coupling

We know how to renormalize this problem in two different ways. The first, more

intelligible, method is to transform it into the 2D free particle equation as suggested

in Chapter 3 (i.e. by the transformation v(x) = ψ(x)/
√
x), and renormalize it with

square wells as in Chapter 1; the second is to use any of the regularization schemes

of Chapter 4. The results are the same; one gets a bound state with wavefunction
√
krK0(kr). (And the same s-wave phase shift too, see Chapter 7.) One should point

out, though, that the ground state wavefunction is pathological in one-dimensional

QM, since it vanishes at the origin and has an infinite derivative there.
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5.7.3 Two Dimensions

(Recall that in two dimensions the weak regime is for 0 ≤ λ < 1.) Suppose we try

regular 2D delta functions: the matching condition for ν � 1 is

β = ν coth(ν log(ka/2)). (5.15)

If long-distance physics is fixed then β → −ν as a → 0, independent of k. (We

approximated out the Bessel function; For small ν consistency demands small β.)

Here, again, we have a fixed point in the flow, and it corresponds to an unregularized

2D delta function. Amusingly, this equation explains “why” the 2D delta function

needs to be renormalized, since ν = 0 requires β = 0 too. For less weak coupling the

expression is not as compact, but the result is pretty similar:√
β
J ′0(
√
β)

J ′0(
√
β)

= −ν

5.7.4 Conclusions

In two dimensions it’s reasonably clear what’s going on. There’s a delta function

interaction at the origin that just overcomes the repulsive enveloping potential; it

flows to a fixed point under renormalization, because a finite-strength delta function

is too strong in two dimensions (see Chapter 1). The three-dimensional problem,

too, is relatively sensible; we used Meetz’s regularization scheme [6] in Chapter 3 to

argue for the Friedrichs extension. With the one dimensional repulsive case, too, one

can argue for the Friedrichs extension from the positivity of the potential. However,

as Simon’s theorem proves, a regularized 1D attractive potential does have a bound

state.

The wavefunction is pathological at the origin, but this doesn’t affect low-energy

physics. Once we know that there are (a) self-adjoint extensions and (b) reasonable

renormalization schemes, our work as physicists is done. It’s entertaining to speculate

about the “true causes” of pathologies, but a good answer isn’t necessary, which makes

one feel better about not having one.

102



Chapter 6

Fall to the Center

In the classical two-body problem, fall to the center happens if the particles collide

at a finite time. For the l 6= 0 case—which is the interesting one, classically—the

centrifugal barrier must be overcome, and a class of potentials that does this is the

attractive 1/rn, n ≥ 2 potentials. Under these potentials, the two bodies are moving

infinitely fast towards each other as they collide, so the boundary conditions for the

collision are ill-defined. If the collision is elastic, they bounce back in a way that

keeps the solution time-reversal invariant, moving with infinite velocity at first. If we

had a bound state (total E < 0) to begin with, this motion is repeated endlessly. The

total energy of the system is conserved; this corresponds to the quantum mechanical

problem as we have been doing it, in which a bound state evolves without dissipating

energy. Classically the collision might also be inelastic; the particles might stick

together after they collide. The energy has got to go somewhere, even in the classical

view, but if we aren’t interested in the details it’s easy to treat the energy as just

being dissipated. The self-adjoint operator formalism of quantum mechanics does not

permit this general sort of dissipation, however, since the (unitary) time evolution of

a state is given by ψ(t) = e−iEtψ(0) for an eigenstate, and evidently1

〈H〉ψ(t) = 〈ψ(t) |H|ψ(t)〉 = e−iEteiEt 〈ψ(0) |H|ψ(0)〉 = 〈H〉ψ(0)

and energy is conserved for eigenstates. Since any Hermitian operator has a complete

set of eigenstates, it has at least some nontrivial eigenstates (bound or not); but

in the classical picture with an inelastic collision, there simply can’t be any energy

eigenstates.

1I have used Dirac notation this once because the ideas are so familiar.
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The quantum theory of inelastic collisions [62] deals with this problem by in-

troducing the so-called multiple-channel method, where energy and probability are

allowed to slosh back and forth among the “channels” corresponding to interactions

of the subsystems. Energy is conserved for the whole system, but not in any par-

ticular channel; therefore, projections of the Hamiltonian to a particular channel are

not necessarily self-adjoint operators. Note, however, that as the Hamiltonian is not

time-dependent, neither are its projections.2

A special case of this idea is when incoming particles are absorbed at the origin;

this leads to probability loss, as well as energy loss, from the system. Clearly, one

way to get this would be if we had complex eigenvalues of the form Ex − iEy, since

this would lead to time evolution given by

〈ψ(t)|ψ(t)〉 = e−2Eyt

and the probability of finding the particle anywhere would decay exponentially.

6.1 Contraction Semigroups

The time evolution operators U(t) ≡ eiHt form a group under composition, since

U(t)U(t′) = U(t+ t′), and each element has the inverse U(−t), which is also unitary.

Probability-dissipating operators V (t) have the same additive property, but their

inverses create probability—so the group splits into two parts, called semigroups.

The semigroup that dissipates probability is called a contraction semigroup; these

structures are common in mathematical physics, especially in the study of the heat

equation. The generator of a contraction semigroup is called a dissipative operator.

The theory of semigroups has been extensively developed, and most results are too

technical to be directly helpful; in practice one typically just assumes that complex

phase shifts work because they seem to. This is the attitude, for instance, of Schiff

[61]. The exception is the relation linking semigroups and the machinery of self-adjoint

extensions, which we will now discuss.

Recall from Chapter 2 that a densely defined Hermitian operator generates unique

unitary time evolution iff its deficiency indices are (0, 0). For deficiency indices (1, 1)

2This is the Schrödinger picture, in which wavefunctions carry the time dependence. If one were

particularly interested in energy loss one might prefer the equivalent Heisenberg picture, in which

the operators (dynamical variables) of the theory carry the time dependence.
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we saw that the self-adjoint extensions were parameterized by U(1), a one-parameter

family of boundary conditions. One way to represent U(1) is as eiθ. One is motivated

by mindless curiosity, as usual, to ask what happens if θ is permitted to be complex.

Since |ea+ib| = ea, this is the same as asking what happens if, instead of extending

our domain by functions of the form

Ψ+ + eiθΨ−,

we allow

Ψ+ + AeiθΨ−

for some fixed A ∈ R+ (or as Ψ+ + zΨ− for z ∈ C). (This isn’t all that unreason-

able, since many of the examples of Chapter 2 make sense with complex boundary

conditions.) Now suppose we wanted to prove that our self-adjoint extension G was

in fact self-adjoint: one way to do this would be to check for complex eigenvalues of

the form c = a + ib by solving (G − c)ψ = 0, or (ψ, (G − c)ψ) = 0 for an arbitrary

ψ ∈ DG. ψ can be written as φ+ λ(Ψ+ + eiθΨ−), so that

0 = (ψ,Hψ)

= (φ,Hφ) + λ(φ,H(Ψ+ + eiθΨ−)) + λ((Ψ+ + eiθΨ−), Hφ)

+|λ|2(Ψ+ + eiθΨ−, H(Ψ+ + eiθΨ−)).

Of these the first term is the expectation value of a Hermitian operator in its domain,

so it must be real. Because φ ∈ DH , the domain of the original symmetric operator,

we can rewrite the second pair of terms as

λ(Hφ,Ψ+ + eiθΨ−) + λ(Ψ+ + eiθΨ−, Hφ).

These terms are conjugates, so their sum is real. Note that this only uses the fact

that Ψ+ and Ψ− are in the adjoint domain. Similarly, the last term can be rewritten

as

|λ|2
[
i− i+ ieiθ(Ψ+,Ψ−)− ie−iθ(Ψ−,Ψ+)

]
(6.1)

and since the last two terms are just conjugates this vanishes. Therefore,

=[(ψ, (H − c)ψ)] = =[(ψ,Hψ)] + =[(ψ,−cψ)] = =[−c(ψ, ψ)] = −b 6= 0.
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A fortiori, (H−c)ψ 6= 0 and c is not an eigenvalue. Now suppose that ψ = φ+pΨ+ +

qΨ−, which is a more general boundary condition. The first two terms would still

cancel out, and the third term would be

|λ|2
[
i|p|2 − i|q|2 + ipqeiθ(Ψ+,Ψ−)− ipqe−iθ(Ψ−,Ψ+)

]
(6.2)

The cross terms are still conjugates and add up to give a real value, but that leaves

us with the certainly imaginary quantity

i|λ|2(|p|2 − |q|2).

For a complex eigenvalue to have any chance of working, the condition is that

|λ|2(|p|2 − |q|2) = b.

Since p and q are determined by our choice of self-adjoint extension, b is fixed by the

boundary condition, and in particular, is always going to have the same sign. This

gives us an important result:

Theorem 9 All the eigenvalues of extensions of a symmetric H are in the same

closed half-plane.

(Our discussion of this result has followed Ref. [7].) The boundary condition is

either entirely a source or entirely a sink, that is, probability is either only created

or only lost. This might seem trivial, but it isn’t; we could have had eigenvalues in

both half-planes, in which case we would have a mixture of source and sink behavior

for different states.

In the rest of our treatment we will assume that permitting complex

θ is equivalent to permitting complex numbers instead of real numbers

in our boundary conditions. These complex eigenvalues are about the furthest

meaningful generalization we can make. Suppose we try to use the whole adjoint

as our nonunitary Hamiltonian, and send in a scattering state along the half-line.

When it gets to the origin, it doesn’t know what to do because there’s no boundary

condition there, and we cease to have a well-defined problem.

6.2 Dissipative Particle on Half-Line

In Chapter 2, we had derived the boundary condition for a particle on the half-line

to be
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ψ(0) = αψ′(0)

Let α = ia. Suppose we send in a scattering state Ae−ikx + Beikx. The boundary

condition enforces A+B = ka(A−B). For a = 0, the boundary condition is A = −B,

which is self-adjoint. (This is the Friedrichs extension.) As we increase a,

B =
1− ka

1 + ka
A

so the amplitude of the reflected wave diminishes until at ka = 1 it vanishes altogether.

However, as we increase k further we get back some reflection, andB/A asymptotically

approaches 1 again. The vanishing of the reflected wave for certain values of k is

familiar from wave mechanics.

One might interpret the absorptive solution as saying that there’s no outgoing

wave and the particle has been absorbed at the origin—or, more mundanely, just

transmitted through the origin. This is a good example of how complex phase shifts

work; we can replace all information about the negative half-line with a boundary

condition. It cannot be emphasized enough that using a dissipative Hamiltonian on

a subspace does not necessarily imply pathological behavior on the whole space or in

the physical problem.

The boundary condition α = ia does not permit any bound states. But letting

α = −(1−i)a gives us a normalizable eigenfunction of energy −
(

1
a−ai

)2
, which decays

exponentially with time.

