
On Groupoids and Stuff

Simon Byrne

November 17, 2005

Contents

1 Groupoids 3
1.1 An introduction . 3
1.2 Category of groupoids . 5
1.3 Weak quotient . 6
1.4 Colouring . 8

2 Stuff types 12
2.1 Stuff types . 12

2.1.1 Structure types . 13
2.1.2 Examples . 16

2.2 Generating functions . 16
2.2.1 A categorical view . 18

2.3 The 2-category of stuff types 21

3 Operations on stuff types 27
3.1 Addition . 27
3.2 Multiplication . 29
3.3 Composition . 31
3.4 Pointing . 33
3.5 Derivative . 34
3.6 Cartesian product . 37
3.7 Inner product . 39
3.8 Stuff operator . 42

1

Introduction

The theory of combinatorial species developed by André Joyal [3] is a method
for analysis of finite structures using generating functions. A combinatorial
species can be thought of as a map assigning to each finite set the set of
structures of the species which exist on that set.

A structure type works in the opposite direction, assigning to a structure
its underlying set. However the collection of structures is not a set, but a
groupoid. This mapping “forgets” the structure, and so its fibre (or inverse)
will rebuild it, becoming a species. A stuff type is a generalisation of a
structure type, and in the same context can be thought of as mapping a
structure to some subset of its underlying set. This mapping forgets not
only structure, but extra “stuff”.

The advantage of such an approach is two-fold. Firstly it provides a
categorical underpinning to the concept of a generating function, giving an
explanation as to the form of the power series. Also it allows for a different
approach to the familiar operations (such as addition, multiplication, and
composition) on species.

The theory of stuff types was introduced by John Baez and James Dolan
in a paper [2] and a series of talks [1], in which they use stuff types to ‘cat-
egorify’ the concept of Feynman diagrams and the foundations of quantum
mechanics.

Combinatorial species provide an environment for the theory of oper-
ads, which were introduced to study the homotopy of iterated loop spaces
[6]. Stuff types provide the environment for the theory of clubs which were
introduced to study categories with structure [4],[5].

The purpose of this essay is to describe the concept of structure and stuff
types, and show how operations on species can be viewed as operations on
stuff types.

I would like to thank Professor Ross Street for his advice and support.

2

Chapter 1

Groupoids

1.1 An introduction

A groupoid is a category in which every morphism is an isomorphism. This
paper only considers groupoids which are ‘small’, that is the objects of the
groupoid form a set.

Example 1.1.1. A groupoid which we will use often is E, a subcategory of
FinSet in which the only morphisms are bijections. An object is a finite
set N , which we can depict as:

N : � � � . . . �

where the �’s represent the elements of the set. A morphism is a bijective
function σ : N → N ′, which we can depict as:

N : �

��

�

��

�

��

. . . �

��

σ

N ′ : � � � . . . �

A useful property of groupoids is the ability to split them into their
isomorphism classes, which themselves form groupoids. These are called
connected groupoids, as every object in the groupoid has a morphism to
every other object. The automorphisms of any element form a group under
composition (hence the origins of the term groupoid).

Lemma 1.1.2. If X, X ′, Y, Y ′ are objects in the same isomorphism class of
a groupoid X , then X (X, X ′) ∼= X (Y, Y ′)

3

Proof. Since X, X ′, Y ′Y ′ are in the same isomorpism class, we know there
exists morphisms u : X → Y and v : X ′ → Y ′. We can construct a
function θ : X (X, X ′) → X (Y, Y ′) where θ(f) = v ◦ f ◦ u−1. Furthermore,
θ is invertible, with θ−1(g) = v−1 ◦ g ◦ u : X → X ′. Therefore we have
X (X, X ′) ∼= X (Y, Y ′).

Note that this isomorphism is not natural, as it depended on the choice
of u and v.

From this we can build a skeleton of the groupoid, in which the only
objects are representative objects of each isomorphism class. The only mor-
phisms in a skeleton will be the automorphisms on the representative objects.

Example 1.1.3. A skeleton of E is P the groupoid whose objects are 〈n〉 =
{1, 2, . . . , n} and the morphisms are permutations of the elements.

We will denote the set of isomorphism classes of a groupoid X as π0(X)
and the isomorphism class of an object X in X by [X]. That is X is a
representative object of the isomorphism class [X].

This inspires the definition of groupoid cardinality (as given by [2]):

Definition 1.1.4. The cardinality of a groupoid X is:

|X | =
∑

[X]∈π0(X)

1
|Aut(X)|

where Aut(X) = X (X, X), the set of automorphisms on X.

Remark 1.1.5. This can actually be calculated for any category, but we will
only be applying it to groupoids. Also for this to be of any use, we obviously
require the sum to converge.

This definition has several useful properties, the most obvious of which
is the cardinality of a groupoid is equal to that of its skeleton. Also, it
corresponds with the notion of set cardinality, since a set can be thought of
as a category whose objects are elements, with only the identity morphisms.

A group G can be thought of as a category BG with one object I, in which
the morphisms (which will be automorphisms on I) are the elements of G.
The identity element of the group e corresponds to the identity morphism
morphism 1I , and so every morphism has an inverse, hence BG is a groupoid.

However, this means that |BG| will be the reciprocal of the order of the
group, #G. While this may at first seem odd, we will later show that it
allows for a type of quotient on a groupoid.

Example 1.1.6. The isomorphism classes of E consists of sets with the same
number of elements. An automorphism is a permutation on the set. On a
set with n elements, there are n! permutations, so we have:

|E| =
∞∑

n=0

1
n!

= e

4

Proposition 1.1.7. If two groupoids X and Y are equivalent, then |X | =
|Y |.

Proof. Let S : X −→ Y be an equivalence. A functor is an equivalence if
and only if it is full, faithful and essentially surjective. S being full implies
that each isomorphism class [X] of X correspondonds uniquely to the iso-
morphism class [S(X)] in Y . Furthermore since S is essentially surjective,
for every isomorpism class [Y] of Y , there exists an isomorphism class [X]
in X such that [X] = [S(X)].

Also, since S is full and faithful we have |Aut(X)| = |Aut(S(X))|, and
so we have:

|X | =
∑

[X]∈π0(X)

1
|Aut(X)|

=
∑

[X]∈π0(X)

1
|Aut(S(X))|

=
∑

[Y]∈π0(Y)

1
|Aut(Y)|

= |Y |

1.2 Category of groupoids

The category Gpd of groupoids is the categiry whose objects are grouopids
and morphisms are functors between groupoids, and so is a subcategory of
the category Cat of small categories.

The initial object is the empty category 0, which has no objects and
no morphisms, and the terminal object is , with one object and only the
identity morphism on that object.

The operations of coproduct and product are easily defined on Gpd.

Addition of groupoids

The addition (or coproduct) of a family of groupoids (Xi)i∈Λ is the groupoid∑
i∈Λ Xi, in which the set of objects is the disjoint union of the set of

objects of each Xi, and the included morphisms between those objects. The
coprojections are the inclusion functors:

Ij : Xj −→
∑
i∈Λ

Xi

Any isomorphism class of
∑

Xi must correpond uniquely to an isomorphism
class of some groupoid X, so we have:∣∣∣∣∣∑

i∈Λ

Xi

∣∣∣∣∣ = ∑
[X]∈π0(

P
Xi)

1
|Aut(X)|

=
∑
i∈Λ

 ∑
[Xi]∈π0(X)

1
|Aut(Xi)|

 =
∑
i∈Λ

|Xi|

5

Multiplication of groupoids

Multiplication (or product) can be interpreted as the cartesian product,
and so for a family of groupoids (Xi)i∈Λ, we define the category

∏
i∈Λ Xi

which has objects (Xi)i∈Λ where Xi is an object in Xi, and morphisms
(fi)i∈Λ : (Xi)i∈Λ → (X ′

i)i∈Λ, where each fi : Xi → X ′
i is a morphism in Xi.

