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1. Preface

These are lecture notes taken at UC Riverside, in the Tuesday lectures
of John Baez’s Quantum Gravity Seminar, Fall 2006. The notes were taken
by Apoorva Khare. Figures were prepared by Christine Dantas based on
handwritten notes by Derek Wise. You can find the most up-to-date version
of all this material here:

http://math.ucr.edu/home/baez/qg-fall2006/

Related notes on classical mechanics can be found here:

http://math.ucr.edu/home/baez/classical/

For the continuation of this seminar in Winter 2007, see:

http://math.ucr.edu/home/baez/qg-winter2007/

If you see typos or other problems with any of these notes, please let John
Baez know (baez@math.ucr.edu).

http://math.ucr.edu/home/baez/qg-fall2006/index.html#quantization
http://math.ucr.edu/home/baez/classical/
http://math.ucr.edu/home/baez/qg-winter2007/index.html#quantization
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2. Oct 3, 2006: Introduction

2.1. Perspective. Our aim in this course is to try and categorify “ev-
erything in the universe”. More precisely, we want to replace sets by 1-
categories, categories by 2-categories, and so on.

Analogy from physics:
(0) Initially, people studied particles (or static ones).

(1) Then, they went on to study the “legal paths” that such particles could
take in the ambient space (legal according to the laws of physics). This led
to particle dynamics, which extended the previous study of particle statics.

particle dynamics

string statics

particle statics

Figure 1.

(1′) Relatively recently, people have reformulated particles in motion as
strings, which leads to calling particle dynamics as string statics. (Here, a
string is merely a map from an interval into the ambient space.)

(2) This makes us want to consider string dynamics now.
(2′) But this should be the same as 2-brane statics.

And so on...

In general, we can reinterpret p-brane dynamics as p+1-brane statics, for
any p ≥ 0.

Mathematics comes in: What happens in mathematical notation, is that we
take a space X (a manifold, perhaps), and form
PX = path space of X, defined as {γ : [t0, t1]→ X : γ smooth},
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string dynamics

2-brane statics 2-brane dynamics

Figure 2.

PPX = path space of PX,
. . .

As a variation, we can consider paths (open strings) vs. loops (closed
strings). Thus, PX is the configuration space of open strings,; the analogous
space for closed springs is the loop space LX. Thus, LX = {γ : S1 → X},
where elements are free loops (i.e. not based at a point).

Remark 2.1. Note that LX 6= {γ ∈ PX : γ(t0) = γ(t1)} because these
loops might have a “corner” at the basepoint, whereas LX was the space of
smooth loops.

We can now similarly form LX,LLX, . . . , and it is these spaces, that are
related to the cohomology of X. The first cohomology group of a topological
space X can be defined as [X,U(1)] := {homotopy classes of maps : X →
U(1)}. (Here, the unitary group U(1) = S1 ⊂ C∗ is the set of unit modulus
complex numbers.) So, we’re now asking how LX is related to [X,U(1)] =
[X,S1].

2.2. (Higher) cohomology and physics. Let’s see how maps S : Lp(X)
→ U(1) show up in the physics of closed p-branes, for various p. Note
that by a particle, we’ll simply mean (below) a point in a (configuration)
space. For example, the position of n objects in X denotes a particle in the
configuration space Xn (for any n ∈ N).

Thus, we have a “configuration space” X, whose points x ∈ X are possible
positions for our particle (or the position of a general classical system).
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We may decide that it is possible for two such particles to have the same
position (or we may decide to ban such things) by considering X × X (or
X ×X \∆X respectively).

Now, often X is a manifold, and we choose a 1-form F on X, called the
force field. Thus, F : X → T ∗X, or F (x) ∈ T ∗xX, or F is a section of T ∗X
(each formulation containing more information than the previous one).

Definition 2.2.

(1) The work done on the particle as it moves along a path γ : [t0, t1]→
X is defined to be W (γ) =

∫
γ F ∈ R.

(2) A particle x ∈ X is in equilibrium if F (x) = 0; that is, for all
infinitesimal displacements v ∈ TxX, we have F (x)(v) = 0. (In
D’Alembert’s terminology, the virtual work F (x)(v) vanishes.)

Often, the 1-form F comes from the differential of a 0-form V , i.e. F =
−dV for some function V : X → R called the potential energy. (Here, the
negative sign is convention.)

Then at any critical point x of V , there is an equilibrium, meaning that
dV (x) = 0. This is often (misleadingly?) called the principle of least energy,
since often - but not always - x is a minimum.

The other advantage of having such an F , is that the Fundamental The-
orem of Calculus (essentially) says that (recall the negative sign for F )

W (γ) = V (γ(t0))− V (γ(t1))

2.3. Classical dynamics vs. open string statics. Morally, these are the
same concept, except that we use PX instead of X, or more precisely, we
use Px0→x1X := {γ ∈ PX : γ(ti) = xi, i = 0, 1} for some x0, x1 ∈ X.

The idea now is that a particle now chooses an “optimal” path to “go”
from x0 to x1, i.e. dS(γ) = 0, where S : Px0→x1X → R is called the action.
The equation dS(γ) = 0 is called the principle of least action.

The string picture: To think in terms of strings, we think of Px0→x1X as a
configuration space of an (open) string, and S as a potential.

Remark 2.3. Note that the ends of the string are fixed here; to avoid this,
we may move to a bigger space, namely PX. Or for closed strings, use LX.
Or for based strings or loops, use P∗X,L∗X etc.

For a fixed basepoint ∗ ∈ X, the space L∗X is also called ΩX := {γ ∈
LX : γ(t0) = ∗}.

We can now repeat this procedure by going to higher and higher (dimen-
sional) branes. We’ll thus need actions on these spaces, for example for
p = 2, we need some function of the type

S : Pγ0→γ1Px0→x1X → R
where all γ’s start at x0 and end at x1, etc. Thus, we have



COURSE NOTES ON QUANTIZATION AND COHOMOLOGY 7

x0 x1

γ0

γ1

time

Figure 3. worldsheet Σ between two paths in Px0→x1X

and we are trying to find the worldsheet(s) Σ ∈ Pγ0→γ1Px0→x1X, so that
dS(Σ) = 0. (Note that Pγ0→γ1Px0→x1X are just maps : [0, 1] × [0, 1]→ X.)

D-branes: (The D stands for Dirichlet.) This means that we study branes
with added boundary conditions. For insatnce, the Σ above fixes all initial
points to be x0, and all final points to be x1. Thus, the boundaries are
coupled to 0-submanifolds x0, x1.

In general, we can use submanifolds of dimension d, and look at p-branes
coupled wth d-branes for boundary conditions.

2.4. The quantum case. The question: ”How does the particle know in
advance which path to take, before it has reached the end?”, led to the
study of the quantum versions of all these ideas. A possible explanation was
first given by Richard Feynman, who said that the quantum dynamics of
particles is also governed by S : Px0→x1X → R, but in a new way:

Instead of choosing the path γ with dS(γ) = 0, it chooses all paths with
certain “amplitudes”, given by

eiS/~ ∈ U(1)

where ~ is Planck’s constant, in units of action. (We’ll often choose units
with ~ = 1.) This is how U(1) gets into the picture in physics - through
quantization.

In retrospect, we can do classical dynamics of particles using not S, but
eiS = A, since dA(γ) = 0 makes sense (given A : Px0→x1X → U(1), we can
define a complex-valued form dA on Px0→x1X), and moreover, dA(γ) = 0⇔
dS(γ) = 0.

Similarly, we can do classical statics of a particle, using not V : X → R,
but A = eiV : X → U(1).

So instead of using dA = 0 or integrating over a single path, we integrate
over all paths, weighted by the U(1)-valued function In short, we have
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statics of particles ←→ A = eiV : X → U(1),
particle dynamics = statics of strings ←→ A = eiS : PX → U(1),
. . . ,
statics of p+ 1-branes ←→ A : P pX → U(1).

If we restrict to ΩpX ⊂ P pX, we get A : ΩpX → U(1), and in fact,
[ΩpX,U(1)] ∼= Hp+1(X,Z)! (Well, not exactly isomorphic, but close to it at
any rate.)

This is how (higher) cohomology comes into the picture involving strings
and higher branes!
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3. Oct 10, 2006: Lagrangian Mechanics

Here’s some homework to do, first of all. Work out the “statics of a spring
in imaginary time”! The problem (and some notes on it) can be found at
http://www.math.ucr.edu/home/baez/classical/.

Think of a rock thrown away from the earth. It chooses a parabolic path
to come back to the ground, because this path minimizes the action.

A static (or hung) spring is traditionally of zero length because this min-
imizes energy.

dynamics of a
thrown rock

(minimizes action)

statics of a
hung spring

(minimizes energy)

Figure 4. parabolic shapes - of rock trajectory and hung
spring

In both case, the energy or motion or static state is affected by (or coun-
ters) gravity.

Moreover, the paths in these two cases are upside-down relative to one
another because there is a sign change, which ultimately comes from i2 = −1;
hence, the notion of a spring in imaginary time!

To do this homework, one needs to know what we talk about today:
Lagrangian mechanics.

3.1. Introduction to the Lagrangian approach. Suppose X is a (finite-
dimensional) manifold, called the configuration space. We want a law of
physics (which we will call the Euler-Lagrange equation) satisfied by paths
γ : [t0, t1]→ X.