6.3 Absorption by a 1/r2 potential

The first treatment of absorption by singular potentials is by Vogt and Wannier (1954)

[8], who worked the scattering problem for 1/r4 potentials. Perelomov and Popov

(1970) [20] treated absorption by a 1/r2 potential in some detail, and Alliluev (1971)

[21] proved that the set of eigenfunctions was complete. The solution of greatest

interest corresponds to complete absorption. The interest in this solution is chiefly

due to three features: its similarity to the classical limit with absorption, its analytic

relation to the weakly attractive problem, and its connection with the experimental

realization of 1/r2 potentials by scattering neutral atoms off a charged wire [23]. In

addition to these, it is the only extension for which scale invariance holds.
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To keep the problem as simple as possible—and also to relate it directly to

experiment—we will work in two dimensions. We saw previously how a boundary

condition can be derived from the method of self-adjoint extensions for this potential;

here we will merely cite the result:

iνψ + rψ′

iνψ − rψ′
=

Γ(−iν)
Γ(iν)

(
kbr

2

)2iν

(6.3)

Self-adjoint extensions correspond to real choices of kb, for which the rhs has magni-

tude one; allowing kb to be complex relaxes this restriction. In particular, it allows us

to pick a sort of “Friedrichs extension,” in which the solution corresponding to J−iν

vanishes.

It’s easiest to work the scattering problem by requiring that ψ ∼ (kr)−iν near the

origin. If the form we send in is AJiν +BNiν , this means that

B

π
Γ(−iν) cosh(πν) =

A

Γ(1 + iν)
(6.4)

which means that

B

A
=

π

Γ(−iν)Γ(1 + iν) cosh(πν)
. (6.5)

This can be simplified, using the reflection formula for gamma functions, to

B

A
=
− sin(iπν)

cos(iπν)
= − tan(iπν). (6.6)

So asymptotically the function goes as√
1

kr
A cos(kr − iπν/2 + iπν − π/4) = A cos(kr + iπν/2− π/4)

and the phase shift is purely imaginary.

Perelomov [20] adapts Case’s method to get the same result. Suppose you require

all wavefunctions to satisfy the boundary condition

ψ ∼ cos(ν log r +B)

for complex B. For simplicity let’s suppose B = iβ. Then the wavefunction goes

as cos(ν log r) cosh β − i sin(ν log r) sinh β. For the special case B = +i∞, cosh β =

sinh β; therefore the wave goes as r−iν and we have complete absorption.

Complex phase shifts make perfect sense since you can deduce the asymptotic

forms from them; we also avoid the existence of bound states, and therefore the

108



anomaly. A further part of the appeal of the absorptive solution is that it’s a natural

continuation of the Friedrichs extension into the strong-coupling regime [7]; it might

seem conceptually suspect to think of θ and ν as having an analytic dependence, but

Nelson shows that analytic continuation of the functional integral into strong coupling

produces the absorptive result.

Radin’s Result

Radin [22] relates Nelson’s extension to self-adjoint extensions by the following result:

Theorem 10 Let the purely dissipative time-evolution operator (i.e. Nelson’s opera-

tor) be denoted Ud, and the evolution operators generated by the self-adjoint extensions

be denoted Uθ. Then

Udψ =
1

2π

∫ 2π

0

Uθψ
dχ

dθ
dθ. (6.7)

In other words, the dissipative solution is an average over all unitary solutions,

weighted by some probability measure. It’s not surprising that unitary solutions

average out to a dissipative solution; for instance, eiθ and e−iθ are both unitary, but

their average is cos θ, which is not.

The probability measure is the phase of the (kr/2)−iν solution relative to the

(kr/2)iν solution. Recall from Chapter 3 that this was given by

Π1

Π2

=
e−iθ/2e−πν/4 + eiθ/2eπν/4

eiθ/2e−πν/4 + e−iθ/2eπν/4
= e−iθ

eiθ + eπν/2

e−iθ + eπν/2
. (6.8)

Radin calls this term L(θ), and observes that χ(θ) = arg[L(θ)] does the trick. It’s a

fairly equitable average, as one can see from Figs 6.1 and 6.2.

This makes an interesting comparison with the less singular case, where Π1/Π2

behaves as in Fig 6.3.

The physical implications of this result aren’t discussed by Radin. It’s hard to see

what exactly one is to make of them; there is something akin to the spirit of path

integration in the procedure of integrating over a phase, and there are cases in statis-

tical mechanics when one averages over a degree of freedom, but the connection isn’t

obvious. One might suppose that the particle sees all possible boundary conditions

and evolves according to all of them somehow, but this leaves the issue of probability

loss somewhat mysterious (energy doesn’t leak into the self-adjoint extensions), and

doesn’t fit in with our EFT understanding of the problem: it doesn’t make sense to
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Figure 6.1: Graph of χ(θ) vs. θ
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Figure 6.2: Graph of dχ
dθ

vs. θ

talk of a particle seeing all imaginable short-distance physics, since in fact there is

only one type of short-distance physics, and we would know what it was if we had

sufficiently good resolution. We feel that the claim by Bawin and Coon [25] that this

result explains absorption with more “rigorous mathematics” than the complex phase

shifts is unjustified, even if one defines rigorous as difficult.

This result, or an analogue, ought to apply for potentials more singular than 1/r2;

unfortunately, they’re not analytically solvable so it’s hard to prove this. The general

idea is that if there is no preferred self-adjoint extension—and there isn’t for any of the

strongly singular potentials—the only preferred solutions are those that correspond

to complete absorption and complete emission.
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Figure 6.3: Graph of (alleged) χ vs. θ in the weak regime

6.4 Experimental Realization

In 1998, Denschlag et al [23] realized a (basically quantum) 2D inverse square potential

experimentally. They studied the behavior of cold lithium atoms in a cylindrical

magnetic-optical trap (MOT), through the middle of which there was a thin wire.

They observed the number of atoms in the trap to decay exponentially, consistent with

the classical limit and also with the contraction semigroup treatment of the problem.

The important thing conceptually about this experiment is that it reminds us of the

diversity of boundary conditions that can be realized—there is nothing strange about

atoms being absorbed by a charged wire—and the corresponding breadth of sensible

solutions to a problem like the 1/r2 potential.
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Chapter 7

Klauder Phenomena and

Universality

Klauder phenomena are cases where a perturbed Hamiltonian H0 + λV does not go

smoothly to H0 as λ→ 0, i.e. the spectra don’t converge to their limiting value. This

clearly requires V to be singular somewhere, but on the other hand not all singular

potentials have associated Klauder phenomena. The origin of Klauder phenomena

isn’t too surprising. For instance, consider the one-dimensional repulsive potential

λ|x|−N for very largeN . This is an infinite barrier between the half-lines for arbitrarily

weak λ. For λ = 0, however, V = 0. Cases like this arise all the time in one-

dimensional quantum mechanics (see Chapter 8), but this chapter deals mostly with

similar phenomena on the half-line and for d > 1.

7.1 Self-Adjoint Extensions and Klauder Phenom-

ena

Generally, for self-adjoint extensions of a Hamiltonian, the bound state energy kb

is related to the coupling λ and the self-adjoint extension parameter θ. We can

draw contours of constant kb(λ, θ), and the intersections of these contours with the

ν = 0 axis can be thought of as representing a particular Klauder phenomenon. For

singular potentials (at least, in more than one dimension), ν = 0 corresponds to a

delta function at the origin. (This is not saying very much, since δ-function potentials

are defined in terms of self-adjoint extensions.) There isn’t anything particularly

suspect about this, since as one tunes an interaction one doesn’t normally leave its
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short-distance parts unchanged, but expects them to vary smoothly.

Assuming that potentials are continuous in the extended λ− θ plane, the limit as

λ→ 0 of any perturbation should be a δ-function. The physical reason for this is that

as you tune the coupling to zero the potential becomes very weak almost everywhere,

and since the wavefunctions are almost never within the central region of the potential

they are very slightly affected by the details of the interaction. (This is the same logic

we use a few sections down, while discussing universality in resonance phenomena.)

If this were true then all Klauder phenomena of the free Hamiltonian should be δ

functions. This would have severe consequences for any attempt to renormalize, say,

the 1/r2 potential by running the bound state against the global coupling. We know

from the treatment of Chapter 5 that, at least asymptotically, a regularized theory

reproduces the behavior of a self-adjoint extension. Therefore, taking the λ of a

regularized theory to zero with the energy kept constant is the same as following a

kb(λ, θ) contour, and should take you to a delta-function perturbation of H0 as you

take the coupling to zero. That is, for any of the regularization schemes of Chapter

4:

a→ 0 ⇒ ν → 0 ⇒ θ → θ0

for constant kb. This suggests that any such renormalization eventually reproduces a

point interaction—which is consistent with the fact that the bound state wavefunction

and the s-wave phase shift for the 2D “renormalized” inverse square potential are the

same as for the 2D delta function. This obviates the need for a renormalization

procedure, as well as calling its validity into question. We work out the 1/r2 example

again, and also demonstrate that the 1/x2 potential reproduces the 1D delta function

if you perform Chapter 4 renormalization on it. We also explicitly work the former

problem in the (λ, θ) plane.

Another application of these relations is to avoid Klauder phenomena by following

lines that pass through kb(0, θ0) = 0, which corresponds to no Klauder phenomenon.

The paths are generally not unique, but (as we shall see) a sensible parameterization

of short-distance physics picks one.
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7.2 Examples

7.2.1 1/r2 in the Plane

Except for the factor of
√
kr this is the same as the 1D/3D case, so that

ψ(r) = Kiν(kr)

and under ch. 4 type renormalization the ground state wavefunction becomes

K0(kbr).

We can work out the s-wave phase shift as usual, by looking at the boundary con-

ditions for AJiν + BNiν . Since at the end we’re going to take ν → 0, the quantity

−B/A will, as usual, serve as tan δ. Using the hardcore cutoff scheme from Ch. 4,

AJiν(ka) +BNiν(ka) = 0

so that

−B
A

=
Jiν(ka)

Niν(ka)
=

π(ka)iν/Γ(1 + iν)

(ka)iνΓ(−iν)− (ka)−iνΓ(iν)
.

With the assumption that Γ(1 + iν) ≈ 1 and a small-argument approximation, this

becomes

− iπν

1− (ka)−2iν

and, plugging in our renormalization rule ν = π/ log kba, this is

iπ2

log kba− log kbae−2πi log ka/ log kba
.

The last of these expressions looks a little forbidding, but we know that as a→ 0,

log ka

log kba
≈ log a

log a
≈ 1

we can do a series expansion in the small quantity 1− log ka/ log kba. We can write

the argument of the exponential as

1−
(

1− log ka

log kba

)
in which case a first order Taylor expansion about e−2πi is

114



e−2πi − 2πi

(
1− log ka

log kba

)
and putting it all together,

−B
A

=
π

2 log kb/k

tan δ0 = π/2 log(kb/k),

which is, of course, the same as with δ2(r).

7.2.2 1/x2 on the Half-Line

The primary difference between the 1D and 3D (l = 0) Schrödinger equations is the

boundary condition that requires u(0) = 0 in three dimensions. A consequence is

that in one dimension an (even remotely well-behaved) attractive potential always

has a bound state, while in three dimensions that need not be the case. A more

mathematical way of stating the distinction is that one normally picks the Friedrichs

extension on R+− 0 when one is doing 3D quantum mechanics, but in one dimension

this extension is usually inappropriate for attractive potentials.