Therefore we have an obvious choice for projections:

Pj :
∑
i∈Λ

Xi −→ Xj

Any isomorphism class of
∏

Xi corresponds to an isomorphism class of each
Xi, and an automorphism on (Xi)i∈Λ will correspond to an automorphism
on each Xi. Therefore we have:∣∣∣∣∣∏

i∈Λ

Xi

∣∣∣∣∣ = ∑
[(Xi)i∈Λ]∈π0(

Q
Xi)

1
|Aut(Xi)i∈Λ|

=
∏
i∈Λ

∑
[Xi]∈π0(X)

1
|Aut(Xi)|

=
∏
i∈Λ

|Xi|

1.3 Weak quotient

One of the main reasons the groupoid cardinality is defined as such is that
it fits in nicely with the idea of a weak quotient. Informally, a weak quotient
is a group action on the set of objects in a groupoid.

Definition 1.3.1. A group action of a finite group G on a groupoid X is a
functor A : BG −→ Gpd such that A(I) = X where I is the object in BG.

This means that each element g ∈ G induces a functor A(g) : X −→ X .
For an object X of X we write A(g)X = gX, and similarly for a morphism
f : X → X ′, we write A(g)(f) = gf : gX → gX ′. Also these functors
preserve composition, so for g, g′ ∈ G we have A(g)A(g′) = A(gg′).

Definition 1.3.2. The weak quotient of a group action on a groupoid is the
category X //G whose objects are those of X , and morphisms (f, g) : X →
X ′, with g ∈ G and a morphism f : gX → X ′ in X .

The identity morphism on an object X is (e, 1X), and composition of
morphisms (g, f) : X → X ′ and (g′, f ′) : X ′ → X ′′ is defined as (g′, f ′) ◦
(g, f) = (g′g, f ′ ◦ g′f). Hence morphism (g, f) : X → X ′ has an inverse
(g−1, g−1f−1), and so X //G is a groupoid.

So how may this be considered a quotient? Essentially a group action
can be thought of as introducing new morphisms to a groupoid, and these
will combine distinct isomorphism classes or introduce new automorphisms,
both of which will reduce the cardinality of such a groupoid.

6

Example 1.3.3. Consider a set with 4 elements as a groupoid 4. Then clearly
|4| = 4, and such a groupoid may be depicted as:

•

1

��
•

1

��
•

1

��
•

1

��

A group action of Z2 = {e, g} can be defined to act on 4. This action can
be chosen such that the groupoid 4//Z2 can be depicted as:

•

(e,1)

��
(g,1)

)) •

(e,1)

��

(g,1)

ii •

(e,1)

��
(g,1)

)) •

(e,1)

��

(g,1)

ii

There are two isomorphism classes, and each object has one automorphism,
so |4//Z2| = 2

The above group action combined isomorphism classes. However the
action may not always be so ‘nice’:

Example 1.3.4. Consider a set with 5 elements as a groupoid 5. We have
a group action of Z2 = {e, g} on 5 such that the groupoid 5//Z2 can be
depicted as:

•

(e,1)

��
(g,1)

)) •

(e,1)

��

(g,1)

ii •

(e,1)

��
(g,1)

)) •

(e,1)

��

(g,1)

ii •

(e,1)

��
(g,1)

yy

Now there are three isomorphism classes, but one has two automorphisms,
so |5//Z2| = 21

2 .

Theorem 1.3.5. If G is a group acting on a groupoid X , the cardinality of
X //G is given by:

|X //G| = |X |
#G

Proof. Firstly, note that if X and Y are objects in X , and g ∈ G such that
there exists an isomorphism f : gX → Y in X then there also exists an
isomorphism g−1f : X → g−1Y in X .

For an object X of X , define its orbit as:

orb(X) = {[Y] ∈ π0(X) | Y ∼= gX for some g ∈ G}

These are the isomorphism classes of X which will ‘merge’ to become the
isomorphism class of X in X //G. Note that if [Y] ∈ orb(X), then orb(Y) =
orb(X), and also that:

π0(X) =
∑

[X]∈π0(X //G)

orb(X)

7

For any objects X and Y in X , such that [Y] ∈ orb(X), define:

GX,Y = {g ∈ G | gX ∼= Y in X }

Then there exists a k ∈ G such that kX ∼= Y , and so:

k−1GX,Y = {k−1g ∈ G | gX ∼= Y } = {h ∈ G | hX ∼= X} = GX,X

For any object X in X we have:

G =
∑

[Y]∈orb(X)

GX,Y

and so we can write:

#G =
∑

[Y]∈orb(X)

|GX,Y | =
∑

[Y]∈orb(X)

|GX,X | = | orb(X)| · |GX,X |

Finally, note that for any automorphism (f, g) : X → X in X //G we
require that g ∈ GX,X , and so we have:

|(X //G)(X, X)| =
∑

g∈GX,X

|X (gX, X)| = |GX,X | · |X (X, X)|

Combining all of this we have:

|X //G| =
∑

[X]∈π0(X //G)

1
|(X //G)(X, X)|

=
∑

[X]∈π0(X //G)

∑
[Y]∈orb(X)

1
| orb(Y)|

· 1
|(X //G)(Y, Y)|

=
∑

[Y]∈π0(X)

1
| orb(Y)| · |GY,Y | · |X (Y, Y)|

=
∑

[Y]∈π0(X)

1
#G · |X (Y, Y)|

=
|X |
#G

1.4 Colouring

We will often work with groupoids of coloured finite sets. That is, objects of
the groupoid are finite sets in which each element has some further property
called a “colour”. A morphism is a bijective map (that is a morphism in E)
which preserves the “colour” of the elements.

Example 1.4.1. Consider E2, the groupoid of 2-coloured finite sets. An object
of the groupoid is a finite set N in which each element has a label “black”
or “white”:

N : • ◦ ◦ . . . •

8

A morphism is a bijection σ : N → N ′ on the underlying finite set with the
property that σ(x) ∈ N ′ has the same colour as x ∈ N :

N : •

��

◦

��

◦

��

. . . •

��

σ

N ′ : ◦ • • . . . ◦

We can split the objects and consider the elements with a distinct colouring
separately:

N : •

��

•

��

◦

��

◦

��

σ

N ′ : • • ◦ ◦

The isomorphism classes of E2 will consist of sets which have the same num-
ber of black coloured elements and white coloured elements. An automor-
phism on an object in E2 will consist of permutations within the colourings,
and hence:

|E2| =
∞∑

n=0

∞∑
m=0

1
n!m!

=
∞∑

n=0

1
n!

∞∑
m=0

1
m!

= e2

This makes sense, as we can think of this groupoid as the product of a white
E with a black E.

So what exactly is a colouring? In the above example it was a 2-element
set {black,white}, which experienced no change under a morphism. This
can be thought of as a category with 2 objects, with the only morphisms
being the identity (a groupoid!). So continuing in the spirit of replacing sets
with groupoids, we obtain the definition:

Definition 1.4.2. For any groupoid Z , let EZ be the groupoid of Z -
coloured finite sets, which has:

• Objects: (N ;Z) where N is an object in E and Z = (Zi)i∈N is a family
of objects in Z .

• Morphisms: (σ;u) : (N ;Z) → (N ′;Z′) where σ : N → N ′ is a mor-
phism in E and u = (ui)i∈N is a family of morphisms ui : Zi → Z ′

σ(i).