To get this, we define Px0→x1X := {γ : [t0, t1]→ X, γ(ti) = xi} as we did
last time. This is a (smooth) infinite-dimensional manifold in its own right.
(Do we also want it to be a Frechet manifold, i.e. locally homeomorphic to
Frechet space?)

Moreover, we also choose a smooth function S : Px0→x1X → R, called the
action.

The Euler-Lagrange equation then (abstractly) says that

dS(γ) = 0

http://www.math.ucr.edu/home/baez/classical/
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where dS ∈ Ω1(Px0→x1X). So, a particle follows a path that is the critical
point of the action. Slightly more concretely, dS(γ) ∈ T ∗γ (Px0→x1X), and so
we’re saying that

dS(γ)(δγ) = 0 ∀δγ ∈ Tγ(Px0→x1X)

(In physics notation, δγ is called the “(infinitesimal) variation” in γ.)

t0 t1
R

X
δγ(t)

γ

Figure 5. the plane as a t vs. X plot; how δγ is a path

Thus, if we think of the point γ ∈ Px0→x1X as a path γ, then the tangent
vector δγ can be thought of as a path in the tangent bundle:

δγ(t) ∈ Tγ(t)X ⊂ TX

3.2. Deriving the Euler-Lagrange equations. In physics, we often have
actions of the form

S(γ) =

∫ t1

t0

L(γ(t), γ̇(t)) dt

where γ(t) stands for the position, γ̇(t) denotes the velocity, and L is the
Lagrangian. Thus, L : TX → R is a smooth function, where TX is the
space of position-velocity pairs.

Remark 3.1. The path γ inX might go through several different coordinate
charts/patches. However, we then break it up into small paths, each of
which is in only one such chart. Thus, locally we work over a chart in X, so
the situation is homeomorphic (diffeomorphic?) to working in Rn, and the
tangent bundle TX is then locally homeomorphic to TRn ∼= Rn ⊕ Rn.

Thus, our Lagrangian is written as L({xi}, {yi}) ∈ R, where {xi} are
local coordinates for position vectors, and {yi} are local coordinates on the
tangent space.
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We now derive the Euler-Lagrange equations in the above situation. Given
S as above, what does dS(γ) = 0 mean? It means that for all δγ ∈
TγPx0→x1X, we have 0 = dS(γ)(δγ). We now expand this, and use Ein-
stein summation notation henceforth.

0 = dS(γ)(δγ) =

∫ t1

t0

(∇L · δγ)(t) dt =

∫ t1

t0

(
∂L

∂xi
δγi(t) +

∂L

∂yi
δγ̇i(t)

)
dt

But δγ̇i(t) = d
dtδγ

i(t). We now use integration by parts on the second
term, to get

0 = dS(γ)(δγ) =

∫ t1

t0

(
∂L

∂xi
δγi(t) +

∂L

∂yi
d

dt
δγi(t)

)
dt

=

∫ t1

t0

(
∂L

∂xi
δγi(t)−

(
d

dt

∂L

∂yi

)
δγi(t)

)
dt

This works because the boundary terms in our integration vanish here, be-
cause the sum telescopes across coordinate charts - and at the “global”
endpoints, (the picture shows that) δγ(t0) = δγ(t1) = 0.

Continuing with the calculations,

∫ t1

t0

(
∂L

∂xi
− d

dt

∂L

∂yi

)
δγi(t) = 0 ∀δγi

But if we have smooth functions ϕi, so that
∫ t1
t0
ϕif

i = 0 for all smooth

functions f i, then ϕi ≡ 0 for all i. Thus, the previous equation gives us the
Euler-Lagrange equations:

∂L

∂xi
=

d

dt

∂L

∂yi
∀i (EL)

or, more pedantically,

∂

∂xi
L(γ(t), γ̇(t)) =

d

dt

∂

∂yi
L(γ(t), γ̇(t)) ∀i

3.3. Physics notation. Physicists don’t write {xi, yi} as coordinates on
TX; they use {qi, q̇i}, even though q̇i here is not the time derivative of
anything. They also write q : [t0, t1]→ X instead of γ : [t0, t1]→ X, which
makes the notation q̇i ambiguous. (And no one cares!)

Therefore the physicists’ version of the Euler-Lagrange equations looks
like

∂L

∂qi
=

d

dt

∂L

∂q̇i
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3.4. Example: A particle in a potential. Let X = Rn and consider
L : TX → R given by

L(q, q̇) =
1

2
m||q̇||2 − V (q)

where q ∈ X, q̇ ∈ TqX, and the terms on the right-hand side are the kinetic
and potential energies. Thus, m > 0 is the mass, and V : X → R is the
potential.

This Lagrantian is “weird”; it’s not the kinetic plus potential energies
(which is the total energy), but rather, the kinetic energy (i.e. how much is
happening) minus potential energy (how much could - potentially! - happen,
but is not happening). This we call the total “happening-ness” ¨̂ . (The
reason, of course, is that the Lagrangian is not the energy; that’s what comes
from the Hamiltonian approach!)

Nature usually tries to minimize the integral of this over time.

Let us now carry out the computations. The Euler-Lagrange equations
now say:

−∂V
∂qi

=
∂L

∂qi
EL
=

d

dt

∂L

∂q̇i
=

d

dt
mq̇i = mq̈i

or, in Newton’s words, F = ma, where Fi = − ∂V
∂qi

is the force, and ai = q̈i
is the acceleration.

Definition 3.2. For any (smooth) Lagrangian function L : TX → R, we
define the momentum to be pi := ∂L

∂q̇i
, and the force to be Fi := ∂L

∂qi
.

The Euler-Lagrange equations now say that
d

dt
pi = Fi.

3.5. “Sneak preview”. To relate this to cohomology, let’s step back for
a moment: we have derived classical mechanics from the principle of least
action, based on S : Px0→x1X → R, or more generally, S : PX → R.

It would be nice (at least, from the point of view of de Rham cohomology),
if there were a 1-form α ∈ Ω1(X) so that S(γ) =

∫
γ α.

Also note that the action S in our example is not of this form (because
paths can be reparameterized - whereby the integral above remains the same
- but this action is not independent of the parametrization). For instance,
a ball rolling along at constant speed, does not possess the same action
function as a ball going one way, then reversing, and then going back again
the “correct way” to the end.

In other words, S(γ) depends here on the parametrization of γ. So, we
need to write S(γ) as the integral of some 1-form over a path (that we cook
up from γ) in some other space.

Question. What is this other space?
Hint. For any manifold M , the cotangent bundle T ∗M has a God-given
1-form on it, called the canonical 1-form.
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Answer. We’ll use this to get the job done, but with M = X × R. In other
words, M = X×R stands for space-time, so to speak, and we need the extra
dimension to get the reparametrization-invariance.

This new manifold M is also known as the extended configuration space.
Thus, we now reparametrize both space and time in terms of some other,
arbitrary parametrization, and this helps us achieve S =

∫
γ α.
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4. Oct 17, 2006: From Lagrangian to Hamiltonian Dynamics

4.1. Recap. We want a description of classical mechanics where the action
is the integral of some 1-form along a path. This path will lie
not in X = configuration space 3 position,
nor in TX 3 (position, velocity),
nor in T ∗X = phase space 3 (position, momentum),
but in T ∗(X × R) = extended phase space 3 (position, momentum, time,
energy).

(Thus, energy : time :: momentum : position.)

To get there, we first study the phase space T ∗X and energy (also called
the Hamiltonian). We start with a Lagrangian L : TX → R, and get the
Euler-Lagrange equations

d

dt

∂L

∂q̇i
=
∂L

∂qi

where ∂L
∂q̇i

= pi is the momentum, and ∂L
∂qi

= Fi is the force.

Notation: We use subscripts for cotangent vectors, and superscripts for
tangent vectors.

4.2. A matter of notation. The first question we ask, is: Why is momen-
tum a cotangent vector?

���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������

(q, q̇)

T(q,q̇)TX

q

X

TX

R
L

Figure 6. X vs. TX plane (e.g. X = R)

Here, ∂L
∂q̇i

describes the derivative of L in the vertical direction (i.e. along

the fiber, or tangent space). In other words, {vertical vectors} = T(q,q̇)TX.
Moreover, we have that the set of vertical vectors is precisely the kernel

of the map dπ : T(q,q̇)TqX → TqX is the differential of the projection π :
TX → X ((q, q̇) 7→ q).
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But for any (real finite-dimensional) vector space V , we have TvV ∼= V for
all v ∈ V . So T(q,q̇)TqX ∼= TqX, whence momentum is really the derivative
of L : TX → R, but only in the “vertical” directions.

Now, the derivative of L is the 1-form dL(q, q̇) : T(q,q̇)TX → R, and the
vertical vectors in the domain are just TqX. So the momentum is a linear
map p : TqX → R, i.e. p ∈ T ∗qX is a cotangent vector.

4.3. Switching to the Hamiltonian approach. We will now switch from
the “Lagrangian approach”, based on (q, q̇) : TX → R, to the “Hamiltonian
approach”, based on (q, p) ∈ T ∗X = phase space. We’ll do this using the
Legendre transform λ : TM → T ∗M , that takes (q, q̇) 7→ (q, p), with pi =
∂L
∂q̇i

. (Here, λ is defined using L.)

From now on, assume that L is strongly regular, i.e. λ : TM → T ∗M is
a diffeomorphism.