Suppose we regularize the potential with a square well at radius a. It is well-

known that a one-dimensional always attractive potential always has a bound state,

and since the only dimensional parameter is a, dimensional analysis suggests that the

bound state energy must go as 1/a2. To keep it fixed as a → 0 we have to scale λ

accordingly, so that we can take ζ = ν − 1
2

small for our purposes. The boundary

condition is

−qa tan qa =
1

2
+ ka

K ′
ν(ka)

Kν(ka)

which simplifies, with the usual approximations (see Chapter 3), to

−λ =
1

2
− ν

[
1− 2

Γ(−ν)
Γ(ν)

(
ka

2

)2ν
]
.

Keep terms only to first order in ν we can reduce this expression to

−λ = 4ν(ka/2)2ν
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which simplifies further to

kb =
λ

a
.

The bound state wavefunction flows to e−kx as ν → 1/2.

Now let’s consider the scattering states. The outside form of the wavefunction is

AH
(1)
ν (ka)−BH(2)

ν (ka) in terms of the Hankel functions, which we will refer to as H1

and H2. The inside wavefunction is a cosine because we’re working on the half-line

and we assume the problem is symmetric. Once again, the boundary condition is

(qa)2 =
1

2
+ k

AH ′
1 −BH ′

2

AH1 −BH2

and, if we write the Hankel functions in terms of Bessel functions and take the ν → 0

limit, this becomes

λ =
1

2
+

1

2

(ka)3/2

i(A+B)

[
(A−B)

(
ka

2

)−1/2

− i(A+B)

(
ka

2

)−3/2
]
,

which is a nice form because two of the terms cancel out and what’s left is

−ikb
k

=
A−B

A+B

which is the result we expect for the 1D delta function. Therefore, the renormalization

procedure of Chapter 4 has left us once again with a point interaction.

There are infinitely many other ways to calculate the delta function in principle,

but most singular potentials are not exactly solvable so we won’t bother.

7.2.3 Self-Adjoint Extensions

It suffices to show that one can vary the coupling continuously from the strong regime

to the weak regime without losing self-adjointness at any stage, and without having a

discontinuity in the boundary condition. We know that there’s always an extension in

the weak regime, the critical regime, and the strong regime with a given bound state

energy kb 6= 0. So we can tune down the coupling and keep picking the appropriate

extensions. Our boundary conditions (in two dimensions) have the form

νψ + rψ′

νψ − rψ′
=

Γ(−ν)
Γ(ν)

(
kbr

2

)2ν

For ν → 0 this simplifies to
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νψ + rψ′

νψ − rψ′
= −

(
kbr

2

)2ν

and unless kb = 0 both sides approach the same limit. The boundary condition is

vacuous in the limit; however, since the limit exists from both sides and ψ is analytic

in ν at zero, one can think about this as a removable discontinuity, and plug in

the appropriate value of kb. Under a Chapter 4-type renormalization a strong 1/r2

potential flows up the kb contour to the critical value under renormalization; however,

we could just as well have done the critical problem directly. One might also point

out again that the critical problem isn’t in fact anomalous, if by that we mean that

there are no scale invariant boundary conditions. We would always choose the one

case for which the discontinuity is not removable is kb = 0.

This is also the only case for which the boundary condition isn’t vacuous in the

limit; it goes to rψ′(0) = 0, which is equivalent to throwing out the K0 solution.

How does one explain the disappearance of the Friedrichs extension in RG terms?

Suppose you have a potential with a running square well or delta function ring, and

turn up the coupling slightly past its critical value. The ground state does nothing

strange, because the rightmost zero of Kiν(x) is at about π/ν, which is within our

regularized core. However, the very shallow states—whose rightmost zeros are at

nπ/ν for arbitrarily large n, and which are therefore relatively unaffected by interior

behavior—appear near the threshold at this point. Of course, in practice there’s an

infrared cutoff too, so not quite. There will be regimes in any physical (no ultraviolet

or infrared divergencies) potential where the 1/r2 interaction is above critical strength

but there are no bound states.

A notable thing about the strong inverse square potential in two dimensions is

that it’s impossible to avoid a Klauder phenomenon, since you can’t get smoothly to

the Friedrichs extension by tuning the coupling to zero. Therefore any way of tuning

the coupling to zero leaves a bound state in the problem. Presumably this is generic to

strongly singular potentials, since the reason we can’t access the Friedrichs extension

has to do with the loss of the boundary condition. With singularities stronger than

1/r2 it’s also the case that one can’t get at any non-Friedrichs extensions from the

repulsive side, since the operators are self-adjoint and the wavefunctions vanish at

the origin; the critical value at λ = 0 is therefore highly nonanalytic. It’s physically

more evident in these cases that the Klauder phenomena must be generic, since as

you tune down the potential strength you also tune down its range, so that the bound
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state finds itself less and less within the range of the interaction, and therefore less

and less sensitive to its details.

Finally, one should note that there can be no Klauder phenomena in l 6= 0 chan-

nels, because the limit as perturbation strength λ → 0 is self-adjoint. This fact

establishes Klauder phenomena as distinctively quantum mechanical, since the clas-

sical limit usually corresponds to l� 1.

7.3 Nonanalyticity

Suppose you’re tuning up the depth of a square well: at the critical coupling just

before a new shallow bound state appears, there’s a zero-energy scattering resonance.

In contrast, there’s no such resonance in the critical 1/r2 interaction. This is an exam-

ple of the non-analytic dependence of some parts of the theory on coupling strength.

This non-analyticity is also characteristic of the 3D hydrogen atom, which has in-

finitely many bound states when it’s attractive but no resonance at zero coupling. In

both cases the non-analyticity takes place because we didn’t regularize the infrared

properties; however, the α/r4 potential [20], which has no infrared problems, has a

similar non-analyticity in its scattering length at α = 0.

An important thing about Klauder phenomena is that they are an example of

“non-analytic” (by which we mostly mean non-smooth) dependence of the spectra

on coupling at zero. A square well, in contrast, exemplifies “analytic” dependence.

With singular potentials we have drastic transitions at the points where they become

attractive, where the number of bound states goes up suddenly from 0 to ∞, and the

properties of the wavefunctions change drastically. Within a renormalization theory

framework, however, these transitions are artefacts of our theory, and the regularized

theory has no nonanalytic properties.

These nonanalyticities are a natural consequence of the universality of Klauder

phenomena. All singular perturbations must go to a delta function in the λ → 0

limit; however, most of them have infinitely many bound states for arbitrarily low

coupling, and the nonanalyticity comes from the disappearance of all bound states

but one to either −∞ or 0.
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7.4 Universality

The renormalization group gives us a way to think about the universal asymptotic

features of a class of potentials, regardless of their short-distance structure. How-

ever, for the most part we have been dealing directly with motion in long-distance

potentials. A more striking instance of universality is the resonances of short-range

potentials. A standard result of scattering theory is that (in the s-wave channel) the

scattering length a→∞ for a potential with a very shallow bound state. One would

expect resonance phenomena to be generic for the same reason that one would expect

Klauder phenomena to be generic: the scattering length (or the width of a bound

state) is so much larger than the range of the potential that the effect could not pos-

sibly depend on the details of the interaction: most scattering particles go nowhere

near the core. The resonance phenomena of the two-body problem are relatively

straightforward [40]; however, a resonant three-body system exhibits the remarkable

Efimov effect.

7.4.1 Review of 3D Scattering

A key hypothesis of the usual scattering theory is that the scattering potential, or

scatterer, is spherically symmetric and localized. (This is not the case with Coulomb

or 1/r2 interactions, which need special treatment.) Let’s assume that this holds for

now. If we send in a waveform eikz = eikr cos θ, the steady-state solution at large

distances from the scatterer has two parts: the initial waveform and an outgoing

wave from the scatterer, which need not be spherically symmetric.

The expression

ψ(r, θ) = eikr cos θ + f(k, θ)
eikr

r

holds asymptotically. f is called the scattering amplitude. The radial term is merely

a positive energy solution to the free particle Schrödinger equation, which holds when

we’re outside the range of the scatterer. The scattering cross section is the integral of

f over solid angle, and the scattering length is the zero energy limit of f . The partial-

wave analysis, which expands out the θ-dependence of z and f in terms of Legendre

polynomials, is a separation of variables in the scattering problem; its merit is that

it reduces the 3D problem to radial problems with angular momentum l. At low

energies, only the l = 0 (s-wave) equation matters; this is equivalent to saying that

at low resolution (long wavelength) everything looks spherically symmetric. Since,
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in this case, the asymptotic behavior is governed by the free-particle Schrödinger

equation, the one asymptotic property that depends on the scatterer is the phase

shift of the eikr wave. The scattering amplitude for low-energy problems is related

to the phase shift as follows:

f(k) =
1

k cot δ0(k)− ik
.

δ0(k) must blow up as k → 0, to keep the scattering length finite; this is the case

with most sensible scatterers, such as the square well.

7.4.2 Bound States and Resonances

Bound states affect the behavior of the scattering problem bizarrely. Suppose you

tune the energy of your incoming s-wave for a fixed scatterer: tan δ0 always blows

up as the incoming energy approaches that of a bound state. This result is called

Levinson’s theorem, and is sometimes a useful way to count the bound states of a

system. (One can check that Levinson’s theorem holds for all the scattering problems

we work out; see also our discussion in Chapter 5.) A particularly important case

of Levinson’s theorem is when the bound state is very shallow, since then a→ −∞.

The physical origin of this effect is not entirely obvious, but what one sees in the

time-dependent picture is that the particle is almost trapped into a bound state, and

takes a long time to leave. The fact that the scattering length diverges is due to the

fact that bound states become less and less localized as their energy goes to zero,

since the asymptotic wavefunction e−kr/r falls away very slowly as k → 0. In fact, at

k = 0, the asymptotic wavefunction goes as 1/r.

The low-energy properties of systems near a resonance depend very slightly on

the nature of the internal attraction. In the bound state sector, this follows from the

fact that most of the bound state wavefunction is outside the range of the scatterer,

and the particle is hardly ever in the range of the forces. Of course, the system needs

to be exactly tuned for this to happen; in most cases the scattering length can be

obtained by dimensional analysis from the potential.

The scattering length is in some sense a measure of the spatial extent of the

shallowest bound state. Normally this is determined by k, which is determined by the

intrinsic scale of the potential; however, when k → 0 the scattering length diverges.

This connection is made carefully and explicitly in [40].
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Note that this discussion is hopelessly invalid for the 1/r and 1/r2 potentials,

which have infinitely many arbitrarily shallow bound states.

7.4.3 Three-Body Scattering

The problem of three-body scattering is more intricate because of the greater number

of possible configurations. A two-body system is either bound or in the continuum;

but in a system of three interacting particles (let’s say particles 1, 2, and 3) there

are many more possibilities: for instance, two of the particles could be bound tightly

and separate from the third, or all three could be flying apart from each other, or

all three could be bound. Besides, all sorts of transitions—capture of 3 by the 1-2

system, which gets excited in the process; or deexcitation of 1-2-3 by the emission of

3, and other ways of sloshing energy about between the particles—are possible. The

problem is hard enough to think of in the time-dependent picture; in terms of the

time-independent picture it becomes even harder.