9

The identity morphism for an object (N ;Z) is (1N ;1Z), where 1Z = (1Zi)i∈N .
The composite of (σ;u) : (N ;Z) → (N ′;Z′) and (ρ;v) : (N ′;Z′) → (N ′′;Z′′)
is (ρ ◦ σ;v ◦ u) : (N ;Z) → (N ′′;Z′′), where v ◦ u = (vσ(i) ◦ ui)i∈N

This definition can be considered as the wreath product of E with Z .

Remark 1.4.3. Technically one should say that the morphisms preserve
colouring up to isomorphism. Also our previous example should be referred
to as the groupoid a 2-coloured finite sets.

Using a similar representation as before, an object of EZ would look
like:

N : Z1 Z2 Z3 . . . Zn

A morphism would look like:

N : Z1

u1

��

Z2

u2

Z3

u3

��

. . . Zn

un

		

σ

N ′ : Z ′
1 Z ′

2 Z ′
3

. . . Z ′
n

Looking at Example 1.4.1 inspires the following:

Proposition 1.4.4. For a groupoid Z , the groupoid of Z -coloured finite
sets has cardinality ∣∣∣EZ

∣∣∣ = e|Z |

Proof. An isomorphism class of EZ consists of sets where each isomorphism
class [Z] of Z has some fixed number n[Z] of elements with colouring in [Z].

An automorphism (σ;u) : (N ;Z) → (N ;Z) will consist of a permutation
σ : N → N and a family of morphisms ui : Zi → Zσ(i). However since ui

exists only if Zi and Zσ(i) are in the same isomorphism class, we require that
σ be restricted to permuting elements which have isomorphic colouring, of
which there are: ∏

[Z]

n[Z]!

For each i ∈ N , there are |Hom(Zi, Zσ(i))| possible choices for ui, and so
the number of possible choices for u are:∏
i∈N

|Hom(Zi, Zσ(i))| =
∏
i∈N

|Aut(Zi)| =
∏
[Z]

|Aut(Z)|n[Z] (by Lemma 1.1.2)

10

Therefore the cardinality of EZ .

|EZ | =
∏
[Z]

∞∑
n=0

1
|Aut(Z)|n.n!

=
∏
[Z]

∞∑
n=0

(
1

|Aut(Z)|

)n

n!

=
∏
[Z]

e1/|Aut(Z)|

= e
P

[Z] 1/|Aut(Z)|

= e|Z |

This definition does allow for some non-intuitive cases, such as 1
2 -colouring:

Example 1.4.5. Let I be a groupoid with one object I with two automor-
phisms 1, p. Then we have |I | = 1

2 . We can think of n-element I -coloured
finite sets as n-dimensional “cubes”, whose axes are labelled by elements of
the set. Then morphisms on EI will correspond to transformations of the
cubes. We can think of a morphism (σ;u), where σ is a rearrangement of
the axes, and each ui = p takes the mirror image about the ith axis.

These morphisms do not correspond to rotational operations. For exam-
ple in the 3 dimensional case, we can turn the cube inside out.

11

Chapter 2

Stuff types

2.1 Stuff types

A species of structures (also called a combinatorial species) maps each finite
set to the set of possible structures which may be placed upon it. In this
context, the groupoid of Z -coloured sets may be considered as the image of
some combinatorial species.

A stuff type works the opposite way, by mapping a structured set to its
underlying set.

Example 2.1.1. Consider E2, the groupoid of 2-coloured finite sets, with a
functor F : E2 −→ E which forgets all colouring:

N : •

��

◦

��

◦

��

. . . •

��

F (N) : �

��

�

��

�

��

. . . �

��

σ � // F (σ)

N ′ : ◦ • • . . . ◦ F (N ′) : � � � . . . �

Then the fibre of F would be equivalent to the species which applies a
2-colouring structure to a finite set.

However not all such functors may produce such a species:

Example 2.1.2. Consider E2, the groupoid of 2-coloured finite sets, with a

12

functor G : E −→ E which forgets all elements of white colouring

N : •

��

◦

��

◦

��

. . . •

��

G(N) : �

��

. . . �

��

σ � // G(σ)

N ′ : ◦ • • . . . ◦ G(N ′) : � � . . .

The fibre of G will be a messy construction (certainly not a finite set), and
definitely not a species.

Definition 2.1.3. A stuff type is a groupoid X together with a functor

F : X −→ E

Objects of X are called ‘F -stuffed sets’, and so X may be called the
groupoid of F -stuffed sets. Note that since a morphism in X will map to a
morphism in E, objects in the same isomorphism class of X will all map to
sets with the same number of elements.

For any n ∈ N, define (X , F)n as the subgroupoid of X in which all the
objects map to n-element sets, and the morphisms between these objects.
We may call (X , F)n the groupoid of F -stuffed n-element sets. Also we
have:

X =
∞∑

n=0

(X , F)n

We can also construct a functor Fn : (X , F)n −→ E which acts on (X , F)n

in the same way that F acts on X .

2.1.1 Structure types

As mentioned before, the concept of stuff is a generalisation of structure,
and so we seek to reconcile the concept of a stuff type with that of species
of structure.

Definition 2.1.4. A species of structure (as given by [7]) is a functor

S : E −→ FinSet

We can easily create a stuff type from a species S by defining a groupoid
X with:

• Objects: (N, t) where N is an object in E and t is an element of the
set S(N).

13

• Morphisms: (σ) : (N, t) → (N ′, t′) where σ : N → N ′ is a morphism
in E and S(σ)(t) = t′.

Then the associated stuff type is the functor F : X −→ E such that
F (N, t) = N and F (σ) = σ.

Working the other way is considerably more complex, as we have shown
that a stuff type may not always induce a species.

If we think of a stuff type as mapping a structure to its underlying set,
then the fibre (or inverse image) of a stuff type will map a finite set to the
set of all corresponding structures.

Definition 2.1.5. The fibre of a stuff type F : X −→ E is the functor
F−1 : E −→ Gpd such that for any finite set N , the groupoid F−1(N) is
defined by:

• Objects: (X, α), where X is an object in X and α is an isomorphism
α : F (X) → N .

• Morphisms: f : (X, α) → (X ′, α′), where f : X → X ′ is a morphism
in X such that the following commutes:

F (X)
F (f) //

α

��=
==

==
==

==
=

F (X ′)

α′

����
��

��
��

��
�

N

Any bijection σ : N → N ′ in E will induce a map F−1(σ) : F−1(N) −→
F−1(N ′) which maps:

• Objects: (X, α) 7−→ (X, σ ◦ α)

• Morphisms: f 7−→ f

This is clearly a functor, since the following commutes:

F (X)
F (f) //

α

��>
>>

>>
>>

>>
>>

F (X ′)

α′

����
��

��
��

��
�

N

σ

��
N ′

14

Technically this should be called a pseudofibre (or weak inverse image),
as it maps sets up to isomorphism.

For this to correspond to a species we require that the fibre of any finite
set be equivalent to a set.

Proposition 2.1.6. For any stuff type F : X −→ E, F−1(N) is equivalent
to a set for all finite sets N , if and only if F is faithful.

Proof. The set π0(F−1(N)) is a groupoid whose objects are the isomorphism
classes of F−1(N), and morphisms are the identity morphisms on each ob-
ject. Then we have a functor:

[·] : F−1(N) −→ π0(F−1(N))

which maps all objects to their isomorphism class and all morphisms to the
identity morphism on that class.