Example: We once again look at our familiar example of a particle moving
on a Riemannian manifold (X, g), in a potential V . The Lagrangian is

L(q, q̇) =
m

2
g(q̇, q̇)− V (q)

where m > 0 and V : X → R. (Thus, the components on the right-
hand side are the kinetic and potential energies.) In what follows, not that
g(q̇, q̇) = gij q̇

iq̇j, whence pi = ∂L
∂q̇i

= mgij q̇
j . For this, we have used the

coordinate-dependent form of the metric:

g(q̇,−) = gij q̇
j ∈ T ∗qX

So λ is a diffeomorphism, since g is nondegenerate (i.e. q̇ 7→ g(q̇,−) is a
bijection). In other words, L is strongly regular, as claimed. �

4.4. Energy. To translate the Euler-Lagrange equations into equations sat-
isfied by q, p, we need the concept of energy.

Theorem 4.1 (Conservation of Energy). Given any Lagrangian L : TX →
R, and q : [t0, t1]→ X satisfying the Euler-Lagrange equations, the function
E(q(t), q̇(t)) is independent of t, where q̇(t) = d

dtq(t), and E : TX → R is

given by E(q, q̇) = piq̇
i − L(q, q̇) = ∂L

∂q̇i
q̇i − L(q, q̇).

Proof. We compute:

d

dt
E(q, q̇) =

d

dt

(
∂L

∂q̇i

)
q̇i +

∂L

∂q̇i
d

dt
q̇i − ∂L

∂qi
d

dt
qi − ∂L

∂q̇i
d

dt
q̇i

=
d

dt

(
∂L

∂q̇i

)
q̇i − ∂L

∂qi
d

dt
qi

since two terms cancel. But now, d
dtq

i = q̇i, and we now apply the Euler-
Lagrange equations to make the entire expression vanish, as claimed. �
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Back to our example: For a particle on (X, g) as above, with L(q, q̇) =
m
2 gij q̇

iq̇j − V (q), we have

E(q, q̇) = piq̇
i − L(q, q̇) = mgij q̇

j q̇i − m

2
gij q̇

iq̇j + V (q) =
m

2
gij q̇

iq̇j + V (q)

So the energy is indeed the sum of the kinetic and potential energies, just
as the Lagrangian was their difference.

4.5. Hamilton’s Equations. Using our diffeomorphism λ : TX → T ∗X,
we can define the Hamiltonian to be

H = E ◦ λ−1 : T ∗X → R
In other words, H(q, p) = E(q, q̇), since λ(q, q̇) = (q, p). Let us now figure
out Hamilton’s equations, that describe the time evolution of (q, p) = λ(q, q̇),
given that (q, q̇) satisfy the Euler-Lagrange equations. Here’s how: compute
dH in two different ways.

Method 1. H : T ∗X → R, and T ∗X has local coordinates (qi, pi) coming
from local coordinates qi on X. So we get

dH =
∂H

∂qi
dqi +

∂H

∂pi
dpi

Method 2. But we can also compute dH using the coordinates (q i, q̇i). These
are really local coordinates on TX coming from local coordinates q i on X,
but they become coordinates on the cotangent bundle, using λ : TX

∼→ T ∗X.
Thus, we get

dH = d(piq̇
i − L(q, q̇)) = (dpi)q̇

i + pidq̇
i − ∂L

∂qi
dqi − ∂L

∂q̇i
dq̇i

The second and fourth terms cancel by definition of momentum, and we
now compare with the expression from the previous method, equating the
coefficients for dpi, dq̇

i. This gives us

q̇i =
∂H

∂pi
, −∂H

∂qi
=
∂L

∂qi

But the last term above equals d
dtpi, by the Euler-Lagrange equations.

Therefore, given a path q satisfying the Euler-Lagrange equations, we get
Hamilton’s equations:

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi



COURSE NOTES ON QUANTIZATION AND COHOMOLOGY 17

5. Oct 24, 2006: Hamiltonian Mechanics and Symplectic
Geometry

5.1. Recap. We have seen that any Lagrangian L : TX → R gives Euler-
Lagrange equations

d

dt

∂L

∂q̇i
=
∂L

∂qi

describing a flow on TX, i.e. describing evolution (at least, such a global
solution exists if L is well-behaved). We also get a Legendre transform
λ : TM → T ∗M , and if L is strongly regular (i.e. λ is a diffeomorphism),
then we get a flow on T ∗M , describing the time evolution of position q and
momentum p, which satisfies Hamilton’s equations

d

dt
qi =

∂H

∂pi
,

d

dt
pi = −∂H

∂qi

where H : T ∗M → R is the Hamiltonian, given by

H(q, p) = piq̇
i − L(q, q̇) = piq̇

i − L(λ−1(q, p))

Remark 5.1. Note that the Euler-Lagrange equations were “one” second-
order equation, whereas the Hamiltonian equations are “two” first-order
equations. This is the same, because there is a standard way to make an
nth order equation into n first-order equations, by introducing auxiliary
(“intermediate”) variables.

Also recall our indexing notation: subscripts are used for cotangent vec-
tors, and superscripts for tangent vectors.

5.2. Some musical operators. Suppose (X, g) is a Riemannian manifold,
and V : X → R is the “potential energy”. Then the (nonrelativistic) Hamil-
tonian for a particle of mass m > 0 is the sum of the kinetic and potential
energies, namely,

H(q, p) =
|p|2
2m

+ V (q)

Here, Hamilton’s equations say

d

dt
qi =

∂H

∂pi
, q̇i =

pi

m

Question. We only saw pi’s above. What is pi?
Answer. pi = gijpj , where g is the Riemannian metric.
Reason. Force must be a cotangent vector, because the integral of force is
work, which indicates that we are essentially integrating a 1-form on a path
to get a number. But 1-forms come from the cotangent bundle.

Now, the time derivative of the momentum is force, so momentum should
also be a cotangent vector! But momentum is related to velocity (i.e.
d(position)), so this appears to be a tangent vector! What’s wrong?

Solution. Absolutely nothing is wrong! However, this phenomenon (and the
pi ↔ pi issue) achieves consistency only when we introduce an isomorphism
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that we need, between TqX and T ∗qX. This is the lowering index operator

(that takes pi to pi), or the flat operator

[ : TqX
∼→ T ∗qX ∀q ∈ X

And a Riemannian metric gives it to us! Since the metric is nondegenerate,
hence we get an isomorphism [, given by

[(v) = gq(v,−), v ∈ TqX
We use this isomorphism - or more precisely, its inverse map, called the
sharp operator ] (“natural”ly (pun intended) ¨̂ !). This turns the cotangent
vector p into a tangent vector [−1(p) = ](p) = p].

Thus, if gijq is the inverse of (gij)q = gq, then

p] = (pi)i = (gijpj)i

This equation, which had only to do with the kinetic energy, is “boring”;
it is the other one (among Hamilton’s equations), which deals only with the
potential energy, that is interesting:

d

dt
pi = −∂H

∂qi
⇒ ṗi = −∂V

∂qi
⇒ ma = F

5.3. The Hamiltonian vector field. Let us now seek a coordinate-free
formulation of Hamilton’s equations. These give a vector field vH on T ∗X,
describing how (q(t), p(t)) moves around. vH is called the Hamiltonian vector
field:

d

dt
(q(t), p(t)) = vH(q(t), p(t)) ∈ T (T ∗X)

so M = T ∗X always. Moreover, vH = d(q, p), so

vH =
dqi

dt

∂

∂qi
+
dpi
dt

∂

∂pi

Here, ∂
∂qi

and ∂
∂pi

are a basis of vector fields on some open set in T ∗X,

coming from local coordinates (qi, pi) on T ∗X.
But now, Hamilton’s equations allow us to rewrite vH as

vH =
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi

Example: Say X = Rn, so T ∗X ∼= R2n. Then, as the picture below shows, if
we identify these cotangent vector fields dH, vH with tangent vectors using
the metric, then they are orthogonal at each point. This is because

dH =

(
∂H

∂qi
,
∂H

∂pi

)
, vH =

(
∂H

∂pi
,−∂H

∂qi

)

(so one can easily verify that their dot product vanishes). Moreover, the
gradient dH is always normal to the level curves, so (at least if n = 1) we
get that vH must lie along the vector field!
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dH =
(

∂H
∂q

, ∂H
∂p

)

vH =
(

∂H
∂p

,−∂H
∂q

)

Level curves of H

(surfaces of constant energy)

Figure 7. level curves for H, and how dH ⊥ vH on a p-q
plot

Furthermore, we can recover vH from the flow, and H from vH (upto a
scalar), on any connected component of the manifold.

Back to our example, in the graph above, dH is really a 1-form, but in R2,
we can use the metric to turn it into a vector field ∇H, and rotate this 90◦

clockwise to get vH . So, any solution of Hamilton’s equations moves along
the level curves of H, and conservation of energy follows automatically!

But back to our original motivation: to seek a coordinate-free description
of Hamilton’s equations. Recall from above, that one uses Hamilton’s equa-
tions to rewrite vH . Thus, we seek a coordinate-free description of how to
turn the 1-form dH into the vector field vH .

One way to turn 1-forms into vector fields is to use the Riemannian metric:
use [, ]. But, ](dH) = ∇H is not parallel (proportional), but perpendicular
(normal) to the level curves of H!

So, instead of a metric, we would need to use an anti-symmetric nonde-
generate bilinear form ω on M = T ∗X.

The good news is that every cotangent bundle M = T ∗X is automatically
equipped with such an ω : TM×TM → R. This is called a symplectic form.