However, the physical basis for resonances is more intuitive in the three-body

problem. The idea is that a three-body bound state might be degenerate with a state

in which two of the particles are bound and the third is free. The third particle gets

held up by transition to the bound state, and takes a long time to leave the system.

This time-delay is the basic phenomenon; in the time-independent theory it shows

up—by means we will not discuss, but which can be found in textbooks [62]—as a

large phase shift.

7.4.4 The Efimov Effect

In the resonant two-body problem, there are no bound states; this is good, be-

cause there would be no relevant length parameter in the theory to describe their

spatial extent. However, Efimov [27] discovered in 1971 that there are infinitely

many shallow three-body states in a system of three identical, pairwise resonant

bosons. This is associated with the fact that the effective three-body potential for

this situation is inverse-square—in terms of the three-body “hyperspherical” radius

R =
√
r2
12 + r2

23 + r2
31—and strongly attractive. Since its discovery the Efimov effect

has been studied in great detail; a straightforward but long derivation is given in [40].

The surprising feature is that there are three-body bound states; the 1/r2 structure

follows from scale invariance, which follows from the absence of relevant dimensional
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parameters. The argument that there are bound states is hard, but its conclusion

isn’t too implausible: if the two particles were almost bound without the third, then

their attractive interactions with the third particle ought to push them over the edge.

Once we know this much, we can use our treatment of the 1/r2 potential to deduce

most of the other properties of Efimov states: the level spacing, the single-parameter

dependence of the states, Efimov’s radial law [28], etc. As Ref. [40] notes, this

approach has a slight danger in that the separation of scales is not as clear in the three-

body problem as in the two-body problem. The issue is this: our treatments (and

Efimov’s) of the radial behavior of the problem have assumed that any probability

that goes into the inner region will come out again. This is not the case if deep two-

body states exist, because there’s a small chance that two of the particles will form a

deep bound state, which vanishes from the low-energy sector. Using the terminology

of Chapter 6, we can say that some of the probability is dissipated, and account for

this with the machinery of Chapter 6.

7.4.5 Consequences and Experimental Realization

Kraemer et al [39] recently observed the Efimov effect in an ultracold gas of cesium

atoms. The signature they detected was giant recombination loss, which had pre-

viously been predicted by [94], [40]. Suppose we have a three-body system with a

shallow pairwise bound state (equivalently, a large scattering length). The recombi-

nation rate is the rate at which a three-body bound state transitions into the state

consisting of a shallow two-body bound state and a free particle. At very low energies

recombination happens at a constant rate α. It turns out that the discrete scaling

symmetry of the problem manifests itself in log-periodic oscillations of the recombi-

nation rate in the Efimov regime. The recombination rate is pretty easy to measure

from the rate of loss of atoms (because of combination into shallow molecules) and the

temperature change due to the “anti-evaporation” [39] associated with the formation

of a two-body bound state.
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Chapter 8

The One-Dimensional Hydrogen

Atom

There is some controversy as to what the phrases “hydrogen atom” and “Coulomb

potential” ought to mean in one dimension; the only problem we consider is the

following Hamiltonian:

H = − d2

dx2
− λ

|x|
(8.1)

The spectrum of this Hamiltonian has been argued over at some length in the liter-

ature. Loudon (1959) [98] found a ground state at E = −∞, and degenerate n > 0

states. Haines and Roberts (1969) [99] claimed that there were no degeneracies, but

a continuous negative-energy spectrum. Andrews (1976) [101] got rid of the ground

state by enforcing ψ(0) = 0, but his procedure reinforced the degeneracies. Hammer

and Weber (1988) [102] claimed that Loudon’s ground state was an “extraneous”

solution. Meanwhile, Gostev et al (1989) [104] discussed the potential from the point

of view of self-adjoint extensions. Gordeyev and Chhajlany (1997) [103] solved the

problem with Laplace transforms and semiclassical arguments, and decided that there

were neither degeneracies, nor a barrier, nor a ground state at −∞, nor an unspeci-

fied boundary condition, but that the one-dimensional hydrogen atom had the same

spectrum as the three-dimensional hydrogen atom. Tsutsui et al (2002) [95] worked

the mathematical problem using a technique equivalent to ours, but did not discuss

its physical interpretation.

We work the mathematical problem within a general discussion of the peculiarities

of 1D quantum mechanics. As treatments before this have found, the mathematical
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treatment does not obviously suggest a self-adjoint extension, so our choice of sensible

self-adjoint extensions must be motivated by arguments from renormalization.

8.1 The Trouble with 1D Quantum Mechanics

The nature of the first three spectra suggests a failure of self-adjointness—we have

already seen a continuous spectrum with the 1/r2 potential, and a ground state at−∞
with the δ2(r) potential. The matter of degeneracy is distinctive to one-dimensional

quantum mechanics. One dimension is topologically special in that if you take away a

point the line is no longer connected, so the two half-lines can be made independent.

This is not the case in more dimensions, since you can always go around the origin.

But in one dimension the problem of degeneracy arises as follows: if ψ(x) is an

eigenfunction of eigenvalue k, then so is −ψ(x). The following function is clearly an

eigenstate of energy k that’s orthogonal to ψ:

φ(x) =

{
ψ(x) x ≥ 0

−ψ(x) x < 0
(8.2)

This degeneracy also limits the usefulness of Case’s method in one dimension—for

instance, take the two solutions

φ1(x) = e−k|x|, φ2(x) =
x

|x|
e−k|x| (8.3)

to the free particle equation on R − {0}. They are normally considered to be the

bound states of different point potentials—δ(x) and δ′(x) respectively—but enforcing

orthogonality does not tell you that they belong to different self-adjoint extensions.

Case’s method fails because one boundary condition isn’t enough; the deficiency in-

dices of the free particle Hamiltonian on C∞
0 (R−{0}) are (2,2) rather than (1,1). The

problem bears more resemblance to the particle in a box than to the one-parameter

problems we have otherwise been looking at.

To see how degeneracies arise in one-dimensional quantum mechanics, let’s con-

sider a particle in a box on (−L,L) with an infinite barrier of width (−ε, ε) at the

origin. Clearly, in this situation, the two states in Fig 8.1

are degenerate. Now suppose that, instead of an infinite barrier, we have a high

finite barrier. Then the probability of tunneling is nonzero, and the wavefunction

doesn’t vanish in the shaded region. We no longer expect the wavefunctions to be

124



Figure 8.1: Degeneracy in the Square Well

degenerate, since they look qualitatively different in the shaded region—and in fact

the odd function is at a slightly higher energy.

Allowing degeneracies between the left and right half-plane is equivalent to saying

that they are independent, or separated by an impenetrable barrier, since these are

the only things that would prevent tunneling. This is what Loudon [98] and Andrews

[101] suggest. Their solution has no irregular ground states; however, it does have a

Klauder phenomenon, as Gostev [104] notes. Suppose we perturb a one-dimensional

square well with a Coulomb potential λ/r and tune λ to zero. If we followed the

“disconnected half-lines” prescription for the Coulomb potential we would not recover

the square well in this limit, or lose the degeneracies, because the half-lines would

still be impenetrable in the limit.

8.2 Free Particle on R− {0}

8.2.1 The General Solution

We choose as our initial domain

DH =
{
f ∈ C2(R− {0})|f(0) = f ′(0) = f ′′(0) = 0

}
,

which is dense in L2(R − {0}) because C2 certainly is (by the Stone-Weierstrass
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Approximation Theorem) and pointwise constraints don’t affect norm convergence

(see Section 2.1). Now we find the adjoint by seeing for what functions g ∈ L2 the

expression (Hg, f) = (g,Hf). This is equivalent to asking for what g∫
R−{0}

(
d2g

dx2
f(x)− d2f

dx2
g(x)

)
dx = 0.

We must split up this integral into one over the positive half-line and one over the

negative; in each case, if we assume that g ∈ L2
ac(R−{0}), the absolutely continuous

functions (basically, those that can be integrated by parts) we can integrate by parts:∫ ∞

0

d2g

dx2
f(x)dx =

dg

dx
f(x)

∣∣∣∣∞
0

−
∫ ∞

0

dg

dx

df

dx
dx

and the second rhs term cancels with that in the gf ′′ integral, so that we’re left with

the restriction [
dg

dx
f(x)− g(x)

df

dx

]∞
0+

.

Normalizable functions vanish at∞ and f and f ′ vanish at 0, so there are no boundary

conditions on g → 0+. Similarly, there are no boundary conditions as g → 0−, and

we may assume that the adjoint domain is all of L2
ac(R − {0}). This allows us two

solutions to each deficiency index calculation:

Ψ1
i = e−

√
ixθ(x)

Ψ2
i = e−

√
i|x|θ(−x)

and similarly with Ψ−i. The most general way to characterize a particular self-adjoint

extension is as a vector: (
Ψ1
i

Ψ2
i

)
+ U

(
Ψ1
i

Ψ2
i

)

where the choice depends on four complex parameters with a few restrictions com-

ing from the unitarity of U . The general treatment isn’t particularly enlightening;

we consider only the most interesting special cases, corresponding to two-parameter

families.
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8.2.2 The Disconnected Family

This family of solutions corresponds to diagonal U , in which case Ψ1 and Ψ2 decouple,

and the the functions we add to our domain are as follows:

Ψ1
i + eiθΨ1

−i

Ψ2
i + eiφΨ2

−i.

Since Ψ1
i (Ψ

2
i ) is confined to the right (left) half-plane, we have two decoupled prob-

lems, each of the sort we described in Section 2.4. Depending on the extension we

pick we could elect to have a bound state on either half-plane, both, or neither. The

generic situation with this system is that we have two bound states,

ψ1 = e−kxθ(x)

ψ2 = ekxθ(−x)

k

k’

Figure 8.2: Spectrum of disconnected family, with two bound states
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The Friedrichs extension corresponds to requiring that the wavefunction vanish at

0+ and 0−. If we choose the same nontrivial boundary condition on both sides, the

bound states we get are degenerate.

8.2.3 The Bipolar Family

Suppose we change our reference basis to

Φ1
i = e−

√
i|x|

Φ2
i = e−

√
i|x|(θ(x)− θ(−x))

and pick the new diagonal family. This gives us two decoupled boundary conditions

once again, one applying to odd solutions and the other to even. The interesting cases

are the limits where we pick the Friedrichs extension in the odd channel, which gives

us δ(x), or the extension with ψ′(0) = 0 in the even channel, which gives us δ′(x).

Recall that the domains of these operators are given by

Dδ = {ψ ∈ L2
ac(R− {0})|ψ′(0+)− ψ′(0−) = gψ(0)}

Dδ′ = {ψ ∈ L2
ac(R− {0})|ψ(0+)− ψ(0−) = gψ′(0)}

The bipolar basis is a natural one to use for studying one-dimensional problems,

because we’re mostly interested in the solutions that correspond to point interactions,

which must be either odd or even. A well-known feature of the interactions δ and

δ′ is that a smooth odd function (ψ(0) = 0) would not see a delta function, while a

smooth even function (ψ′(0) = 0) would not see a δ′ at the origin. This follows very

naturally from our setup.

8.2.4 The Degenerate Family

If we choose degenerate boundary conditions with the disconnected reference basis, we

get a two-dimensional eigenspace spanned by ekxθ(−x) and e−kxθ(x). The degenerate

extensions are special in that the bound state wavefunctions don’t depend on the basis

we chose initially. The Friedrichs extension is the most famous member of this family.