[·] is obviously essentially surjective and full, so we are concerned with
the conditions under which [·] is faithful. For any morphisms f, g : (X, α) →
(X ′, α′) in F−1(N), then [(X, α)] = [(X ′, α′)], and so [f] = [g] = 1[(X,α)].
However the following also commutes:

F (X)
F (f) //

F (g)
//

α

��=
==

==
==

==
=

F (X ′)

α′

����
��

��
��

��
�

N

and so we have F (f) = F (g) = (α′)−1◦α. Therefore [·] is faithful, and hence
an equivalence, if and only if F is faithful.

Therefore when a stuff type is faithful, it corresponds to some species.
In such a case the stuff type maps a structure to its underlying set, and so
we can say it ‘forgets structure’.

One other specific case is also worth mentioning. If a stuff type F : X →
E is both full and faithful, then X is equivalent to some subgroupoid of E,
that is to finite sets which have some particular property. In such a case the
stuff type ‘forgets properties’.

Definition 2.1.7. A stuff type F : X → E is:

• A structure type if F is faithful.

• A property type if F is full and faithful.

Example 2.1.8. Consider the groupoid X , whose objects are sets with an
even number of elements, and morphisms being the bijections. Then if
F : X → E is the inclusion functor, then F is a property type associated
with the property of “being an even set”.

15

2.1.2 Examples

Example 2.1.9. Let I : E −→ E be the identity functor. Then I is the
property type of “being a finite set”.

2.2 Generating functions

A generating function of a combinatorial species is a formal power series from
which we can extract certain information, namely the number of structures
which may be placed on a set of a given size. We can create a similar
definition for stuff types:

Definition 2.2.1. The generating function of a stuff type F : X −→ E is
the formal power series:

|F |(z) =
∞∑

n=0

|(X , F)n| zn

Firstly we aim to show that this corresponds to the definition of a gen-
erating function of a species. The generating function of a species S : E −→
FinSet is the formal power series:

|S|(z) =
∞∑

n=0

sn
zn

n!

where sn is the number of structures which can be placed on an n element
set.

Proposition 2.2.2. For any stuff type F : X −→ E we have:

|(X , F)n| = |F−1〈n〉|/n!

Proof. Let Sn be the group of permutations on 〈n〉. Then we can construct
a group action A of Sn on F−1〈n〉 such that for each φ ∈ Sn we have
A(φ)(X, α) = (X, φ ◦ α) and A(φ)f = f , since the following commutes:

F (X)
F (f) //

α

��>
>>

>>
>>

>>
>>

F (X ′)

α′

����
��

��
��

��
�

〈n〉

φ

��
〈n〉

16

We now want to show that the weak quotient F−1〈n〉//Sn is equivalent
to (X , F)n. Construct the functor T :

(
F−1〈n〉//Sn

)
−→ (X , F)n which

maps:

• Objects: (X, α) 7−→ X

• Morphisms: (φ, f) 7−→ f

This is obviously essentially surjective. Given objects (X, α), (X ′, α′) in
F−1〈n〉//Sn, and a morphism f : X → X ′, there exists a unique φ =
α′ ◦ F (f) ◦ α−1 such that the following commutes:

F (X)
F (f) //

α

��

F (X ′)

α′

��
〈n〉

φ
// 〈n〉

Hence there is a unique morphism (φ, f) : (X, α) → (X ′, α′) in F−1〈n〉//Sn

such that T (φ, f) = f : X → X ′, and so T is fully faithful, and hence an
equivalence. It follows that:

|(X , F)n| = |F−1〈n〉//Sn| =
|F−1〈n〉|
|Sn|

=
|F−1〈n〉|

n!

It follows from this that in the case when F is a structure typre, the
correseponding species will have the same generating function.

Example 2.2.3. Consider the stuff type from example 2.1.1, being F : E2 −→
E which forgets 2-colouring. For any n ∈ N the groupoid (E2, F)n will be
the groupoid of n-element 2-coloured sets.

The isomorphism classes will correspond to each k = 0, 1, 2, . . . , n where
k is the number of white coloured elements. The number of automorphisms
on a typical element in such an isomorphism class will be k!(n − k)!, since
there are k! permutations on the white elements, and (n− k)! on the black
coloured elements, so we have:

|F |(z) =
∞∑

n=0

n∑
k=1

zn

k!(n− k)!
=

∞∑
n=0

zn

n!

n∑
k=1

(
n

k

)

=
∞∑

n=0

zn

n!
(1 + 1)n =

∞∑
n=0

(2z)n

n!
= e2z

Example 2.2.4. Consider the stuff type from example 2.1.2, being G : E2 −→
E which forgets the white coloured elements. For any n ∈ N the groupoid
(E2, G)n will be the groupoid of 2-coloured finite sets in which n of the
elements are black coloured.

17

The isomorphism classes will correspond to each k = 0, 1, 2, . . . where k
is the number of white coloured elements. The number of automorphisms
on a typical element in such an isomorphism class will be k!n!, since there
are k! permutations on the white elements, and n! on the black coloured
elements, so we have:

|F |(z) =
∞∑

n=0

∞∑
k=1

zn

n!k!
=

∞∑
n=0

zn

n!

∞∑
k=1

1
k!

= ez.e = ez+1

2.2.1 A categorical view

Our aim is to determine if the generating function can be interpreted as a
category, or ideally a groupoid. This is achieved by colouring the underlying
set.

Definition 2.2.5. For a stuff type F : X → E, and some groupoid Z ,
define the groupoid of F -stuffed Z -coloured finite sets as F̂ (Z) with:

• Objects: (X, α, (N ;Z)) where X is an object in X , (N ;Z) is an object
in EZ and α is an isomorphism α : F (X) → N .

• Morphisms: (f, (σ;u)) : (X, α, (N ;Z)) → (X ′, α′, (N ′;Z′)) where f :
X → X ′ and (σ;u) : (N ;Z) → (N ′;Z′) such that the following dia-
gram commutes:

F (X) α //

F (f)

��

N

σ

��
F (X ′) α′ // N ′

Composition of morphisms (f, (σ;u)) : (X, α, (N ;Z)) → (X ′, α′, (N ′;Z′))
and (f ′, (σ′;u′)) : (X ′, α′, (N ′;Z′)) → (X ′′, α′′, (N ′′;Z′′)) may be defined by:

(f ′, (σ′;u′)) ◦ (f, (σ;u)) = (f ′ ◦ f, (σ′ ◦ σ;u′ ◦ u))

where u′ ◦u = (uσ(i) ◦ui)i∈N . The identity morphism is obvious, and clearly
every morphism is invertible, so F̂ (Z) is a groupoid.

Using notation similar to before, we can depict objects of F̂ (Z) as:

GFED@ABCX N : Z1 Z2 Z3 . . . Zn• α //

Here X can be thought of as a tag attached to (N ;Z) by α.