5.4. Homework. In our example, we have ω = dqi∧dpi (summing over i, of
course). Show that with this 2-form on M = T ∗X, we have ω(vH ,−) = dH.
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Proof. This is an exercise in wedge calculations. As a warmup, we note some
random facts about wedges. For instance, f ∧ dx = f dx, and

dx ∧ dy ∧ . . . (f ∂

∂x
,−) = f dy ∧ . . .

dx ∧ dy ∧ . . . (f ∂

∂y
,−) = −f dx ∧ . . .

dpi(
∂

∂qj
) = dqj(

∂

∂pi
) = 0 ∀i, j

dpi(
∂

∂pj
) = dqj(

∂

∂qi
) = δji ∀i, j

where δji is the Kronecker delta. We now show the result. Given H : T ∗X =
M → R, we have

vH =
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi
∈ TM

We also have dH ∈ T ∗M , and ω = dqk ∧ dpk. We now compute, using the
“warmup facts” above:

ω(vH ,−) =
∂H

∂pi
δki dpk − dqk ∧

∂H

∂qi
dpk(

∂

∂pi
) =

∂H

∂pi
dpi + δik

∂H

∂qi
dqk

=
∂H

∂pi
dpi +

∂H

∂qi
dqi = dH

�
Another way of stating this result, is to define [ : TM → T ∗M , given

by v 7→ ω(v,−). We once again say that ω is nondegenerate if [ is an
isomorphism. If this happens, then the inverse ] of [ takes T ∗M to TM ,
and we can set vH = ](dH) now.

5.5. Coordinate-free formulations. Getting back to our original prob-
lem: we wanted to write Hamilton’s equations in a coordinate-free way. To
do this, we needed to write vH in a coordinate-free way. By the above home-
work problem, we only need to write ω in a coordinate-free way! And we do
this now.

This is, moreover, good from another point of view: the definition of ω
then stays the same under more symmetries - not just only those that fix a
particular choice of coordinates.

So, how do we write this? In fact, ω = −dα, where α = pi dq
i is a 1-form

on T ∗X, called the canonical 1-form, which can be defined without using
coordinates! (We show this next time.) First check this:

dα = d(pi dq
i) = dpi ∧ dqi + pi(−1)0d(dqi) = −ω

since pi is a 0-form for all i.
Now, how do we define α without using coordinates? Keep in mind that

α likes to eat tangent vectors to M = T ∗X, e.g. v ∈ T(q,p)(T
∗
qX), and spit

out numbers.
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Well, we have the projection π1 from T ∗X, taking (q, p) to q. Differentiate
π1 to get dπ1 : T (T ∗X) → TX. Thus, we can form dπ1(v) ∈ TqX (which
is the analogue of dqi). But we also have p ∈ T ∗qX, which is the second
(component of the first) projection π ′2 : T (T ∗X)→ T ∗X. So we get

α(v) = pi dq
i(v) = p(dπ1(v)) ∈ R

Conclusion: Therefore, in coordinate-free terms,

α(v) = π′2(v)(dπ1(v)), ω = −dα
Next time we will see how this agrees, given a choice of coordinates pi, q

i,
with the usual formula α = pi dq

i (note that some people write this as
pi ∧ dqi too).
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6. Oct 31, 2006: More on the canonical 1-form

Let us draw a picture to illustrate the coordinate-free definition of α from
last class. Note that in it, q ∈ X, p ∈ T ∗qX, v ∈ T(q,p)T

∗
qX, and dπ1(v) is the

“shadow” or the projection, of v.

(q, p)

dπ(v)
q X

T ∗X

v

Figure 8. X vs. T ∗qX plot, to show how dπ1(v) is the
“shadow”

This picture doesn’t make it clear, though, that the vertical fibers are dual
to tangent vectors.

6.1. Reconciling with the coordinate-based definition.

Theorem 6.1. If qi are any local coordinates on X, and (qi, pi) the corre-
sponding local coordinates on T ∗X, then α = pi dq

i.

Proof. Choose any v ∈ T(q,p)T
∗
qX. Then

v =
∑

i

ai
∂

∂qi
+ bi

∂

∂pi

for some choice of scalars ai, bi, say. Evaluating at pi dq
i, we have

pi dq
i(v) = pi dq

i(ak
∂

∂qk
+ bk

∂

∂pk
)

Since dqi kills all ∂
∂pk

and almost all ∂
∂qk

’s too, we just end up with aipi.

On the other hand, α(v) = π′2(v)(dπ1(v)) = p(aj ∂
∂qj

) because dπ1 removes

the vertical components ∂
∂pj

. Now, recall that in α, the qi is already a

coordinate on M = T ∗X. But the dqi’s form coordinates on T ∗X because
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qi’s are coordinates on X itself! So there’s some sort of ambiguity here, but
this is resolved if we remember that dπ1 takes one of these q’s to the other.

In other words, in coordinates, it just throws away the vertical part, so
we really are fine, in using qi’s in both instances.

This means that p = pi dq
i, whence α(v) = pi dq

i(aj ∂
∂qj

) = aipi once

again.
Thus, both definitions agree on every v, whence they are equal. �

6.2. Symplectic manifolds. There are various related ways in which α
shows up in classical mechanics. We’ve now seen that dα = dpi ∧ dqi = −ω,
where ω is a symplectic structure on M = T ∗X.

Note that in general, more than just cotangent spaces have symplectic
structures; these are precisely what allow us to treat M as a “phase space”
(space of states of our system). That is, we have (position, momentum).
Such M ’s are called symplectic manifolds, and it essentially means that we
can do classical mechanics on them!

Definition 6.2. A symplectic structure on a (finite-dimensional) manifold
M (which is then called a symplectic manifold) is a 2-form ω on M , such
that

(1) ω is closed (i.e. dω = 0).
(2) ω is nondegenerate (i.e. the map [ : TmM → T ∗mM , given by v 7→

ω(v,−), is one-to-one - and since M is finite-dimensional, onto as
well).

Note that this ω is skew-symmetric.

Remark 6.3. Every M = T ∗X has such a form on it. In fact, if ω = −dα
as earlier on M = T ∗X, then we claim that ω is one such. For

dω = d(dqi ∧ dpi) = 0

by the Leibnitz rule, so that ω is closed. Moreover, to see that ω is non-
degenerate, we need to show that [ is one-one. So suppose that [ kills
ai ∂
∂qi

+ bi
∂
∂pi

. Using our homework problem and the warmup random facts

mentioned therein, we evaluate both sides at ai ∂
∂pi
− bi ∂∂qi (write ai, bi ∈ C).

This gives us that ∑

i

|ai|2 +
∑

i

|bi|2 = 0

so that ai = bi = 0 ∀i, as required. �

How does ω on M allow us to do classical (Hamiltonian) mechanics?
As we said above, roughly speaking, the nondegeneracy of ω lets us define

a Hamiltonian vector field vH (given H : M → R) on M , by: vH = ](dH) =
[−1(dH).
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This now lets us write Hamilton’s equations, describing the time evolution
of states.

Definition 6.4. Given x(t) ∈ M for t ∈ [t0, t1], we say that it satisfies

Hamilton’s equations, if dx(t)
dt = vH(x(t)).

What does the closedness of ω do for us? Well, under “mild assumptions”,
we get a flow on M .

Definition 6.5. A flow on M is a smooth(?) map F : R×M →M , denoted
by (t, x) 7→ Ft(x) ∈M , so that

(1) FtFs = Ft+s for all t, s ∈ R.
(2) F0 is the identity map.

In particular, F−t = F−1
t , whence F is a group homomorphism from R to

the diffeomorphism group of M .

How do we get this flow? It describes time evolution, and satisfies Hamil-
ton’s equations:

d

dt
Ft(x) = vH(Ft(x))

So: use this equation to define the flow as the integral curve (solution) to
a differential equation. Then the closedness of ω can be used to show that:
Given any H, the corresponding flow Ft preserves ω.

Formalism: How does Ft act on ω? In general, given a “good” (or smooth)
ϕ : M → N , we get dϕ : TM → TN , and one can now define the pullback
map ϕ∗ : Ωp(N)→ Ωp(M) for any p ≥ 0, by

(ϕ∗ω)m(v1, . . . , vp) := ωϕ(m)(dϕ(v1), . . . , dϕ(vn))

where vi ∈ TmM and dϕ(vi) ∈ Tϕ(m)N for all i.

6.3. Digression on five-body systems. The “mild assumptions” that
allow us to derive a flow on M , rule out some physics “real-life” situations.
For instance, the n-body problem: describe the time evolution of a system of
n particles that interact gravitationally. For n = 5, it has been shown that
they split off into two pairs and a fifth

[figure: two pairs orbiting each other, fifth particle orbits around]

where the paired objects “revolve” around each other, and the fifth particle
orbits around both systems. As time passes, the distance d(t) between the
two paired systems increases, and the energy (Hamiltonian) involves 1/d(t)2,
so the mild assumptions don’t work here! Moreover, d(t)→∞ as t goes to
some finite time point, and as d(t) increases, the potential energy decreases,
so the kinetic energy increases. That is, the fifth particle travels faster on
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its (larger and larger) orbit. Eventually, in finite time, its speed becomes
infinite!

The problem is that using point particles allows us to get infinity as a
limit in finite time. For instance, if both particles were points, they could
“superimpose”, resulting in the realisation of an infinite amount of potential
energy.