One might wonder how much there is in common between the two-parameter

families that correspond to various choices of basis; a general result relating the

families is given in Ref. [95]:
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k

k’

Figure 8.3: Spectrum of the bipolar family

Theorem 11 If the potential on R − 0 is even, and only one solution is regular at

∞—i.e. if the boundary condition at ∞ is determined—the spectrum of eigenvalues

of a self-adjoint extension with characteristic matrix U is uniquely determined by the

eigenvalues of U .

For the simple case we are considering, this says nothing more than that the bound

state energies we pick are the bound state energies; however, with spectra like that

of the 1D hydrogen atom, there’s somewhat more content to this statement.

8.2.5 The 1D Delta Function, Done Differently

(This treatment follows [74] and [76].) The one-parameter family corresponding to

δ(x) can be derived more directly by making the original domain more restrictive.

Suppose we are looking for extensions of the free Hamiltonian on the domain
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DH = {ψ ∈ C∞(R)|ψ(0) = 0}.

As before, we can find the adjoint domain by integrating the inner product and looking

at the expression [
dg

dx
f(x)− g(x)

df

dx

]∞
0+

+

[
dg

dx
f(x)− g(x)

df

dx

]0−

−∞
.

The first term vanishes because f(0) = 0, but since we have made no assumptions

about f ′(0), we can’t assume that the second term vanishes at zero. That is, the

requirement of symmetry gives us nontrivial information about g in this instance.

Our initial assumption of smoothness means that f ′ is continuous at zero, so the

expression reduces to

f ′(0)[g(0+)− g(0−)] = 0

and since f ′(0) is arbitrary, this constitutes a requirement that the wavefunction g

be continuous at the origin. So our adjoint domain could be written as

L2
ac(R− {0}) ∩ {f ∈ L2(R)|f(0+) = f(0−)}.

Imposing this condition reduces the deficiency indices to (1, 1), since the only solution

that’s continuous at the origin is e−
√
ix, and the self-adjoint extensions yield the one-

parameter family of solutions corresponding to a delta function at the origin.

8.3 The 1D Coulomb Potential

8.3.1 Why We Need the Whole Family

Since 1
x
ψ ∈ L2 iff ψ(0) = 0, the domain of the original Hamiltonian must be limited

to functions that vanish at the origin. However, for ψ ∈ DH , (ψ,H†φ) = (Hψ, φ)

is certainly well-defined for φ that don’t vanish at the origin, so clearly we need to

think about self-adjoint extensions. As we shall see shortly, some of the extended

domains do not require wavefunctions to vanish at the origin. This illustrates an

important feature of self-adjoint extensions, which is that the extended operator does

not always do quite the same thing as you would expect of the original operator, at

least at singularities.
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8.3.2 Solving the Equation

If we substitute z = 2kx into the Schrödinger equation on the positive half-plane:

−
(
d2

dx2
+
λ

x

)
ψ = −k2ψ (8.4)

it becomes

d2ψ

dx2
+

λ

2kz
ψ − 1

4
ψ = 0 (8.5)

which is a special case of Whittaker’s equation (AS 13.1.31). The solutions to this

equation are expressible in terms of confluent hypergeometric functions; the following

are a linearly independent pair:

Ψ1 ≡Mκ,1/2(z) = ze−z/2M(1− κ, 2, z) (8.6)

Ψ2 ≡ Wκ,−1/2(z) = e−z/2U(−κ, 0, z) (8.7)

(κ = λ/2k) Both functions are normalizable when κ is an integer, because the hy-

pergeometrics are polynomials in this case. (For these values, both solutions are also

linearly dependent). Otherwise, (AS 13.1.4)

Ψ1 ∼ ez/2z−κ−1

for large arguments. However,

Ψ2 ∼ e−z/2zκ (8.8)

which always decays fast enough to be normalizable. So we have a normalizable

solution on the half-plane for every negative energy; this is the continuum that Haines

and Roberts find, and we recognize it to be a symptom of non-self-adjointness. The

deficiency indices on the half-line are (1, 1).

Since the derivative diverges at the origin, we can’t do what we did with the

1D delta function. So we’re forced to extend the potential on R − {0} and pick

an appropriate family of extensions, as we did with the free particle. However, to

understand what we’re up against, we should first figure out how to extend the

problem on the half-line.
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8.3.3 The Boundary Condition

The self-adjoint extension on the half-line is determined by the factor θ, and the

added wavefunction is

ψ = e−
√
ixU(−λ

√
−i/2, 0,

√
ix) + eiθe−

√
−ixU(−λ

√
i/2, 0,

√
−ix). (8.9)

This is regular at the origin, since

U(a, 0, z) ≈ 1

Γ(1 + a)
+ z log z

1

Γ(a)
+ ξz

where ξ = 2γ − 1 + ψ0(1 + a), and the names of the constants don’t matter. On the

other hand, ψ′(x) is irregular at zero, and, to the crudest possible approximation,

log(
√
ix)

Γ(− λ
2
√
i
)

+ eiθ
log(

√
−ix)

Γ(− λ
2
√
−i)

+ ξ(λ, θ)

If we divide the two forms near zero, we get that

U ′(a, 0, z)

U(a, 0, z)
=

Γ(1 + a)

Γ(a)
log z

What we want to do is, as usual, impose a condition on ψ′(x)/ψ(x) as x → 0. For

notational convenience we introduce −λ/2 = p. This way, we get

ψ(0) =
1

Γ(1 +
√
ip)

+ e−iθ
1

Γ(1 +
√
−ip)

=
1

p

( √
−i

Γ(
√
ip)

+
e−iθ

√
i

Γ(
√
−ip)

)
.

Now the other important thing is ψ′(0), which is undefined, so we want to look

at near-zero behavior. Note that a factor of
√
±i gets pulled out while taking the

derivative, so that

ψ′(x) ≈ log x

[ √
−i

Γ(
√
ip)

+
e−iθ

√
i

Γ(
√
−ip)

]
+ ξ

and, putting it all together, we see that

ψ′(x)

ψ(x)
= 2p log x+ pµ.

And this can be rewritten as the boundary condition

ψ′(x)

ψ(x)
+ λ log x = η(θ, λ) (8.10)
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This expression is consistent with [104]. However, we can get some further details

about the function η, which we need because it’s unclear what its range should be for

fixed λ. The basic form is

η(θ, λ) = ξ(θ, λ)
Γ(1 +

√
ip)Γ(1 +

√
−ip)

Γ(1 +
√
−ip) + eiθΓ(1 +

√
ip)

.

Now we can write out ξ as

ξ(θ, λ) =
√
i
−1 + γ + ψ0(1 +

√
ip)

Γ(
√
ip)

+ eiθ
√
−i−1 + γ + ψ0(1 +

√
−ip)

Γ(
√
−ip)

The first part simplifies to λ(−1 + γ); the second term looks messy, but all we need

is its range, and Mathematica shows that it varies like this with θ:

0.5 1 1.5 2 2.5 3
θ

5

10

15

20

25

ξ

gostev.nb 1

Figure 8.4: Variation of ξ with θ

The Friedrichs extension corresponds to picking θ = 2 tan−1 p. For a bound state

the ψ term would go as ka log kx+ ξ, which is 1
2
(λ log x+ λ log k) + ξ, and this gives

us the all-important “renormalized” boundary condition

λ log kb + µκ = η(θ, λ). (8.11)

(µκ being some agglomeration of uninteresting terms.) We have two different bound-

ary conditions to pick. In the odd sector, by analogy with the case we discussed

above, the Friedrichs extension is appealing; it throws out the U solution altogether

(since, as we know from the 3D case, the M ’s are a complete set) and makes the

wavefunction vanish at the origin, which is exactly what we want. Now, this leaves

us with a choice in the even sector—either we pick the Friedrichs extension again, at
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the expense of introducing degeneracies and not having a ground state, or we pick a

different extension. Which of the other extensions, though? The special one with-

out a singular derivative sounds appealing, but is it really what we want? This is

the point at which the formalism stops being determinative, and we need to look at

regularization schemes.

8.4 Renormalization of the 1/|x| Potential

8.4.1 Loudon’s Regularization

We regularize the potential as follows:

Va(x) =

{
1
|x| |x| > a
1
a

|x| ≤ a
(8.12)

Matching at the boundary (and ignoring exponential falloff) gives

−qa tan qa = 2ka
U ′(κ, 0, 2ka)

U(κ, 0, 2ka)
.

We assume that k doesn’t fall off faster than 1/a (we’ll confirm this in the next

section). Then the lhs can be small-angle-expanded and made to vanish, so that

log ka+ ξ = 0

and if this is to hold as a → 0 then it’s necessary that k → ∞. Loudon concluded

from this that the ground state went down to −∞.

8.4.2 Chapter 5 Renormalization

Let’s regularize the potential with a square well and see how that goes. The boundary

condition is

−χ(a) tanχ(a) = 2ka
U ′(−κ, 0, 2ka)
U(−κ, 0, 2ka)

where we’ve ignored the exponential falloff and the prime denotes differentiation w.r.t.

2kx. The rhs goes as ka log ka→ 0 near the origin, which means we can approximate

the lhs. Using the fact that (by construction of the delta function), χ2 = g(a)a, this

goes to
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g(a) = −2

k

U ′(−κ, 0, 2ka)
U(−κ, 0, 2ka)

. (8.13)

The counterterm becomes logarithmic and repulsive as we take the cutoff to zero: in

RG-speak, there’s a fixed point at g →∞. However, in contrast with the continuous

solutions for 1/r2, we can go down to arbitrarily high-energy cutoffs, so the theory

might be considered renormalizable.

8.4.3 The Quantization Condition

What determines the even spectrum? In the odd case, where we throw out the U

solution, the quantization condition is set by the fact that M(−κ, b, z) blows up too

rapidly at ∞ except when κ = λ/2k is an integer. If we keep U solutions, which are

always normalizable, we are forced to think of some other way to deal with this issue.

As usual with renormalization, the choice of one of the states is arbitrary—this is why

the physics does not uniquely pick an extension—and the determination of the rest

of the even basis is a matter of finding the right orthogonal set. Unfortunately our

boundary condition is a mess. Our problem comes down to finding all the solutions

to

λ log k + µκ = η(λ, θ)

where η is determined by our choice of self-adjoint extension. In this case, µκ = kξ is

k
−1 + γ + Γ′(1− λ/2k)/Γ((1− λ/2k))

Γ(−λ/2k)
and the last term oscillates wildly as k → 0, so λ log k crosses it infinitely often.

The wavefunctions are irregular at the origin, but the spectrum is no longer degen-

erate. We know that the ground state can be taken arbitrarily near to −∞, because

for large k only the log k term matters, and ξ can be made arbitrarily large; also, we

could follow Loudon’s scheme until the energy hit our desired number −K, and then

run the well strength in a manner that fixes K; therefore, we can always ensure that

our deepest even state is the ground state of the theory.