18

Similarly, a morphism in F̂ (Z) can be depicted as:

GFED@ABCX

f

��

N : Z1

u1

��

Z2

u2

Z3

u3

��

. . . Zn

un

• α //

σ

GFED@ABCX ′ N ′ : Z ′
1 Z ′

2 Z ′
3

. . . Z ′
n• α′ //

Proposition 2.2.6. For any stuff type F : X −→ E and any groupoid Z
we have:

|F̂ (Z)| = |F |(|Z |)

Proof. Our aim is to show:

|F̂ (Z)| =
∞∑

n=0

|(X , F)n|.|Z |n

Given an object (X, α, (N ;Z)) of F (Z), then X will be an object in (X , F)n

where n = |N |, and so (X, α, (N ;Z)) is an object in F̂n(Z). Furthermore
(f, (σ;u)) : (X, α, (N ;Z)) → (X ′, α′, (N ′;Z′)) will also be a morphism in
F̂n(Z), so we can write:

F̂ (Z) ∼=
∞∑

n=0

F̂n(Z) (2.1)

Consider objects (X, α, (N ;Z)) and (X ′, α′, (N ′;Z′)) in the groupoid Fn(Z).
This implies that |N | = |N ′| = n, and for any f : X → X ′ there exists a
unique morphism σf = α′ ◦ F (f) ◦ α−1 : N → N ′ such that the following
commutes:

F (X) α //

F (f)

��

N

σf

��
F (X ′) α′ // N ′

This implies that (X, α, (N ;Z)) and (X ′, α′, (N ′;Z′)) are isomorphic if
and only if there exists a morphism f : X → X ′ and a family of morphisms
u = (ui)i∈N such that ui : Zi → Z ′

σf (i). Therefore the number of possible
automorphisms on (X, α, (N ;Z)) is:

|Aut(X, α, (N ;Z))| = |Aut(X)|
∏
i∈N

|Hom(Zi, Zσf (i))|

19

and so we have:

|Fn(Z)| =
∑

[X]∈π0(X)

1
|Aut(X)|

∏
i∈N

 ∑
[Zi]∈π0(Z)

1
|Hom(Zi, Zσf (i))|


=

∑
[X]∈π0(X)

1
|Aut(X)|

 ∑
[Z]∈π0(Z)

1
|Aut(Z)|

n

= |(X, F)n| · |Z |n

Combining this with (2.1) gives the desired result.

This gives a basis for the following definition:

Proposition 2.2.7. For any stuff type F : X −→ E, we have:

F̂ (1) ' X ' Ê(Z)

where 1 is the groupoid with one object and only the identity morphism on
that object, and E : X −→ E is the stuff type which maps every object to
the empty set.

Proof. Define the functor T : F̂ (1) −→ X as the obvious choice:

• For an object: T (X, α, (N ;Z)) = X

• For a morphism: T (f, (σ;u)) = f

Then T is clearly essentially surjective and full. To show it is faithful, one
may see that for a morphism (f, (σ;u)) : (X, α, (N ;Z)) → (X ′, α′, (N ′;Z′))
in F̂ (1) we require that σ = α′ ◦ F (f) ◦ α−1, and since there exactly one
choice for u, then T must be faithful, and hence an equivalence.

An object of the groupoid Ê(Z) is of the form (X, α, (N ;Z)), however N
must be the empty set, α the morphism on the empty set, and Z is indexed
by the empty set (and hence is empty).

Similarly, for a morphism (f, (σ;u)), σ is the morphism on the empty
set, and u is empty. It becomes obvious that we can create an equivalence
between Ê(Z) and X (in fact this is an isomorphism).

Remark 2.2.8. We call the stuff type E : X −→ E in Theorem 2.2.7 a null
type.

Example 2.2.9. If I is the stuff type of being a finite set (Example 2.1.9),
then the groupoid of I-stuffed Z -coloured finite sets is just the grouopoid
of Z -coloured finite sets, so we can write:

Î(Z) ' EZ

20

2.3 The 2-category of stuff types

Definition 2.3.1. The 2-category Stuff of stuff types has

• 0-cells: Stuff types (X , F) where F : X −→ E is a stuff type (may
be simply written as F).

• 1-cells: Stuff type morphisms (T, τ) : (X , F) → (X ′, F ′) where T :
X −→ X ′ is a functor and τ is a natural transformation (actually a
natural isomorphism):

X

F

��6
66

66
66

66
66

T //X ′

F ′

����
��

��
��

��
�

τ +3

E
Composition of morphisms between stuff types (T, τ) : F → F ′ and
(T ′, τ ′) : F ′ → F ′′ can be defined by “pasting”, thus:

X

F

��?
??

??
??

??
??

??
T //X ′

F ′

��

T ′
//X ′′

F ′′

~~}}
}}

}}
}}

}}
}}

}
τ 5=rrrrr

rrrrr
τ ′

"*MMMMM
MMMMM

E
For any morphism f : X → X ′ in X the following commutes:

F (X)

F (f)

��

τ(X) // F ′T (X)

F ′T (f)

��

τ ′T (X) // F ′′T ′T (X)

F ′′T ′T (f)

��
F (X ′)

τ(X′)
// F ′T (X ′)

τT (X′)
// F ′′T ′T (X ′)

Therefore we have that the pasting composite above amounts to:

(T ′, τ ′) ◦ (T, τ) = (T ′T, τ ′T ◦ τ)

The identity morphism on F : X −→ E is (1X , 1F), where 1F is the
identity natural transformation on F .

• 2-cells: Stuff type transforms θ : (T, τ) → (S, σ), where (T, τ), (S, σ) :
F → F ′ are stuff type morphisms and θ : T → S is a natural transfor-
mation such that the following commutes:

F
τ //

σ

!!B
BB

BB
BB

BB
BB

F ′T

F ′θ

��
F ′S

21

This can be represented as a 3-dimensional cone:

X

F

��5
55

55
55

55
55

55
5

T
,,

S

22X ′

F ′

��		
		

		
		

		
		

		τ
%-kkii ff bb __ \\ XX

σ

19

θ !)KKKKKK

E

Vertical and horizontal compositions of stuff type transforms are de-
fined by a similar pasting process.

Defining Stuff as a 2-category (as opposed to a category) allows for
a concept of equivalence between stuff types, similar to that which exists
between categories.

Two stuff types F : X −→ E and F ′ : X ′ −→ E are equivalent if there
exists stuff type morphisms (T, τ) : F → F ′ and (T ′, τ ′) : F ′ → F such that
(T ′, τ ′) ◦ (T, τ) ∼= (1X , 1F) and (T, τ) ◦ (T ′, τ ′) ∼= (1X ′ , 1F ′). That is, there
exists natural isomorphisms θ : T ′T → 1F and θ′ : TT ′ → 1F ′ such that the
following diagrams commute:

F
τ //

1F
))RRRRRRRRRRRRRRRRRR F ′T

τ ′T // FT ′T

Fθ
��

F ′ τ ′ //

1F ′
))SSSSSSSSSSSSSSSSSS FT ′ τT ′
// F ′TT ′

F ′θ′

��
F F ′

Proposition 2.3.2. Two stuff types F : X −→ E and F ′ : X ′ −→ E are
equivalent if and only if there exists a stuff type morphism (T, τ) : F → F ′

such that T is an equivalence.

Proof. If F and F ′ are equivalent, then there exists stuff type morphisms
(T, τ) : F → F ′ and (T ′, τ ′) : F ′ → F and natural isomorphisms θ : T ′T →
1F and θ′ : TT ′ → 1F ′ . Therefore T is an equivalence.

To prove the converse, suppose there exists natural isomorphisms θ :
T ′T → 1F and θ∗ : TT ′ → 1F ′ . Since T is fully faithful, there exists a
unique θ′ : TT ′ → 1F ′ such that Tθ = θ′T , and so the following diagram
commutes:

FT ′T
Fθ //

τT ′T

��

F

τ

��
FTT ′T

F ′θ′T=F ′Tθ
// F ′T

(2.2)

22

Define τ ′ such that the following commutes:

F ′ τ ′ //

1F ′
))SSSSSSSSSSSSSSSSSS FT ′ τT ′
// F ′TT ′

F ′θ′

��
F ′

Therefore the following commutes:

F ′T
τ ′T //

1F ′

99

FT ′T
Fθ //

τT ′T
��

F

τ

��
1F

~~

F ′TT ′T
F ′θ′T

// F ′T

τ−1

��
F

τ

OO

1F

// F

Therefore (T, τ) is an equivalence.