In reality, such a scenario only occurs for black holes. Thus, there are
problems in such situations, which is why we need the theory of relativity
etc.

6.4. The 1-form and action. There is another (related) way in which
α ∈ Ω1(T ∗X) shows up in physics. We can use it to describe the action of
a path q : [t0, t1] → X, our configuration space, as follows: We get (q, q̇) :
[t0, t1]→ TX, whence γ : [t0, t1]→ T ∗X, our phase space. This is given by
t 7→ λ(q(t), q̇(t)) = (q(t), p(t)), if we choose a Lagrangian L : TX → R, and
use it to define the Legendre transform λ : TX → T ∗X.

In this case, set H = piq̇
i − L,α = pi dq

i. Then the action of our path q
is

S(q) =

∫ t1

t0

L(q, q̇) dt =

∫ t1

t0

pi(t)q̇
i(t) dt−

∫ t1

t0

H(q(t), p(t)) dt

But the first term is the integral of pi(t)
dqi(t)
dt dt = α, so we conclude that

S(q) =

∫

γ
α−

∫ t1

t0

H(q(t), p(t)) dt

(Thus, the integral along a path is “almost” the action of that path; so,
we’re amost doing Lagrangian mechanics.) In particular, we see that the
Principle of Least Action

δ(S(γ)) = 0

is equivalent to the principle δ(
∫
γ α) = 0, as long as we let γ vary only over

the paths which conserve energy! (Because we would need
∫ t1
t0
H(q, p) to be

just a number.) Therefore we only consider the paths in the set

M1
E := {γ : [t0, t1]→ T ∗X : q(ti) = qi,H(q(t), p(t)) = E ∀t}

and then we would get the action to be

S(γ) = −(t1 − t0)E +

∫

γ
α ∀γ ∈M1

E
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7. Nov 07, 2006: The Extended Phase Space

7.1. Aside. As we saw last time, the canonical 1-form α on a symplectic
manifold M = T ∗X occurs in classical mechanics in two ways:

(1) We can write down Hamilton’s equations.
(2) We can look at the action along a path, so long as we only consider

paths γ so that H ≡ E ∈ R on γ.

(In this second case, S(γ) =
∫
γ α−E(t1 − t0), as we saw last time.)

Putting these together, we can give a physical interpretation of −
∫

Σ ω,
where Σ is a surface with boundary γ for some loop γ. Stokes’ Theorem
says that

−
∫

Σ
ω =

∫

Σ
dα =

∫

∂Σ
α =

∫

γ
α = S(γ) +

∫ t1

t0

H dt

which is just S(γ) in the limit t1 → t0, where this amounts to reparametriz-
ing γ suitably (i.e. covering it in smaller and smaller time).

Σ

T ∗X

γ

Figure 9. γ bounds Σ

Thus, the job of ω is to tell us how much action it costs, to run around
the surface Σ, by:

ω 7→ − lim
t1→t0

∫

Σ
ω = S(∂Σ)

7.2. Bringing in spacetime. Let us now consider the extended phase space
T ∗(X×R). Thus, our configuration space X gets replaced by space-time, or
the extended configuration space X×R, and a point (q, t) in it says precisely
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where and when the system is. In the extended phase space, we thus add
two coordinates from the phase space: time and energy.

The notation used is (q, t, p, p0) ∈ T ∗(X × R), with the terms denoting
(position, time, momentum, negative energy(!)) respectively. Thus, the
energy is given by E = −p0.

In these terms, any path γ : [t0, t1] → T ∗X gives rise to γ̃ : [t0, t1] →
T ∗(X × R), given by

γ̃ : t 7→ (q(t), t, p(t),−H(q(t), p(t)))

so note that we still do need a Hamiltonian H : T ∗X → R.
The other thing to note, is that later on, we will replace time by any old

parameter s, so that time would be a function t(s). This would make the
entire procedure independent of parametrization!

Now, the action is

S(γ) =

∫ t1

t0

piq̇
i −H(q, p) dt =

∫ t1

t0

pi dq
i −
∫ t1

t0

H(q, p) dt =

∫

eγ
α̃

where (comparing with the original 1-form α) α̃ is the canonical 1-form on
T ∗(X × R):

α̃ = α+ p0 dt = pi dq
i + p0 dt

(so we will use the notation t = q0!) because we had cleverly chosen the
p0-coordinate of the path γ̃ to be −H(q(t), p(t)).

(In other words, α̃ is canonical, but H is not. However, the “non-
canonical-ness” is built into the choice of γ̃, and then α̃ just gets γ̃ into
S(γ)!)

7.3. Hamilton’s equations and the conservation of energy. Carlo
Rovelli (see link on webpage!) has reformulated this, to apply not just to
particles, but strings (and higher-dimensional “branes”). This requires a
canonical 2-form (or higher forms).

To do this, let us allow γ̃ to be more general: γ̃ : [s0, s1]→ T ∗(X × R) is
given by

s 7→ (q(s), t(s), p(s),−H(q(s), p(s)))

where H : T ∗X → R is as before. In other words, γ̃ : [s0, s1] → Y ⊂
T ∗(X × R), where Y “contains all information about H”:

Y = {(q, t, p, p0) : p0 = −H(q, p)}
This is a codimension-1-submanifold, hence is odd-dimensional, hence not

a symplectic manifold. But it has a 1-form on it, namely, α̃|Y = i∗α̃, the
pullback of the inclusion i : Y ↪→ T ∗(X × R). Similarly, we also have a
2-form on Y , namely, ω̃|Y = i∗ω̃.

Aside: This kind of situation is called a contact manifold, where this is
an odd-dimensional manifold, with a foliation whose leaves are symplectic
(codimension 1) submanifolds. Here, we foliate along the time coordinate...
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Why is this approach nice? For one thing, we have

Proposition 7.1. Assume dt
ds 6= 0. Then a curve γ̃ : [s0, s1] → Y gives

a solution to Hamilton’s equations, if and only if its tangent vector γ̃ ′(s)
satisfies ω̃|Y (γ̃′(s),−) ≡ 0. Moreover, if this holds, then conservation of
energy automatically holds.

Remark 7.2.

(1) This is analogous to ω(vH ,−) = dH in the Hamiltonian approach
above. But ω̃ is nondegenerate, so should it imply that γ̃ ′(s) = 0?
No, because ω̃|Y may well be degenerate!

(2) However, it does imply that some (most!) things about γ̃ ′(s) must
vanish.

Proof. We compute:

γ̃′(s) =
dqi

ds

∂

∂qi
+
dpi
ds

∂

∂pi
+
dt

ds

∂

∂t
+
dp0

ds

∂

∂p0

But as we are in Y , hence

dp0

ds
= −∂H

∂qi
dqi

ds
− ∂H

∂pi

dpi
ds

Moreover, ω̃ = dpi ∧ dqi + dp0 ∧ dt, so wedge computations give

ω̃|Y (γ̃′(s),−) = −dq
i

ds
dpi +

dpi
ds
dqi − dt

ds
dp0 −

(
∂H

∂qi
dqi

ds
+
∂H

∂pi

dpi
ds

)
dt

Now, note that dp0 and dt are linearly independent on T ∗(X × R), but
they are dependent on Y ! In fact, on Y , we have

dt

ds
dp0 = − dt

ds
dH = − dt

ds

(
∂H

∂qi
dqi +

∂H

∂pi
dpi

)

We now put this back into the computation above, and collect coefficients.
Thus, for ω̃(γ̃ ′(s),−) to vanish on Y , is equivalent to the dqi, dpi, dt-parts
all vanishing. In other words, if and only if

dpi
ds

=
dt

ds

∂H

∂qi

dqi

ds
= − dt

ds

∂H

∂pi

∂H

∂qi
dqi

ds
+
∂H

∂pi

dpi
ds

= 0

Note that the left-hand side in the last equation is just
dH

ds
.

How do we get Hamilton’s equations (and conservation of energy) out of
this? Well, if t is a locally invertible function of s, then the equations above
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can be converted, using the Chain Rule, to involve df
dt instead of df

ds . This
gives us an equivalence with the new (modified) equations

dpi
dt

=
∂H

∂qi

dqi

dt
= −∂H

∂pi
dH

dt
=

dH

ds
/
dt

ds
= 0

In other words, ω̃|Y (γ̃′(s),−) is identically zero if and only if Hamilton’s
equations and conservation of energy hold.

The proof will be complete if we can show that the first two equations
automatically imply the third. But this is obvious - we compute, using
Hamilton’s equations (or the equations in terms of s instead of t, as above):

dH

ds
=
∂H

∂qi
dqi

ds
+
∂H

∂pi

dpi
ds

=
dt

ds
·
(
∂H

∂qi
· −∂H

∂pi
+
∂H

∂pi
· ∂H
∂qi

)
= 0

�

Remark 7.3. As mentioned above, ω̃|Y (γ̃′(s),−) ≡ 0 implies that “most
components” of it vanish. In other words, there are a lot of constraints. More
precisely, we can now say what constraints there are. They are exactly the
Hamilton equations above.

7.4. Digression of the day: LIGO. Neutron stars and black holes collid-
ing among themselves (or each other) are the only known cosmic events that
radiate enough gravitational energy to be detectable on Earth. There is a
project funded by NASA (with the largest funding, barring the expedition
to send men to Mars!) which attempts to measure such effects. It is called
LIGO.