8.4.4 Summary

We have presented a unified treatment of the 1/|x| potential, using both self-adjoint

extensions and ideas from renormalization to pick a sensible solution—or, rather,
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Figure 8.5: The Quantization Condition. Intersections denote bound states.

a family of sensible solutions corresponding to different values of the ground state

energy. We have shown that in one-dimensional problems with parity where the

boundary condition at the origin is unspecified, there are in fact two sets of boundary

conditions to be applied: one for the even sector and another for the odd. We picked

a boundary condition to return the “intuitive” feature that the system ought to have

a ground state. The potential then behaves as if there were an added delta function

at the origin. (Such a perturbation would, of course, have no impact on odd states.)

The spectrum we found by this means was the same as that of Ref. [104].

Some previous authors (e.g. Gordeyev and Chhajlany [103]) rejected this spectrum

by claiming that it solved a different problem from the 1/|x|. However, we showed

by an EFT-type renormalization of the potential that the delta function term can

be derived from arguments identical to those that have been used quite widely to

study singular potentials. We do not wish to claim that our solution is the only

intelligible one—the widely accepted (Friedrichs) solution makes perfect sense if you

assume that there’s an impenetrable barrier at the origin. However, the logic that

derives this solution from the behavior of the Schrödinger equation “at the origin”

is inconsistent with a modern approach to singular potentials; from an EFT point

of view, it is hubristic to suppose that you know anything about this sector of the

theory. As long as the problem is strictly academic, one approach is no better than

another, but to the extent that this problem is physical the EFT approach is the only

sensible one, since we have no real knowledge of the short-distance physics involved.
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8.5 Other 1D Potentials

8.5.1 The Strong 1/x2 Potential

In the strong regime this potential is pathological enough on the half-line; on the full

line one finds that it’s possible to have different sequences of boundary conditions

(and therefore of energy levels) for the even and odd sets of states. In this case

there’s no physical difference between the behavior of even and odd states about the

origin—they’re both oscillating infinitely fast—so the sanest extensions appear to be

the degenerate family.

8.5.2 Singular SUSY

For the potential

V (x) = ω2x2 +
g

x2

on the half-line, a pair of independent solutions is

φ1(x) = xν+1/2e−ωx
2/2M

(
1

2
+
ν

4
− k2

ω
,
1 + ν

2
, ωx2

)

φ2(x) = xν+1/2e−ωx
2/2U

(
−1

2
− ν

4
+
k2

ω
,
−1 + ν

2
, ωx2

)
.

We could play the usual self-adjointness game with these. But as Lathouwers [105]

notes, there are two sets of orthogonal polynomials associated with the differential

equation. These are the following:

φn1 (x) = x1/2+νe−ωx
2/2M

(
1

2
+
ν

4
−
k2

1,n

ω
,
1 + ν

2
, ωx2

)

φn2 (x) = x1/2−νe−ωx
2/2M

(
1

2
+
ν

4
−
k2

2,n

ω
,
1 + ν

2
, ωx2

)
Both sets are square integrable at the origin for 0 < ν < 1, and square integrable

at ∞ because the M ’s are polynomials at the appropriate values, so there’s a net

exponential falloff. We have two sets of boundary conditions to pick, and we consider

three possibilities. (A broader treatment is given in [95].)
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The Friedrichs Extension

If we require that φ be “as regular as possible” at the origin, we must throw out

φ2. This gives us the Friedrichs extension, where the states are degenerate and the

wavefunctions are odd and even extensions of φn1 (x). The energy of the states is given

by En = 4n+2+2ν. (As usual, the Friedrichs extension maintains the lower bound of

the spectrum.) As we take the perturbation to zero, ν → 1
2

and the original spectrum

is not recovered: we find ourselves with only the odd states. The fact that the energy

of all the states is increased by an attractive perturbation is a little surprising, as is

the Klauder phenomenon.

The Anti-Friedrichs Extension

One could take the opposite tack and throw out all the φ1’s (I can’t think of a physical

motivation, but someone probably could.) The energy spectrum in this case is given

by En = 4n + 2 − 2ν, and as you tune the perturbation down you find that you’ve

lost the odd eigenvalues.

The Perturbative Extension

Or, as we’ve tended to do in this chapter, one could pick one of these extensions for

the even states and another for the odd. This has the generic advantage of lifting the

degeneracy between even and odd states. The spectrum is then 4n + 2 − 2ν for the

even states, and 4n+2+2ν for the odd. This choice is a particularly well-behaved one

because, as we take g → 0, the odd states go to 4n+ 3 and the even states to 4n+ 1,

and we get back the spectrum of the original harmonic oscillator. The implications

of these various choices for supersymmetry are discussed in the next chapter.

One of the nice things about this problem is that a naive analysis of the problem

using perturbation theory [105] automatically reproduces the “correct” result from

self-adjoint extensions. This might be tied to supersymmetry (see Chapter 9).
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Chapter 9

Issues of Symmetry

The symmetries associated with the 1/r2 potential fall under two heads: scale in-

variance, which we saw a while ago, and supersymmetry. The latter applies only

to the weak regime; however, it has a tendency to “break” under self-adjoint ex-

tensions. This is not entirely surprising since, as Ref. [77] notes, even such trivial

symmetries as the parity invariance of the infinite well might break under self-adjoint

extensions. However, it’s interesting to see when and whether symmetries break un-

der self-adjoint extensions of singular potentials, because gauging the robustness of

symmetries is important in, say, field theory.

9.1 Anomaly Revisited

The operator Oa, defined as follows,

Oaf(x) = f(ax)

maps the domain of a scale-invariant Hamiltonian onto itself, since

H[Oaf(x)] = Hf(ax) =
1

a2
Haxf(ax) =

1

a2
Hf,

and f ∈ D(H) by hypothesis. Suppose we operate on the domain of the strongly

attractive 1/r2 potential with O. Then

f(ax) ∼ cos(Ξ log(ax) +B) = cos(Ξ log x+B′),

where B′ = log a + B in general belongs to a different self-adjoint extension than

f(x). It follows that the domain of the self-adjoint Hamiltonian is necessarily not
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scale invariant. Similar things can be said about the delta function and the weakly

attractive 1/r2 potential; however, in those cases, we do have one extension that pre-

serves scale invariance: the Friedrichs extension. (In the literature the delta function

is treated as an anomaly but the weak 1/r2 potential is not, though the problems are

in fact very similar. This is because the Friedrichs extension for a “delta function”

corresponds to a zero strength delta function, which most authors take to be no delta

function at all.)

We would expect very direct manifestations of the anomaly in the zero-energy

wavefunction, since Hψ = 0 has absolutely no scale in it. For the Friedrichs extension

of the inverse square potential with λ > −1
4
,

ψ(0; r) = rν

and this is a solution even if we scale the coordinates. However, for λ < −1
4
, the zero

energy wavefunction has the form

ψ(0; r) = sin(ν log r +B).

Under scaling of coordinates this collects a phase shift and becomes part of a different

self-adjoint extension, so we have lost scale invariance.

Once it has been shown that the domain of the Hamiltonian—and therefore the

Hamiltonian—is not scale-invariant, it might seem overkill to work any harder to

show that there is an anomaly. There is, however, an interesting algebra associated

with scale invariance.

The Algebra of Scale Invariance

The SO(2, 1) algebra associated with conformal invariance was first applied to this

problem by Jackiw [41]. We start by deriving Jackiw’s operator D.1 The unitary

operator that performs dilations, Uλ, is given by

Uλψ(x) =
1

1 + λ
ψ(x+ λx)

and if we suppose that U is generated by a dilation operator Λ, we can write infinites-

imal dilations as

1Our treatment, so far as it goes, is entirely different from Jackiw’s. He treats the transformations

as fundamentally acting on the time variable, whereas we work within the framework of the time-

independent Schrödinger equation.
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(1 + iεΛ)ψ(x) =
1

1 + ε
ψ((1 + ε)x).

Assuming ψ to be nonpathological we can expand it around x to first order and get

ψ(x) + iεΛψ(x) = ψ(x) + εxψ′(x)− εψ(x)

and this simplifies to

iΛψ(x) = xψ′(x)− εψ(x)

which is to say that

Λ ≡ −xp− 1.

(We can also write this in Jackiw’s fashion as −(xp + px)/2, if we like.) Now we

commute this with the Hamiltonian:

[H, xp] = [H, x]p+ x[H, p]

[p2 + V (x), x]p+ x[p2 + V (x), p]

This simplifies to

[p2, x]p+ x[V (x), p]

which can be evaluated to be

2ip2 − ix
dV

dx

using the position basis. Normally, xV ′(x) is not the same sort of thing as −2V ,

which is what we want; however, this is the case with the free particle (trivially), the

1/x2 potential, and the 2D delta function. So the commutator tidies up to

[Λ, H] = 2iH. (9.1)

There is another operator associated with these, Ω = x2, whose commutator with H

gives a quantity related to Λ:

[Ω, H] = 4iΛ (9.2)
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Also,

[Ω,Λ] = −2iΩ. (9.3)

The symmetry we expect to be associated with Ω is the conformal symmetry x →
x

1+ax
. This transformation would send a state

ψ(x) → (1 + ax)ψ

(
x

1 + ax

)
,

where the prefactor maintains the norm, and applying the same procedure as we did

for Λ we get

G = −ix+ ix2p,

which is no good. So it seems that the conformal symmetry isn’t a symmetry of the

time-independent problem.

Now we move to the time-dependent picture, where we have immediate problems

because the time-dependent Schrödinger equation says

dΛ

dt
= [H,Λ] 6= 0,

Λ isn’t a constant of the motion. A way to get around that problem is to add an

explicit time dependence to Λ to cancel out the commutator. Doing this gives us

Jackiw’s operator D,

D = tH − (xp+ px)

4
,

which is a constant of the motion. Similarly, the constant of motion associated with

Ω is

K = −t2H + 2tD +
1

2
x2,

which is called the conformal generator. The system closes under commutation:

i[D,H] = H, i[K,D] = K, i[H,K] = −2D.

This might look somewhat unfamiliar; however, if we make the following substitutions:

B = −D,A =
H +K

2
, C =

H −K

2
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we get the much more transparent symmetry group generated by the algebra

i[A,B] = C,−i[B,C] = A, i[C,A] = B

which is SO(2, 1), the symmetry group associated with—among other things—Lorentz

transformations in 2+1 dimensions. De Alfaro et al [107] point out that H and K

correspond, in the standard basis, to rotations about lightlike axes.

These generators correspond directly to the symmetries of the time-dependent

theory that Jackiw [106] notes:

H : t → t+ δ

D : t → t(1 + δ)

K : t →
(

t
1+tδ

) (9.4)

These are respectively invariance under time translation, time dilation, and special

conformal transformations of the time variable. As Camblong [47] mentions, time

has units of length squared in our dimensions, so a dilation of time is automatically

a dilation of length.

The symmetry is broken because D ceases to correspond to a symmetry of the

theory. This shows up in the fact that the commutator i[D,H] = H (or, equivalently,

[Λ, H] = 2iH) breaks. To see how this happens, consider a small finite transformation

U = 1− iεΛ. The commutator of this with H is −iε[Λ, H]. H acts on the undilated

state and HU on the dilated state; since the transformation was infinitesimal rather

than discrete, these states cannot be in the same self-adjoint extension of H. There-

fore, the domain of [U,H]—and therefore of [Λ, H]—can include only those states

that are in all self-adjoint extensions of H, and it is impossible to pick a self-adjoint

H such that [Λ, H] = 2iH. This breaks the SO(2, 1) algebra, and constitutes the

anomaly discussed by Camblong et al [44].