We can now think of Gpd as a 2-category, whose 2-cells are natural
transformations between functors. There is also a 2-category [Gpd,Gpd]
of endo-2-functors on Gpd with:

• 0-cells: 2-functors H : Gpd −→ Gpd.

• 1-cells: 2-natural transformations on 2-functors µ : H → H ′ where
H,H ′ are endo-2-functors on Gpd.

• 2-cells: 2-modifications on 2-natural transformations Θ : µ → ν where
µ, ν : H → H ′ are 2-natural transformations on 2-endofunctors.

We can depict these as:

Gpd

H

!!

H′

==Gpdµ

��

ν

��

Θ +3

Proposition 2.3.3. The operation (̂·) is a 2-functor from Stuff to the 2-
category [Gpd,Gpd] of endo-2-functors on Gpd.

Proof. Firstly it is necessary to show that for any stuff type F : X −→ E,
F̂ is an endo-2-functor on Gpd. We have already shown that a groupoid Z
maps to a groupoid F̂ (Z).

For any functor K : Z −→ Z ′, we can construct a functor F̂ (K) :
F̂ (Z) −→ F̂ (Z ′), such that (X, α, (N ;Z)) 7−→ (X, α, (N ;KZ)), where
KZ = (KZi)i∈N , and (f, (σ,u)) 7−→ (f, (σ,Ku)), where Ku = (Kui)i∈N .

23

For any natural transformation κ : K → L where K, L : Z −→ Z ′, there
is a natural transformation F̂ (κ) : F̂ (K) → F̂ (L) such that F̂ (κ)(X, α, (N ;Z)) =
(1X , (1N ;κZ)) : (X, α, (N ;KZ)) → (X, α, (N ;LZ)) where κZ = (κZi)i∈N .

We have shown that (̂·) does indeed map stuff types to groupoid endo-
functors, now we need to show that a morphism between stuff types (T, τ) :
F → F ′ will map to a 2-natural transformation:

Gpd

F̂

%%

F̂ ′

99Gpd(dT,τ)

��

That is, we want to show that for any groupoids Z ,Z ′ and any functor
K : Z −→ Z ′, the following diagram commutes:

F̂ (Z)
(dT,τ)Z //

F̂ (K)

��

F̂ ′(Z)

F̂ ′(K)

��
F̂ (Z ′)

(dT,τ)Z ′
// F̂ ′(Z ′)

and the same with K replaced by a natural transformation κ.
We need to show (T̂, τ)Z is a functor:

• For an object (X, α, (N ;Z)) in F̂ (Z) we have:

F ′T (X) F (X) α //τ(X)oo N

There is an isomorphism α◦(τ(X))−1 : F ′T (X) → N , and so we have:(
(T̂, τ)Z

)
(X, α, (N ;Z)) = (T (X), α ◦ (τ(X))−1, (N ;Z))

• For any morphism (f, (σ,u)) : (X, α, (N ;Z)) → (X ′, α′, (N ′;Z′)) in
F̂ (Z) the following commutes:

F ′T (X)

F ′T (f)

��

F (X) α //τ(X)oo

F (f)

��

N

σ

��
F ′T (X ′) F (X ′) α′ //τ(X′)oo N ′

So we have: (
(T̂, τ)Z

)
(f, (σ;u)) = (T (f), (N ;Z))

Since T is a functor, (T̂, τ)Z will preserve the composition and the
identity morphism.

24

Then for any object (X, α, (N ;Z)) in F̂ (Z) we have:

(X, α, (N ;Z)) � (dT,τ)Z //
_

F̂ (K)

��

(T (X), α ◦ (τ(X))−1, (N ;Z))
_

F̂ ′(K)

��
(X, α, (N ;KZ)) �

(dT,τ)Z ′
// (T (X), α ◦ (τ(X))−1, (N ;KZ))

and for any morphism (f, (σ;u)):

(f, (σ;u)) � (dT,τ)Z //
_

F̂ (K)

��

(T (f), (σ;u))
_

F̂ ′(K)

��
(f, (σ;Ku)) �

(dT,τ)Z ′
// (T (f), (σ;Ku))

Therefore (T̂, τ) is a natural transformation, in fact a 2-natural transforma-
tion by a similar argument.

Clearly the identity morphism on a stuff type maps to the identity trans-
formation, and we now show that composition of morphisms is preserved.

Given morphisms of stuff types (T, τ) : F → F ′ and (T ′, τ ′) : F ′ → F ′′,
for any morphism (f, (σ,u)) : (X, α, (N ;Z)) → (X ′, α′, (N ′;Z′)) in F̂ (Z)
the following commutes:

F ′′T ′T (X)

F ′′T ′T (f)

��

F ′T (X)
τ ′T (X)oo

F ′T (f)

��

F (X) α //τ(X)oo

F (f)

��

N

σ

��
F ′′T ′T (X ′) F ′T (X ′)

τ ′T (X)oo F (X ′) α′ //τ(X′)oo N ′

For an object (X, α, (N ;Z)) in F̂ (Z):(
(T̂ ′, τ ′) ◦ (T̂, τ)Z

)
(X, α, (N ;Z))

=
(
(T̂ ′, τ ′)Z

)
(T (X), α ◦ (τ(X))−1, (N ;Z))

= (T ′T (X), α ◦ (τ(X))−1 ◦ (τ ′T (X))−1, (N ;Z))

= (T ′T (X), α ◦ (τ ′T ◦ τ)−1(X), (N ;Z))
=
(
(T ′T, τT ◦ τ)Z

)
(X, α, (N ;Z))

25

and a morphism (f, (σ;u)) in F̂ (Z)(
(T̂ ′, τ ′) ◦ (T̂, τ)Z

)
(f, (σ;u))

=
(
(T̂ ′, τ ′)Z

)
(T (f), (σ;u))

= (T ′T (f), (σ;u))

=
(
(̂T ′T, τT ◦ τ)Z

)
(f, (σ;u))

Hence we have:
(T̂ ′, τ ′) ◦ (T̂, τ) = ̂(T ′, τ ′) ◦ (T, τ)

Therefore (̂·) is a functor. To show it is a 2-functor, we need to define it on
2-cells.

Given a stuff type transform θ : (T, τ) → (S, σ) where (T, τ), (S, σ) :
F → F ′, define θ̂ : (T̂, τ) → (Ŝ, σ) such that for any groupoid Z , we have a
natural transformation θ̂Z :

F̂ (Z)

(dT,τ)Z

&&

(dS,σ)Z

88
F̂ ′(Z)θ̂Z

��

where θ̂Z (X, α, (N ;Z)) = (θ(X), (1N ;1Z)) : (T (X), α◦(τ(X))−1, (N ;Z)) →
(S(X), α ◦ (σ(X))−1, (N ;Z)). This is easily shown to preserve vertical and
horizontal compositions.

As a consequence of Proposition 2.3.3, if two stuff types F and F ′ are
equivalent in Stuff , then F̂ (Z) and F̂ ′(Z) are equivalent in Gpd.

26

Chapter 3

Operations on stuff types

For any operation on species of structure, we create an analagous operation
on stuff types

3.1 Addition

Addition of species is defined as the disjoint union of the image. Since stuff
types can be interpreted as the fibre of a species, the logical definition for
addition of stuff types is the disjoint union of the domains.

Definition 3.1.1. Given a family of stuff types (Fi)i∈Λ, where Fi : Xi −→
E, define the stuff type: ∑

i∈Λ

Fi :
∑
i∈Λ

Xi −→ E

such that ∑
i∈Λ

Fi(X) = Fj(X) if X is an object of Xj

and the obvious definition for morphisms.