However, the effects are so small compared to local gravitational effects
(like people walking, even!) that the instruments (detectors) have to be
extremely sensitive to measure this. Thus, there are L-shaped mirrors in
rooms only four degrees above absolute zero; the mirrors themselves hang
from sapphire wires, and so on. Attempts are being made to get every-
thing as precise and sensitive as possible, but instead of the 10−18 order of
magnitude, we are a few orders away from this.

7.5. A look back at the special case t(s) = s. Let us keep the notation
and the setup as above - where we work with the extended phase space
T ∗(X × R). Earlier, we considered γ : [t0, t1]→ X, giving rise to the phase
space (points have coordinates of position and momentum here), together
with the extra-special parametrization of the time function: t(s) = q0(s) =
s. We re-view the old theory now, from the point of view of the new one.
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In general, the conservation of energy result in Lecture 3 holds in the
extended phase space too, which means that the summation is starting from
i = 0 (in qi). Moreover, we keep our old Lagrangian L(q, q̇), which is
independent of p0, q

0.
Since q0 = t, hence q̇0 = 1, and the (extended) Hamiltonian is given by

Hnew(q, p) = p0 · 1 + piq̇
i − L(q, q̇) = p0 +Hold(q, p)

Thus, classical mechanics (what we saw in earlier classes) comes under
the case Hnew = 0! Because once we have this, we get that p0 is independent
of time, since conservation of energy tells us that Hold(q, p) was. Moreover,
p0 = −E, where E = Hold(q, p).

Moreover, α̃ = α + p0dq
0 = α + p0 dt, and p0 is independent of time.

Since t(s) = s, hence we are integrating on [t0, t1], and we get

S(γ̃) =

∫

eγ
α̃ =

∫

γ
α+p0

∫ t1

t0

dt =

∫

γ
α+p0(t1−t0) =

∫

γ
α−(t1−t0)E = S(γ)

or, in other words, the old notion of action really is the integral of a 1-form
on our path. We will see, in later classes, how this generalizes to higher-
dimensional membranes.
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8. Nov 14, 2006: From particles to strings and higher
membranes

Let us now generalize everything we did so far for point particles

γ : [s0, s1]→ X ×R = M

(where M is “space-time”) to strings and higher membranes. Thus, we
replace the one-dimensional [s0, s1] by Σ, where now Σ is a p-dimensional
manifold with boundary (or with corners, like a p-(hyper)cube [0, 1]p).

Moreover, we write γ : Σ → M (and also start to forget that we ever
had the decomposition M = X × R in an explicit way! This is what we
mean when we talk about the “indistinguishability of the space and time
directions”). The image of γ is now a p-dimensional membrane, which string
theorists unfortunately call a ‘(p−1)-brane’, since they’re thinking about the
‘spatial’ dimensions of Σ instead. For example, in the case p = 2, we have
a string, which they would call a 1-brane because it looks 1-dimensional
at any moment of time, even though its ‘worldsheet’ (the image of γ) is
2-dimensional.

In the particle case, the canonical 1-form α̃ on T ∗M played a key role in
defining the action, Hamiltonian etc. We had defined S(γ̃) =

∫
eγ α̃, where γ̃

is a path in T ∗M . More precisely,

γ̃ : [s0, s1]→ Y ⊂ T ∗M

where Y = {p0 = −H(q, p)} for our Hamiltonian H : T ∗X → R. We also
need a ‘canonical p-form’, and moreover, on what? (So that we can integrate
it over our p-dimensional membrane.) We make the following table:
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Particles (p = 1) Membranes (p ≥ 0)

(1) Particles have a one-dimensional
worldline γ : [s0, s1]→M .

(1) Membranes have a p-dimensional
worldvolume γ : Σ→M . (Called a world-
sheet for p = 2, or a particle that exists
only for an instant if p = 0... These latter
(for p = 0) are called instantons.)

(2) The extended phase space is
T ∗M (which keeps track of momen-
tum too).
To get this, look at the tangent
to our curve γ, and take the dual
space, so we get (TM)∗.

(2) What is the extended phase space
here?
Here, the tangent “sheet” consists of p-
wedges (wedges for orientation reasons)
of tangent vectors, and dualizing gives
(
∧
pTM)∗.

(3) We start studying γ̃ : [s0, s1] →
T ∗M , because T ∗M has a canonical
1-form α̃ on it.

(3) We start studying γ̃ : Σ→ ∧p
(T ∗M),

because it has a canonical p-form on it.
(We’ll check this later.)

8.1. More derivations. Recall that our worldline has a tangent vector
γ′(s) ∈ Tγ(s)M , called its velocity. (Also, we need this velocity - or even the
analogue for general p - to vary continuously/smoothly, like a section.) To
generalise this to general p, one option is that γ : Σ→ M gives dγ : TΣ→
TM (or dγ(x) : TxΣ→ Tγ(x)M).

∈ Tγ(s)M

Figure 10. tangent vector

But over in this situation, we actually want our answer to lie in
∧
pTM .

Thus, let us (also) call the analogue γ ′(x) ∈ ∧ pTM , called its multi-velocity
or p-velocity, which says how fast, and in which direction (of coordinates on
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Σ), γ moves. For example, for p = 2, the picture looks like the following

“parallelogram” or area therein, inside
∧2 Tγ(x)M :

∈ Λ
2 Tγ(s)M

(p = 2)

Figure 11. shaded parallelogram = determinant

Here’s one possible definition of the multi-velocity for general p: let’s
define γ′ using some choice of local coordinates s1, . . . , sp on Σ:

γ′(x) =
∂γ(x)

∂s1
∧ · · · ∧ ∂γ(x)

∂sp
∈
∧

pTγ(x)M

Remark 8.1.

(1) Another choice of local coordinates si should give a “rescaled” sec-
tion.

(2) This definition is a section, as we will eventually see. For now, we
look at it only at a point γ(x) ∈M .

(3) This vanishes if the ∂γ(x)
∂si

’s are linearly dependent (i.e. γ is not an

immersion). For instance, if a cylinder is shrunk to a line (or in
general, dimM < p etc.).

(4) The challenge here, is to invent a coordinate-free definition of γ ′.

8.2. Generalizing the Lagrangian. Earlier, we had L : TX → R. This
is not good, since we want eventually to forget about X, and only use
M = X × R. Thus, we generalize this notion, and consider general L :
TM = T (X × R) → R. (The earlier notion of Lagrangian is, now, merely
independent of time.)

This is a good thing to do because now we have (γ(s), γ ′(s)) ∈ TM , i.e.
velocity is really in TM .

To generalize to p-membranes, we now want to consider the Lagrangian
to be a function L :

∧
pTM → R, since now, (γ(x), γ ′(x)) ∈ ∧ pTM .

Question. Why is space-time still X × R = M here, instead of X ×Σ
One possible reason: Σ is not “all-time-coordinates”, so to speak; it’s just
“one-time-and-(p − 1)-space” coordinates!
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9. Nov 28, 2006: More on particles “vs.” membranes

Recall from last time, that we were trying to generalize our framework
from p = 1 to general p. This resulted in our changing the base parameter
space [s0, s1] to a p-dimensional manifold Σ, possibly with boundary (and
corners).

9.1. (Functorial) construction of the multivelocity alternating ten-
sor. Here’s how to define the multivelocity γ ′ of a map γ : Σ → M , i.e. of
a p-dimensional membrane in the space-time M :

x

Σ

γ(x)

γ(Σ)

γ

M

Figure 12. [s0, s1] maps to a tangent at a point on a path
γ; Σ maps to a shaded parallelogram at a point on a surface
M

To define γ ′ in a coordinate-free way, take γ : Σ→M and apply various
functors to get γ ′ (if we want to be really precise!).

(1) The tangent functor: γ : Σ → M goes to its differential dγ : TΣ →
TM , or to be very precise, the tangent functor Tγ : TΣ → TM .
Here, T is the tangent functor that takes manifolds to vector bun-
dles over them (more precisely, T : M 7→ TM), and morphisms
between manifolds, to their differentials, which are vector bundle
maps between the corresponding tangent bundles.

(2) The (top-)wedge functor: We now apply the functor
∧p that takes

finite-rank vector bundles on M to finite-rank vector bundles on
M . Thus, if (E → M) has fiber Ex of dimension m over x ∈ M ,
then it is mapped to

∧
p(E → M) = (

∧
pE) → M , with fiber

(
∧
pE)x =

∧
pEx of dimension

(
m
p

)
for all x. In particular, if m = p,

then we get a line bundle on M , also called the determinant line
bundle.
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How about morphisms? Given a vector bundle map f : E → E ′

(both E,E ′ are over M), we get
∧
pf :

∧
pE → ∧

pE′, given by

(
∧

pf)x(e1 ∧ · · · ∧ ep) := f(e1) ∧ . . . f(ep), ∀ei ∈ Ex

9.2. Volume forms. Since we are working over Σ, hence we thus get, given
γ : Σ→M , the map

∧
pdγ :

∧
pTxΣ→

∧
pTγ(x)M

But the multivelocity was just one vector inside it, not a function! Actually,
the domain above is just one-dimensional, being the top exterior power, but
this means that there still is the choice of a scalar involved. Moreover, this
scalar must be nonzero for any x (so that our domain vector is nonzero),
which means that we are looking for a nonvanishing section of the top exte-
rior power.

Definition 9.1. A volume form is a nonvanishing section of the top exterior
power.

For example,
∫

(−)dx ∧ dy ∧ dz takes in functions and spits out numbers.