9.2 A Ladder Operator?

The repulsive and 1/x2 potential have features in common with the harmonic oscilla-

tor, as we will discuss, and it’s possible to define structures similar to ladder operators

for them. As ladder operators these are fairly useless because there aren’t any bound

states. For λ < −1
4

we lose the operator structure, but we do have a tower of bound

states. We know we can’t define a number operator for this situation, because the
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system has no ground state. However, in practice we know how the operators work;

the raising operator takes a bound state KiΞ(kx) to the state KiΞ(eπ/Ξkx). Therefore

the raising and lowering operators are discrete dilation operators, of the form

A± = e±iΛ(Ω−1),

where Ω = π/Ξ. We can deduce the commutators [A±, H] from their operation on

an arbitrary state.

[H,A]φ(x) = HAφ− AHφ =
1

Ω
Hφ(Ωx)− AHφ(x)

We can do this explicitly for our scale invariant Hamiltonian by noting that Hφ(x) is

just some function Ψ(x), so we can apply A to it by simply replacing all the x’s with

Ωx’s.

ΩHAφ(x) = − d2

d(Ωx)2
φ(Ωx) +

λ

Ω2x2
φ(Ωx) = −φ′′(Ωx) +

1

Ω2x2
φ(x)

This is just (Ω2 − 1)Hφ(Ωx) = (Ω2 − 1)HAφ(x), and it follows that

[H,A] = (Ω2 − 1)HA.

To see that A is a sort of lowering operator, consider its action on an eigenstate of

energy E.

AΨ =
1

E
AEΨ =

1

E
AHΨ =

1

Ω2E
HAΨ.

Therefore AΨ is an energy eigenstate of H with eigenvalue EΩ2.

9.3 Supersymmetry

(This treatment follows Das and Pernice [49] closely; I have tried to reinterpret their

work in terms of self-adjoint extensions.)

The Hamiltonian for the simple harmonic oscillator can be written in dimensionless

units as

H =
~ω
2

(P 2 + ω2Q2)

where Q = x
√
mω/~ and P = p/

√
mω~. If we write A = Q + iP (in which case

A† = Q− iP since both operators are Hermitian) we can write the Hamiltonian as

H =
~ω
2

(AA† − 1) =
~ω
2

(A†A+ 1)
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and we’ll call the prefactor 1. In these units the energy spacing is 2 and the ground

state for the SHO is at 1. The product A†A ≡ N , the number operator, and the

three operators have the following commutation relations:

[A,A†] = 1, [N,A] = −A, [N,A†] = A†

The first of these properties follows from [x, p] = i~; the other two follow from the

first. These properties make the oscillator very easy and elegant to solve. That’s not

all that it’s good for; in fact, it’s tremendously deep and important, though we won’t

do much more than graze the iceberg. Consider the two Hamiltonians

H+ = N + 1 = A†A

H− = N − 1 = AA†

Evidently H+ = H− + 2. So the spectrum of H+ is {2, 4, 6...} and that of H− is

{0, 2, 4...}. That is, the spectra of H+ and H− are identical except for a zero-energy

ground state that H− has and H+ does not. Potentials with this structure are said

to be supersymmetric (SUSY) partners. Note that the degenerate states merely

have the same energy; they do not look alike; in fact they’re of opposite parity. The

origin or point of this symmetry might seem obscure in quantum mechanics; however,

it’s an important symmetry in QFT and a familiar word to most physicists. The hope

is that understanding the properties of SUSYQM—especially whether and how it is

broken—might help us understand the same issues in field theory.

The almost-degeneracy of the spectrum is independent of what A and A† are.

Suppose

H−Ψ = AA†Ψ = EΨ

It follows that

H+(A†Ψ) = A†AA†Ψ = A†EΨ = E(A†Ψ)

i.e. we have an eigenstate of H+ with exactly the same eigenvalue. (We can run the

same thing in reverse using Q.) The exception to this logic is if either A or A† applied

to a state ψ in the Hilbert space gives a trivial state. If we assume that A = W + iP ,

where W (x) is some function of x called the superpotential, we give a quick and

sloppy argument to show that it’s impossible for both conditions to hold at once.

Suppose Aψ = 0 and A†φ = 0:
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dψ

dx
= −Wψ (9.5)

dφ

dx
= Wφ (9.6)

dψ

ψ
= −dφ

φ
(9.7)

and therefore

ψ ∼ 1

φ

so it’s impossible for both of them to be normalizable.

Supersymmetry is said to hold when either of the solutions is normalizable; a

mechanism that can potentially break supersymmetry is the imposition of boundary

conditions that take the ground state out of the operator domain. This is how self-

adjoint extensions come into the picture.

9.3.1 Supersymmetric Oscillator on the Half-Line

Suppose you take the harmonic oscillator on the half-line and put an infinite wall at

the origin. This throws out the even states, so that the bound state for our harmonic

oscillator is now at 3 and the spectrum is {3, 7, 11, ...}. For a supersymmetric pair,

this would mean that the spectra were {4, 8, 12, ...} and {2, 6, 10, ...}, and this is not

a supersymmetric pair. Das and Pernice show that this is an artefact of our regular-

ization scheme, which breaks supersymmetry between H+ and H−. They regularize

the problem in a way that retains the symmetry; this leads to a supersymmetric

spectrum, but adds delta function terms to the boundary. In terms of self-adjoint

extensions, this means that the supersymmetric partners are not necessarily in the

“same” self-adjoint extension. This is all right since AA† and A†A are not the same

operator.

Supersymmetry is different from, say, scale invariance in that it’s a spectral prop-

erty; it makes sense to talk about the spectrum only after you’ve chosen a self-adjoint

extension. However, the forms of the Hamiltonians are determined by the superpoten-

tial W , so it’s reasonable to ask whether, for a supersymmetric pair, one is guaranteed

that there will be at least some self-adjoint extension for which the spectra are super-

symmetric. In the case of the half oscillator, there is; if we impose ψ′(0) = 0 on H−
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and ψ(0) = 0 on H+, we get back a supersymmetric pair whose spectra are identical

to those of the full oscillator restricted to the half-line.

The regularization scheme they choose works as follows. The superpotential is

W = xθ(x) on the half-line, so they approximate it by Wa = xθ(x) + aθ(−x) and

take the limit as a → +∞. If we write V± as the potential terms of H±, these work

out to be

V+ = x2θ(x) + a2θ(−x)− xδ(x)− aδ(x)− θ(x)

V− = x2θ(x) + a2θ(−x) + xδ(x) + aδ(x) + θ(x)

and of course xδ(x) vanishes at the origin. As a → ∞, the boundary conditions are

set mostly by the δ-function terms, which become strongly repulsive for V+—which

acquires a Dirichlet boundary condition at the origin—and strongly attractive for V−.

In the limit, as Das and Pernice show, this system is supersymmetric.

The disadvantage of their scheme is that they implicitly assume that SUSY holds

at all scales. Since we don’t know that short-distance physics is supersymmetric, it

seems overoptimistic to suppose that no explicit symmetry breaking occurs. How-

ever, within its limits the technique of Das and Pernice is robust, since a regularized

superpotential will always generate supersymmetry, and this should hold in the limit

as long as the potential isn’t too pathological.

9.3.2 The x2 + 1/x2 Potential

Consider the superpotential W (x) = g
x
− x. The operators associated with this are

A =

(
− d

dx
+
g

x
− x

)

A† =

(
d

dx
+
g

x
− x

)
.

The Hamiltonians can be calculated from this:

H+ = A†A = − d2

dx2
+
g2

x2
+ x2 − g

x2
− 2g − 1

H− = AA† = − d2

dx2
+
g2

x2
+ x2 +

g

x2
− 2g + 1

The couplings of the inverse square terms are always in the weak regime; for

g(g ± 1) < −1/4 we must have g complex, but in that case A and A† would fail to
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be adjoints and all hell would break loose. In fact, this potential has issues even in

the weak regime, since the Friedrichs extension is justifiable only for λ > 0,2 and for

any λ < 0 our choice of ground state is arbitrary. However, from the point of view

of supersymmetry this is as much of an opportunity as a problem, since it means

that we can put in a zero-energy ground state by hand. This is possible only if

λ < 3/4, |g| < 1/2, which holds either for both Hamiltonians or for neither. The

reason for this restriction is that if λ > 3/4 we have an impenetrable barrier at the

origin; the only regular wavefunction is the one that vanishes. This gives us a twofold

degenerate spectrum of bound states on the line, and supersymmetry is broken for

the same reason as with the cutoff we discussed earlier.

However, for weak g one can use perturbation theory to solve the potential [105].

Let’s assume, without loss of generality, that g > 0. As we have seen, a careful

treatment using self-adjoint extensions gives a family of which a very small subset

are consistent with perturbation theory; the method of Lathouwers picks one of these

automatically. That the direct treatment works is a consequence of the theory of

orthogonal polynomials, which Lathouwers uses. Anyway, the sensible/perturbative

spectrum has two series of levels (α = 1
2

√
1− 4λ):

E±
n = 2(2n± α+ 1)

φαn(x) = xα+1/2e−x
2/2Lαn(x

2)

and the even (E−
n ) [resp. odd (E+

n )] wavefunctions are even [odd] extensions of φ(x)

to the negative half-plane.

There’s also an algebraic solution to the problem, which Das and Pernice supply.

One can look for a state of vanishing energy by solving Aψ = 0. As a first-order

equation, this is relatively easy, and

ψ ≈ xge−x
2/2

so we have picked the self-adjoint extension that gives us a bound state at zero energy.

Which extension does this correspond to? Regardless of which potential possesses this

state, V+ has been translated down from its canonical position, so what we’re looking

for is a ground state of the oscillator plus well system at 1 + 2g. Since 2g < 1 this is

too low to be a bound state of the Friedrichs extension. By the method of Lathouwers

2It’s not required in any case; the barrier need not be impenetrable.
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the bound state of the perturbative extension is 2(1−α) = 1+2g, which is just what

we wanted.

Does the rest of the spectrum line up? The first odd state goes to 2 + 2α =

3− 2g. Translating it down takes it to 2− 4g. For V− the first bound state using the

Lathouwers extension is at 1− 2g before translating; on translating by 1− 2g it goes

to 2− 4g and lines up perfectly with the first excited state of V+. The rest is left to

the reader’s imagination.

Of course, one should be careful about saying that SUSY is “preserved” under the

Lathouwers extension. SUSY is, in quantum mechanics at least, basically a duality

relationship; and a better phrasing might be that one way to make a formally SUSY

pair of the x2 + 1/x2 type have supersymmetric spectra is to take the Lathouwers

extension of both operators. One might speculate that the existence of a Lathouwers

extension is related to the problem’s being supersymmetric.

9.4 Virasoro Algebra of the 1/x2 Potential

We didn’t need the harmonic oscillator term to make the 1/x2 potential factorizable.

The relevant operators are

A = − d

dx
+
g

x
,A† =

d

dx
+
g

x
.

These produce the Hamiltonians

H+ = AA† = − d2

dx2
+
g(g + 1)

x2

H− = A†A = − d2

dx2
+
g(g − 1)

x2

and commute as follows:

[A,A†] =
2g

x2

[A†, H] =
−2g

x2
A†

[A,H] =
2g

x2
A

So the Hamiltonian is not a number operator. None of this works for strong coupling,

since that would require g ∈ C, in which case the operators A and A† would fail to
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be adjoints, and the product AA‡, where A‡ is the true adjoint of A, would not be a

legitimate Schrödinger Hamiltonian.

As well as the generator of the SO(2, 1) group, this Hamiltonian has another

algebra associated with it, called a Virasoro algebra, which Ref. [42] uses to discuss

the scaling properties of black holes. Virasoro algebras are of great importance in

string theory; we mention this one mainly for completeness. Let’s suppose that

Ln = −xn+1 d
dx

and Pm = 1/xm. (It’s easy to see that the Hamiltonian can be written

as AA† = (−L−1 + gP1)(L−1 + gP1). The generators Lm and Pn form the following

algebra:

[Pm, Pn] = 0

[Lm, Pn] = nPn−m

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0

[Pm, H] = m(m+ 1)Pm+2 + 2mL−m−2

[Lm, H] = 2g(g − 1)P2−m − (m+ 1)(L−1Lm−1 + Lm−1L−1

are easy to establish, except for the last term in the third commutator, which is

an “extension” of the algebra. Birmingham et al study the representations of this

algebra, and possible extensions of it to the strong-coupling case; however, their main

interest is in the weak sector. Their remarks on self-adjoint extensions are somewhat

surprising; for example, they claim that the Hamiltonian with ν = −1/4 (i.e. the 2D

delta function) has infinitely many bound states with wavefunctions ψ =
√
xK0(knx).

This is clearly inconsistent with the requirement that the operators be self-adjoint,

since K0 is nodeless and definitely cannot be made orthogonal to itself by dilation.

(After all, δ2(r) does not have infinitely many bound states.)
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Chapter 10

Summary and Applications

Renormalization theory teaches us that deep down all singular potentials are normal

and solvable, and that one doesn’t need to know the details of their short-distance

behavior to solve them. Suppose short-distance physics comes into play at a length

scale ε. Then for particles with energy k2 � 1/ε2, such physics manifests itself only as

a boundary condition. The spectrum depends on the boundary condition, which has

two implications—first, that we can’t ignore it; and second, that we can determine

the boundary condition by experimental observation of the spectrum.

So what we need is an effective theory that involves nothing more than the long-

distance physics and the boundary condition (or the experimental observable), and

gives accurate predictions for low-energy observables. There are two ways to do this.

The more explicit one is renormalization, in which one picks a parameterization of

short-distance physics (a square well, say) and explicitly replaces the details of the

short-distance theory with a boundary condition. This is a procedure we have used

in Chapter 5; we scale the short-distance physics as the long-distance physics goes to

zero to keep the observable constant. The other way is to use the procedure of self-

adjoint extensions, which involves applying the boundary condition directly to the

operator’s domain. These methods are equivalent because a square well in the limit

ε→ 0 is a smeared-out point interaction, and (as we have seen) point interactions can

be written as self-adjoint extensions. One should note that self-adjoint extensions do

not give an accurate description of the theory all the way down; their predictions are

valid only to the extent that they coincide with renormalization, which is to say, for

k � 1/ε, where ε is the distance down to which we know what’s going on.

Each of these methods has its limitations: self-adjoint extensions can be difficult
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to calculate, and renormalization schemes might produce scheme-specific effects. (An

example is the continuous paths of Chapter 5.) In addition, as we saw in the case

of one-dimensional quantum mechanics, there are often self-adjoint extensions that

do not correspond to a realistic parameterization of short-distance physics; renormal-

ization is sometimes necessary to find the good extensions. In the one-dimensional

problem, this might mean throwing out solutions with discontinuous wavefunctions.

The link between renormalization and self-adjoint extensions means that any

symmetry in the self-adjoint extensions must manifest itself asymptotically in the

renormalized theory. An example is the discrete scale symmetry of the strong 1/r2

potential. This symmetry also manifests itself in the log-periodic dependence of short-

distance physics on the cutoff radius, which we call a limit cycle.

An interesting feature of very singular potentials is that no continuous scaling of

short-distance physics with a works for arbitrarily small a. Physically this means that

you can’t keep, say, the ground state fixed under renormalization. This corresponds

to the fact that the self-adjoint extensions have spectra unbounded from below, so

as you take the cutoff to zero, bound states keep appearing near the bottom of your

spectrum. What saves renormalization in this case is that a boundary condition

is (asymptotically) fixed by requiring a bound state to be at a given energy, and

it doesn’t matter at all what the state number is. This is related to the notion

of the privacy of deep bound states, which I have shown in the case of scattering

observables—the presence of deep, localized bound states does not affect low-energy

scattering at all. This is analogous to classical wave mechanics, where you need high

frequency (high energy) waves to detect and resolve small features.

Another generic feature of singular potentials is the so-called Klauder phenomenon,

where a potential V is sufficiently singular that H0+λV does not return the spectrum

of H0 as λ→ 0. We have explained Klauder phenomena—or at least the class associ-

ated with singular potentials—in terms of self-adjoint extensions of the free-particle

Hamiltonian, and therefore in terms of delta functions. The origin of these phenom-

ena becomes a lot clearer if one thinks of them in terms of the variation of boundary

conditions as one alters the coupling. We argue (a) that Klauder phenomena are

generic, and (b) that renormalizing the coupling of singular potentials—a technique

quite widely used in the literature—produces a Klauder phenomenon, and therefore

produces generic results that have nothing to do with the potential used.

We have worked mostly with exactly solvable potentials, because those are the
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only cases for which self-adjoint extensions can be calculated exactly and compared

with the results of various renormalization schemes.

10.1 Singular Potentials in Physics

This is a brief catalogue of some places where singular potentials and failures of self-

adjointness are interesting, beyond the two-body Schrödinger equation. We omit the

Efimov effect and the charged wire experiment, which have already been discussed.

10.1.1 The Relativistic Coulomb Problem

The Dirac equation for relativistic spin-1/2 particles in a Coulomb potential can be

written as follows [1]:

du

dr
− χ

u

r
=

(
1− E − αZ

r

)
w(r)

dw

dr
+ χ

w

r
=

(
1 + E +

αZ

r

)
u(r)

where (u,w) are the components of the spinor field, χ is a (half-integer) angular

momentum quantum number, and αZ is the nuclear charge. We can already see the

beginnings of trouble in the fact that the potential term scales with the derivative

term. Case [1] rewrites this equation in terms of a new set of variables as follows:

d2ψ

dρ2
+

(
1

ρ
− 1

)
dψ

dρ
+

(
Eδ

ρ
+
α2Z2 − χ2

ρ2

)
ψ = 0.

When α2Z2 − χ2 > 1
4
, i.e. if the nucleus is sufficiently highly charged, we have the

usual pathologies of the inverse square potential.

Similarly, the Klein-Gordon equation for spin-0 particles can be rewritten as a

Schrödinger equation:

d2u

dr2
+

(
−(1− E2) +

2EαZ

r
+
α2Z2 − l(l + 1)

r2

)
u = 0

and this has the same features.

An early attempt to apply dimensional regularization to the pathologies of the

relativistic Coulomb problem is in Ref. [87], but it has occasioned some controversy

[88]. Another interesting paper is Ref. [26], which relates Case’s method to absorptive

solutions by changing the inner product relative to which self-adjointness is calculated.
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10.1.2 Solvable Models with Singular Interactions

The most famous example is the Kronig-Penney model, which models an atomic

lattice by a one-dimensional array of delta functions. This model, despite its sim-

plicity, can reproduce the electronic band structure of crystals. For the details, see

Ref. [53]. Two classes of one-dimensional models in condensed matter physics, the

Calogero-Sutherland models [13] and the Haldane-Shastry models ([108],[109]),

have inverse square interactions. A Calogero-Sutherland model was recently realized

with ultracold Bose atoms [110]. In addition to these, several shape invariant and

exactly solvable potentials, such as the Pöschl-Teller and Rosen-Morse potentials,

have interactions that are inverse square at certain scales (for details see [91]).

10.1.3 Dipoles and Black Holes

These applications are discussed in Ref. [44]. A familiar fact from electrodynamics

is that a point dipole produces a 1/r2 potential. One would expect to find a critical

strength for the 1/r2 potential to have bound states. This has been verified exper-

imentally for electrons and polar molecules. Another application is in the study of

the near-horizon structure of black holes, which can be modeled by a 1/r2 potential

in certain regimes [44],[42].

10.2 Executive Summary

We could have summed up the contents of this rather long thesis in the following

equivalences:

• Self-Adjoint Extensions = Some Renormalization Schemes

• Other Renormalization Schemes = Delta Functions

• Boundary Conditions = Absolutely Anything

However, brevity 6= intelligibility.
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Appendix A

Deriving the Duality

Transformation

Given the radial Schrodinger equation in its normal, unsubstituted form:[
− 1

r2

d

dr

(
r2 d

dr

)
+
l(l + 1)

r2
− g

r2

(
r

r0

)ε
+ k2

]
R(r) = 0 (A.1)

We make the substitutions

r =
y2/ε

2k
(A.2)

R(r) = y−
1
ε
− 1

2v(y) (A.3)

Plugging (A.2) into (A.1) and collecting the r2 terms gives us

4k2y−4/ε

[
− d

dr

(
r2 d

dr

)
+ l(l + 1)− g

y2

(2kr0)ε
+ k2

]
u(r) = 0 (A.4)

If we left-multiply (order matters because of the differential operator) by y4/ε,

[
4k2

(
− d

dr

(
r2 d

dr

)
+ l(l + 1)− gy2

(2kr0)ε

)
+ k2y

4/ε

4

]
y−

1
ε
− 1

2v(y) = 0 (A.5)

Now we’re in a position to work out the derivative term. Plugging in the relation

dr =
y

2
ε
−1kε

d
y,

expanding, and simplifying, we get the form
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d

dr

(
r2 d

dr

)
=
ε2

4

[
y−

1
ε
+ 3

2
d2v

dy2
−
(

1

ε2
− 1

4

)
y−

1
ε
− 1

2

]
. (A.6)

Since we want the prefactor of the second-derivative term to be 1 we divide all of

(A.5) by the appropriate term. Collecting similar terms gives us

−d
2v

dy2
+

(
1 + 4l(l + 1)

ε2
− 1

4

)
v

y2
+

1

ε2
y

4
ε
−2 =

4g

ε2
1

(2kr0)ε
v (A.7)

This is recognizable as a Schrodinger equation with (as ε→ 0) a very large centrifugal

barrier term and a positive power-law potential shaped somewhat like an infinite

square well. Our new energy term, denoted Λ,

Λ =
4g

ε2
1

(2kr0)ε

is positive as we might expect, since a positive power-law potential has positive-

energy bound states; a curious feature is that it has a vanishingly small dependence

on the old energy term k, but is dependent on g. In fact, k hardly appears in this

equation, and we recover it at the end of the problem only by performing the inverse

transformation of (A.2) and (A.3).
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