So, assume for now, that Σ comes equipped with a volume form vol ∈
Ωp(Σ), so that 0 6= volx ∈

∧
pT ∗xΣ for all x ∈ Σ. Then the top (pth)

exterior powers of the tangent and cotangent bundles on Σ are both of rank
one, hence the evaluation map on their fibers gives an isomorphism between
them. More precisely, if Vx =

∧
pTxΣ, then dimVx = dimV ∗x = 1, where

V ∗x =
∧
pT ∗xΣ. One then defines ϕx : V ∗x

∼→ Vx, by ϕx(0) = 0, and

〈ϕx(ω), ω〉 = 1 ∀0 6= ω ∈ V ∗x
Warning. Note that the map ϕx is not linear. It is “inverse-linear”.

We can now define the multi-velocity.

Definition 9.2. Given a volume form vol ∈ Ωp(Σ) and γ : Σ → M , define
the multi-velocity γ ′ at γ(x) ∈M , to be

γ′(x) = (
∧

pdγ)(ϕ−1(volx)) ∈
∧

pTγ(x)M

Remark 9.3. The crucial fact is that this definition is not independent
of vol! However, what we will see later, is that the notion of the volume
(that generalizes the length of a string and area of a membrane) is now
independent of choice of vol (i.e. choice of normalization).

We once again develop the two pictures side-by-side, for particles and for
general membranes.
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Particles (p = 1) Membranes (p ≥ 0)

(1) A particle comes equipped with
a worldline γ : [s0, s1] → M =
space-time.

(1) A membrane has a world-volume γ :
Σ→M .

(2) Then comes a Lagrangian and
an action. For instance, in general
relativity, M is a Lorentzian mani-
fold, and the action for a particle
with mass m and charge e, is

S(γ) = m`(γ) + e

∫

γ

A

where A ∈ Ω1(M) is the “electro-
magnetic vector potential”, and ` is
the length, obtained using the met-
ric on M :

`(γ) =

∫ s1

s0

|γ′(s)| ds

(2) The usual Nambu-Goto action for a
membrane is

S(γ) = mVol(γ) + e

∫

γ

A

where e is the charge, m is the membrane
tension now, and A is the p-form poten-
tial. Finally, Vol stands for the volume of
γ, also obtained using the metric on M :

Vol(γ) =

∫

Σ

|γ′(x)| volx

(3) (Marginal cases.) If A = 0,
a particle extremizing the action
traces out a geodesic.

(3) (Marginal cases.) If A = 0, a mem-
brane extremizing the action traces out a
minimal surface.

(4) On the other hand, if m
or the metric vanishes, i.e. we
consider only the electromagnetic
part of the action, namely e

∫
γ A,

then this gives a change of phase
exp(ie

∫
γ
A) ∈ U(1) = S1, when

we move a quantum particle along
a path γ.
In fact, if γ is a loop homologous
to the trivial loop, and it “bounds
a surface” S, then by Stokes’ The-
orem,

∫
γ
A =

∫
S
F , where ∂S = γ,

and dA = F is the electromagnetic
field.

(4) If we do the same thing here, i.e.
consider only the p-form potential, then
we get a change of phase exp(ie

∫
γ
A) ∈

U(1), when we move a quantum mem-
brane along the surface γ.
In fact, if γ is a surface homologous to
the trivial one, and it bounds a higher-
dimensional manifold S, then by Stokes’
Theorem,

∫
γ A =

∫
S F , where ∂S = γ and

F = dA.

γ

S

γ

S
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Remark 9.4.

(1) In the Nambu-Goto action above, A is the p-form generalization in
Maxwell’s equations, hence is also called p-form electromagnetism.

(2) Also, |γ ′(x)| uses the metric on
∧
pTM , which in turn is obtained

from the inner product/metric on TM . Moreover, here we use our
chosen volume form vol on Σ.

(3) Then the formula for the volume is independent of choice of vol! This
is because any scaling of γ ′(x) involves a scaling inside ϕ (by the
definition above), which was “inverse-linear”, and the corresponding
choice of volx is rescaled by exactly the reciprocal of the earlier
scaling. This makes the entire expression independent of choice of
normalization.

(4) Also note that the integral had better converge. Thus, we need to
have some restriction on Σ, or else at least on γ. For example, the
image of γ may need to be compact in M .

(5) In either of these two cases, e
∫
γ A is independent of parametrization

as well. Therefore the entire expression in the formula above, is also
independent of parametrization, as we wanted.

(6) Finally, we get a map Cγ : Ωp(M) → U(1) = S1 for each such γ,
namely: Cγ(A) = exp(i

∫
γ A). (Here, we’re arranging the units so

that ~ = 1.) This brings us closer to cohomology, which we will in
fact encounter next time.

9.3. The canonical p-form. We now do the computations similar to the
p = 1 case above. Let us denote the canonical p-form on

∧
pT ∗M by αp.

Since we will use (qi, pi) for coordinates on the cotangent bundle, let us
compute instead, the canonical n-form αn on

∧n T ∗M .

Using coordinates: An element of
∧n T ∗M , at a point q ∈ M , has a

“Plücker” basis pI , where I = {i1 < i2 < · · · < in} ⊂ {1, 2, . . . ,dimM}.
Define corresponding differentials dqI := dqi1 ∧ · · ·∧dqin , and the n-form by

αn := pIdq
I

where we still use Einstein summation for index sets - or for n-tuples of
indices.

Coordinate-free definition: As earlier, keep in mind that αn likes to eat
n-wedges of tangent vectors to T ∗M , i.e.

v1 ∧ · · · ∧ vn, vi ∈ T(q,p)(T
∗
qM)

and spit out numbers. But we have the projection π1 from T ∗M , taking
(q, p) to q. Thus, dπ1(vi) : T(q,p)(T

∗M) → TM . Moreover, π′2(vi) ∈ T ∗M
(as earlier), so we now define

αn(∧ivi) = (∧iπ′2(vi))(∧idπ1(vi))

As above, we have
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Theorem 9.5. If qi are any local coordinates on M , and (qi, pi) the corre-
sponding local coordinates on T ∗M , then αn = pIdq

I .

Proof. (This is a (somewhat tortuous!) exercise in keeping track of multi-
indices in wedging, so feel free to skip it!) Choose any vi ∈ T(q,p)T

∗
qM for

1 ≤ i ≤ n. Then, as earlier,

∧ivi =
∑

K,J

aKJ ∧k∈K
∂

∂qk

∧
∧j∈J

∂

∂pj

for some choice of scalars aKJ , and where K,J vary over disjoint subsets of

{1, 2, . . . ,dimM}, so that |K|+ |J | = n. In fact, if vi =
∑

l a
l,i ∂
∂ql

+ al,i
∂
∂pl

,

then
aKJ =

∑

ik,i
′
j

±
∏

k∈K
ak,ik ·

∏

j∈J
aj,i′j

where we sum over all tuples ik and all i′j , so that they are all distinct, and
the ± is the product of the signs of the two permutations, that rearrange
the sets {ik : k ∈ K} and {i′j : j ∈ J} in increasing order.

As above, we also condense our notation by writing

∂

∂qK
:= ∧k∈K

∂

∂qk
,

∂

∂pJ
:= ∧j∈J

∂

∂pj

where all wedges are taken with indices in increasing order (just as in dqI ,
or even in pI). Now by our “random facts” on wedges, we know that

dqI(
∂

∂qK
∧ ∂

∂pJ
) = δIKδ

J
∅

since |I| = n = |K|+ |J |. In other words, it vanishes if J is nonempty, or if
J = ∅ (so |I| = |K|) but I 6= K.

Method 1: We therefore start our computations. Firstly, evaluating ∧ivi at
pIdq

I , we have

pIdq
I(∧ivi) =

∑

J,K

pIa
K
J δ

I
Kδ

J
∅ = pIa

I
∅

where most terms in the sum vanish because of the Kronecker deltas.

Method 2: We now want to reconcile this to the coordinate-free definition
in these coordinates. In this case, we note that if

v =

(
q, p,

∑

i

ai
∂

∂qi
+ ai

∂

∂pi

)

then dπ1 : T (T ∗X)→ TX sends it to (q,
∑

i a
i ∂
∂qi

), where qi’s on the right-

hand side are local coordinates in a different space (TX) than the q i’s on
the left-hand side. In other words, dπ1(vi) removes the vertical components
∂
∂pj

’s from each vi, and takes the ∂
∂qi

’s to themselves in the tangent space to

the vector space T ∗qX.
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Therefore, ∧idπ1(vi) precisely equals aK∅
∂

∂qK
, since there are no vertical

components remaining!

Moreover, as in the earlier proof (for p = 1), we have that π2(v) = pidq
i

in the cotangent space at q. Wedging this over all vi’s gives us all possible
terms of type pIdq

I . Thus, we can now compute αn using the coordinate-free
definition, to get

αn(∧ivi) = pIa
K
∅ dq

I(
∂

∂qK
) = δIKpIa

K
∅ = pIa

I
∅

and since the two definitions agree at all ∧ivi, hence the forms themselves
are equal, as desired. �
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10. Dec 05, 2006: Phases and connections on bundles

Today we shall return to our extended phase space, so to speak. From
now on, we forget about X, and only talk about our phase space M . Thus,
the paths and 1-forms are henceforth denoted by γ, α etc. (and not γ̃, α̃
etc.).

A glimpse of what is to come: Having reviewed classical particle mechanics,
and its stringy and brany generalizations, next we will quantize these. We’ll
mainly talk about geometric quantization.

10.1. When connections come in. In particle mechanics, a phase space
is often a symplectic manifold (M,ω) (but we’ll see an example today, that
is not of this form). The role of the 2-form ω is to (help) compute the action
of a path γ ∈M : S(γ) =

∫
γ α, where dα = ω (upto a sign, which we shall

henceforth ignore, since we do not care about reconciling this to physicists’
notation anymore!).

What about ω itself? If γ = ∂Σ (i.e. γ is homologous to the boundary of
a surface Σ - always assumed to be compact here, in order to integrate on
it), then S(γ) =

∫
Σ ω by Stokes’ Theorem.

γ

Σ

Figure 13. γ bounds Σ that might have handles on it

This raises two questions:

(1) What if γ is a path not cohomologous to zero, i.e. γ 6= ∂Σ?
(2) What if ω 6= ∂α for any α? (For cotangent bundles, this prob-

lem does not arise, but in general symplectic manifolds, ω is merely
closed, not exact.)

(One obvious solution is: if γ is cohomologous to zero but ω is not exact,
we use S(γ) =

∫
Σ ω - and if γ is not cohomologous to zero but ω is exact,

then ω = dα, and we use S(γ) =
∫
γ α. Thus, we only get in trouble if both

these problems arise simultaneously.)

But we look here, at a generalization of a 1-form that works, called a
connection on a U(1)-bundle.
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10.2. Phases and relative phases. In quantum mechanics, what matters
is not the action S(γ) ∈ R, but the phase eiS(γ) ∈ U(1). Note that this
already loses information, being periodic:

0→ 2πZ→ R s7→eis−→ U(1)→ 0

Actually, if one has (in quantum mechanics) a bunch of paths between
points m0,m1 in M , i.e.

℘ ⊂ Pm0→m1M := {γ : [s0, s1]→M : γ(si) = mi}
(depending on what we need, γ might need to be differentiable, smooth,
etc.), then the amplitude to get from m0 to m1 (via ℘) is

A℘ :=

∫

γ∈℘
eiS(γ) Dγ ∈ C

(modulo convergence issues, of course). Such an expression is called a path
integral (it is one of the two major types of Feynman integrals).

The amplitude now gives a probability |A℘|2 ∈ [0, 1], upto a suitable
renormalization.

So, for physics, changing eiS(γ) 7→ ceiS(γ) for some c ∈ U(1), does not
change any probabilities.

However, a connection on a U(1)-bundle lets us calculate a definite phase
(i.e. an actual, concrete value) for any loop γ, and thus a ratio of phases for
any pair of paths γ1, γ2 from m0 to m1, as follows:

γ1

γ2

x y

Figure 14. two paths γ1, γ2 : m0 → m1; maps to the loop
γ1 ◦ γ−1

2

We define
Phase(γ1)

Phase(γ2)
= Phase(γ), where γ is the loop γ1 ◦ γ−1

2 (based at

m0, so note the order of composing). These relative phases are what we can
actually measure: they are unchanged by multiplying Phase(γ1),Phase(γ2)
by any c ∈ U(1).

Next, any U(1)-connection has a curvature 2-form ω ∈ Ω2(M), which
should be our symplectic structure in applications to geoemtric quantization.
If γ is a loop with ∂Σ = γ for some surface Σ, then

Phase(γ) = ei
R
Σ ω
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This is just like ei
R
γ A = ei

R
Σ
ω, but now Phase(γ) is not coming from a

1-form A anymore.

Warning. Before we move on to a concrete example, let us remark that not
every loop is the boundary of a (compact) surface Σ. For example, consider
the unit circle in the plane punctured at the center of the circle. Even as
topological spaces, the boundary of the punctured disk is the union of a
circle and a point, not just the circle. And as manifolds with boundaries,
the point is not even of codimension one.

10.3. Example: Rigid rotor. Let M = S2 ⊂ R3 be the unit sphere,
with the 2-form ω = sin2 φ dθ dφ, where θ, φ denote the longitude, and the
latitude from the north pole (not equator) respectively.

[figure: sphere with equatorial plane and angle θ; prime meridian and angle
φ with north pole]

Then
∫

Σ ω = area(Σ).
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Figure 15.

What’s our U(1) connection here? Given a loop γ, pick any unit tangent
vector v at a point x, and parallel transport it around γ, to get a new tangent
vector v′.

Thus, v′ is obtained by rotating v in the tangent plane at x, and this gives
Phase(γ) ∈ U(1). Moreover, in this case we really do have

Phase(γ) = ei
R
Σ ω = area(ω)

when ∂Σ = γ. We say that ω is the curvature of our U(1)-connection.
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γ

Figure 16. shows the tangent plane at a point on a sphere,
the loop γ, and the vectors v, v′

M is then the phase space (not configuration space) of a rigid rotor i.e. a
rigid spinning ball with fixed rate of rotation (angular speed), but unknown
axis and “direction of spinning”.

Remark 10.1.

(1) Note that the ambiguity of antipodal points giving the same axis of
rotation is removed, if we decree that all rotations are specified by
the north pole of the axis, and the right-hand-rule to determine the
direction of rotation.

(2) M is also the Riemann sphere, and the phase space of a cubit. The
quantization of this is the phase space of an electron.

(3) Also note that M is the phase space of a rigid rotor, because both
position and velocity are mentioned here.

Note that M is 2-dimensional, so the 2-form ω is obviously closed. How-
ever, we claim that M is not the cotangent bundle of any manifold. In
fact,

Proposition 10.2. ω is not exact.

Proof. Suppose not, i.e. say ω = dα for some 1-form α. Then if ∂Σ = γ
for some (connected) compact region Σ on S2, denote Σ′ to be the closure
of the complement S2 \ Σ. This too has boundary γ, but perhaps with the
opposite orientation. In either case, we now use Stokes’ Theorem to get

area(Σ) =

∫

Σ
ω =

∫

γ
α = ±

∫

Σ′
ω = ±(area(S2)− area(Σ))

for all Σ as above. This is a contradiction (e.g. take Σ = S2, Σ′ = ∅). �

10.4. Integral cohomology and Max Planck. More generally, say (M,ω)
is any symplectic manifold equipped with a U(1)-connection whose curva-

ture is ω, and say Σ is a surface inside M . Then Phase(γ) = ei
R
Σ
ω when

∂Σ = γ.
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Now consider two surfaces Σ1,Σ2 with common boundary γ - or more
precisely, ∂Σ1 = γ, ∂Σ2 = γ−1. Let Σ = Σ1 ∪ Σ2.

Σ1

Σ2

γ

Figure 17. a surface (say with genus) obtained by joining
two half-surfaces

Then we have
Phase(γ) = e

i
R
Σ1

ω
= e

i−
R
Σ2

ω

so that if Σ is as above, then

ei
R
Σ ω = e

i
R
Σ1

ω+
R
Σ2

ω
= 1

Therefore
∫

Σ ω ∈ 2πZ!

This argument works for any Σ ⊂ M , with ∂Σ = ∅, since we can always
write Σ = Σ1∪Σ2 as in the picture above. So, ω describes an integral second
cohomology class.

Remark 10.3.

(1) This is one origin of the word “quantization”, as Max Planck and
Bohr-Sommerfeld essentially realised. The energy states have to
occur with some integer-conditions...

(2) We’ll see later (next quarter!) that this generalizes to (p+ 1)-forms
for all p!


	1. Preface
	2. Oct 3, 2006: Introduction
	2.1. Perspective
	2.2. (Higher) cohomology and physics
	2.3. Classical dynamics vs. open string statics
	2.4. The quantum case

	3. Oct 10, 2006: Lagrangian Mechanics
	3.1. Introduction to the Lagrangian approach
	3.2. Deriving the Euler-Lagrange equations
	3.3. Physics notation
	3.4. Example: A particle in a potential
	3.5. ``Sneak preview"

	4. Oct 17, 2006: From Lagrangian to Hamiltonian Dynamics
	4.1. Recap
	4.2. A matter of notation
	4.3. Switching to the Hamiltonian approach
	4.4. Energy
	4.5. Hamilton's Equations

	5. Oct 24, 2006: Hamiltonian Mechanics and Symplectic Geometry
	5.1. Recap
	5.2. Some musical operators
	5.3. The Hamiltonian vector field
	5.4. Homework
	5.5. Coordinate-free formulations

	6. Oct 31, 2006: More on the canonical 1-form
	6.1. Reconciling with the coordinate-based definition
	6.2. Symplectic manifolds
	6.3. Digression on five-body systems
	6.4. The 1-form and action

	7. Nov 07, 2006: The Extended Phase Space
	7.1. Aside
	7.2. Bringing in spacetime
	7.3. Hamilton's equations and the conservation of energy
	7.4. Digression of the day: LIGO
	7.5. A look back at the special case t(s) = s

	8. Nov 14, 2006: From particles to strings and higher membranes
	8.1. More derivations
	8.2. Generalizing the Lagrangian

	9. Nov 28, 2006: More on particles ``vs." membranes
	9.1. (Functorial) construction of the multivelocity alternating tensor
	9.2. Volume forms
	9.3. The canonical p-form

	10. Dec 05, 2006: Phases and connections on bundles
	10.1. When connections come in
	10.2. Phases and relative phases
	10.3. Example: Rigid rotor
	10.4. Integral cohomology and Max Planck