Using our previous notation, for any stuff type F : X −→ E, we can
write:

F =
∞∑

n=0

Fn :
∞∑

n=0

(X , F)n −→ E

The additive identity is the initial object in Stuff ; the stuff type 0 :
0 −→ E, where 0 is the empty groupoid.

Theorem 3.1.2. Given a family of stuff types (Fi)i∈Λ we have:(∑̂
i∈Λ

Fi

)
(Z) ∼=

∑
i∈Λ

F̂ (Z)

27

Proof. The result is obvious when one notes that for any object (X, α, (N ;Z))
of
(∑̂

Fi

)
(Z), there is a unique object X in some unique Xj , and so

(X, α, (N ;Z)) corresponds to a unique object in F̂j(Z).

Proposition 3.1.3. The addition operation corresponds to the coproduct on
Stuff .

Proof. For any j ∈ Λ, let Ij : Xi −→
∑

Xj be the inclusion functor, so we
have Fj = Ij ◦

∑
Fi. If 1Fj is the identity natural transformation on Fj ,

then there is a stuff type morphism (Ij , 1Fj) : Fj → F . We can show that
this is the coprojection for the coproduct on Stuff .

Given a stuff type G : Y −→ E, and a collection of stuff type morphisms
(Tj , τj) : Fj → G for each j ∈ Λ, we can construct the functor

∑
Ti :∑

Xi −→ (Y) and the natural transformation
∑

τi :
∑

Fi → G ◦
∑

Ti,
where

∑
τi(X) = τj(X) when X is an object in Xj . Then we have a stuff

type morphism (
∑

Ti,
∑

τi) :
∑

Fi → G such that for any j ∈ Λ:

Xj

Fj

 A
AA

AA
AA

AA
AA

AA
AA

AA
AA

A

Ij //
∑

Xi

P
Fi

��

P
Ti // Y

G

~~~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

1Fj
4<qqqqqqqqq

qqqqqqqqq

P
τi

"*MMMMMMMM

MMMMMMMM

E

This composite is equal to (Tj , τj), and so the following commutes:

G

Fj
(Ij ,1Fj

)
//

(Tj ,τj)

<<yyyyyyyyyyyyyyyyy ∑
i∈Λ Fi

(
P

Ti,
P

τi)

OO

To see this is unique, for any (T ′, τ ′) :
∑

Fi → G, we can write T ′ =
∑

T ′◦Ii

and τ ′ =
∑

τ ′Ii.

Example 3.1.4. Consider the property types F being the empty set and G
being a 1 element set. Then we have |F | = 1 and |G| = z. Then F + G
corresponds to the property type of being an empty or 1 element set, with
generating function |F + G|(z) = 1 + z

28



3.2 Multiplication

Multiplication of species is achieved by partitioning the set, and applying
the constituent species to the individual partitions. The corresponding op-
eration on stuff types is achieved by taking the disjoint union of the image.

Definition 3.2.1. Given a finite family of stuff types (Fi)i∈Λ, where Fi :
Xi −→ E, define the stuff type:∏

i∈Λ

Fi :
∏
i∈Λ

Xi −→ E

such that:

• For objects (Xi)i∈Λ in
∏

Xi, we define(∏
i∈Λ

Fi

)(
(Xi)i∈Λ

)
=
∑
i∈Λ

Fi(Xi)

• For morphisms (fi)i∈Λ : (Xi)i∈Λ → (X ′
i)i∈Λ in

∏
Xi, we define(∏

i∈Λ

Fi

)(
(fi)i∈Λ

)
=
∑
i∈Λ

Fi(fi) :
∑
i∈Λ

Fi(Xi) →
∑
i∈Λ

Fi(X ′
i)

Remark 3.2.2. Given finite sets N and M , we denote the disjoint union of
these sets as N + M . Also given morphisms σ : N → N ′ and ρ : M → M ′,
we define the morphism (σ + ρ) : (N + M) → (N ′ + M ′) such that:

(σ + ρ)(k) =

{
σ(k) if k ∈ N

ρ(k) if k ∈ M

Such a morphism can be split into its constituent morphisms.

The requirement that the family be finite is to ensure that the disjoint
union is still a finite set. The multiplicitive identity is the stuff type E :
1 −→ E, where 1 is defined as usual and E maps the object to the empty
set.

Interestingly, this definition does not correspond to the product opera-
tion on Stuff . Given a stuff type morphism (T, τ) : F → G, we require that
the F -stuffed set map to a G-stuffed set of the same size. Since a

∏
Fi-

stuffed set will usually be larger than an Fj-stuffed set, it is impossible to
create the necessary projections.

Theorem 3.2.3. Given a finite family of stuff types (Fi)i∈Λ we have:(∏̂
i∈Λ

Fi

)
(Z ) ∼=

∏
i∈Λ

F̂i(Z )

29



Proof. (
∏̂

F )(Z ) is a groupoid with:

• Objects:
(
(Xi)i∈Λ, α, (N ;Z)

)
where α :

∑
Fi(Xi) → N

• Morphisms:
(
(fi)i∈Λ, (σ;u)

)
:
(
(Xi)i∈Λ, α, (N ;Z)

)
→
(
(X ′

i)i∈Λ, α′, (N ′;Z′)
)

such that the following commutes:∑
Fi(Xi)

α //

P
Fi(fi)

��

N

σ

��∑
Fi(X ′

i)
α′ // N ′

For each object
(
(Xi), α, (N ;Z)

)
, and for each i ∈ Λ define Ni = α(Fi(Xi)).

Clearly N =
∑

Ni, and there exists isomorphisms αi : Fi(Xi) → Ni such
that α =

∑
αi.

For any morphism
(
(fi)i∈Λ, (σ;u)

)
:
(
(Xi)i∈Λ, α, (N ;Z)

)
→(

(X ′
i)i∈Λ, α′, (N ′;Z′)

)
, and for each i ∈ Λ we can create morphisms σi :

Ni → N ′
i such that σ =

∑
σi and the following diagram commutes:

Fi(Xi)
αi //

Fi(fi)

��

Ni

σi

��
Fi(X ′

i)
α′i // N ′

i

We can construct a functor T : (
∏̂

Fi)(Z ) −→
∏

F̂i(Z ) where:

• Objects: T
(
(Xi)i∈Λ, α, (N ;Z)

)
=
(
Xi, αi, (Ni;Zi)

)
i∈Λ

where Zi = (Zj)j∈Ni .

• Morphisms: T
(
(fi)i∈Λ, (σ;u)

)
=
(
fi, (σi;ui)

)
i∈Λ

where ui = (uj)j∈Ni .

We also have a functor S :
∏

F̂i(Z ) −→ (
∏̂

Fi)(Z ):

• Objects: S
(
Xi, αi, (Ni;Zi)

)
i∈Λ

=
(
(Xi)i∈Λ,

∑
αi, (

∑
Ni;
∑

Zi)
)

• Morphisms: S
(
fi, (σi;ui)

)
i∈Λ

=
(
(fi)i∈Λ, (

∑
σi;
∑

ui)
)

Clearly T ◦ S = 1Q F̂i(Z ) and S ◦ T = 1
(
Q̂

Fi)(Z )
, so the groupoids are

isomorphic, and hence equivalent.

Example 3.2.4. The product of stuff types provides another way of thinking
of examples 2.1.1 and 2.1.2.

Since a 2-coloured set can be thought of as the disjoint union of a ‘black’
and ‘white’ set, the stuff type F which forgets 2-colouring can be thought

30



of as the multiplication of two copies of the property type I : E −→ E,
associated with “being a finite set”.

The stuff type G which forgets white coloured elements can be thought
of as the multiplication of the property type I : E −→ E with the stuff type
E : E −→ E which maps everything to the empty set.

Multiplication by a scalar can be thought of as a special case of multi-
plication of stuff types. However, yet again, our scalar is not a number, but
a groupoid.

Given a groupoid U and a stuff type F : X −→ E, we can construct
the scalar multiple stuff type:

(U F ) : U ×X −→ E

by creating the stuff type E : U −→ E which maps everything to the empty
set, and letting U F = E × F .

By Theorem 2.2.7, we have:

(Û F )(Z ) ' U × F̂ (Z )

Example 3.2.5. Let X be the groupoid of one-element sets, and J : X −→ E
be the inclusion functor. Then J is a property type of “being a one element
set”. Then we have:

F̂ (Z ) = Z

If we let 2 be a groupoid with two objects (which we will call ‘black’ and
‘white’) and only the identity morphisms on those objects. Then 2 × X
becomes the groupoid of 2-colored 1-element sets, and 2F becomes the stuff
type which forgets the colouring of a 2-colored 1-element set, with:

(2̂F )(Z ) = 2Z

3.3 Composition

When working with species, composition is a somewhat complicated opera-
tion involving partitioning, applying a species to each partition and applying
another species to the set of partitions.

The composition of two stuff types F and G can be thought of as the
disjoint union of a family of G-stuffed sets indexed by an F -stuffed set.

Definition 3.3.1. Given two stuff types F : X −→ E and G : Y −→ E
define the stuff type F ◦G : F̂ (Y ) −→ E which maps:

• For an object (X, α, (N ;Y)) in F (Y ), we have:

(F ◦G)(X, α, (N ;Y)) =
∑
i∈N

G(Yi)

31



• For a morphism (f, (σ;g)) : (X, α, (N ;Y)) → (X ′, α′, (N ′;Y′)) in
F (Y ) we define:

(F ◦G)(f, (σ;g)) =
∑
i∈N

G(gi) :
∑
i∈N

G(Yi) →
∑
i∈N

G(Y ′
σ(i))

In the definition of composition of species, it is necessary to place ad-
ditional restrictions on G. When composing stuff types, we have no such
restrictions.

Theorem 3.3.2. For stuff types F : X → E and G : Y → E, we have:

(F̂ ◦G)(Z ) ∼= F̂
(
Ĝ(Z )

)
F̂
(
Ĝ(Z )

)
is the groupoid of F -stuffed finite sets, whose elements are

labelled by objects of Ĝ(Z ). That is, the groupoid of F -stuffed finite sets,
with elements labelled by G-stuffed Z -coloured finite sets. On the other
hand (F̂ ◦G)(Z ) is the groupoid of families of G-stuffed Z -coloured finite
sets, indexed by F -stuffed finite sets.

Proof. The groupoid (F̂ ◦G)(Z ) has:

• Objects:
(
(X, α, (N ;Y)), β, (M ;Z)

)
where α : F (X) → N and β :∑

i∈N G(Yi) → M .

• Morphisms:
(
(f, (σ;g)), (ρ;u)

)
:
(
(X, α, (N ;Y)), β, (M ;Z)

)
→(

(X ′, α′, (N ′;Y′)), β′, (M ′;Z′)
)

such that the following commute:

F (X) α //

F (f)

��

N

σ

��

∑
i∈N G(Yi)

β //

P
i∈N G(gi)

��

M

ρ

��
F (X ′) α′ // N ′

∑
i∈N G(Y ′

σ(i))
β′ //M ′

We can apply a similar process to that used in the proof of Theorem 3.2.3.
For the above objects and morphisms, we can decompose β, β′, M , M ′ and
ρ into their constituents such that for each i ∈ N the following commutes:

G(Yi)
βi //

G(gi)

��

Mi

ρi

��
G(Y ′

σ(i))
β′

σ(i) //M ′
σ(i)

Therefore we have a functor T : (F̂ ◦G)(Z ) −→ F̂
(
Ĝ(Z )

)
defined as:

32



• For an object
(
(X, α, (N ;Y)), β, (M ;Z)

)
we have:

T
(
(X, α, (N ;Y)), β, (M ;Z)

)
= (X, α, (N ;U))

where Ui = (Yi, βi, (Mi;Zi)) for each i ∈ N .

• For a morphism
(
(f, (σ;g)), (ρ;u)

)
we have:

T
(
(f, (σ;g)), (ρ;u)

)
= (f, (σ;v))

where vi = (gi, (ρi,ui)) for each i ∈ N .

Then T is invertible.

Example 3.3.3. This gives yet another way of thinking of examples 2.1.1.
Let I : E −→ E be the identity functor, that is the property type of “being
a finite set”, and compose it with the stuff type 2J from example 3.2.5 (the
structure type which forgets 2-colouring on 1-element sets). The resultant
stuff type maps finite sets in which each element has a 2-colouring, that is a
2-coloured finite set, to the underlying set. In other words F ∼= I ◦ 2J , and
so we have:

|F |(z) = |I|(|2J |(z)) = e2z

Let Y be the groupoid of empty and 1-element sets, and K : Y −→
E be the inclusion functor. Then the generating function of K is clearly
|K|(z) = 1 + z. The groupoid Î(Y ) has objects which are finite sets in
which each element has been coloured either by a singleton or the empty
set. The composition stuff type I ◦ K : Î(Y ) −→ E will map these objects
to set of elements which were coloured by singletons, that is forgetting the
elements coloured by the empty set. This is essentially the same as G in
example 2.1.2, and in fact we they share generating functions:

|G|(z) = |I|(|K|(z)) = e1+z

This also shows that the composition of structure types may not neces-
sarily be a structure type.

3.4 Pointing

The pointing operation in a species selects a distinguished element of the
set. The analagous operation on a stuff type modifies the groupoid, so that
each object has an associated element of the output set.

Definition 3.4.1. For a stuff type F : X → E, define X ∗ with:

• Objects: (X, k) where X is an object of X and k is an element of the
set F (X).

33



• Morphisms: f : (X, k) → (X ′, k′) where f : X → X ′ is a morphism in
X such that F (f)(k) = k′.

Define the stuff type •F : X ∗ −→ E such that •F (X, k) = F (X) and
•F (f) = F (f).

Theorem 3.4.2. If F : X → E is a stuff type, then:

| • F |(z) = z
d
dz

|F |(z)

Proof. There is a group action A of Sn−1, the group of permutations on
〈n − 1〉, on F−1〈n〉, such that for any φ ∈ Sn−1, we have A(φ)(X, α) =
(X, φ ◦ α) and A(φ)f = f .

Construct the functor T : (F−1〈n〉//Sn) −→ (X ∗, •F )n which maps:

• Objects: (X, α) 7−→ (X, α−1(n))

• Morphisms: (φ, f) 7−→ f .

This is obviously essentially surjective, since α can be chosen such that
α−1(n) = k for any k ∈ F (X). Given objects (X, α), (X ′, α′) in F−1〈n〉//Sn

and a morphism f : (X, α−1(n)) → (X ′, α′−1(n)) in X ∗, there exists a
unique permutation φ on 〈n〉 where φ = α′ ◦ F (f) ◦ α−1 such that the
following commutes:

F (X)
F (f) //

α

��

F (X ′)

α′

��
〈n〉

φ
// 〈n〉

Since f is a morphism in X ∗, then f(α−1(n)) = α′−1(n), and so φ is actu-
ally a permutation on 〈n − 1〉. Therefore T is fully faithful, and hence an
equivalence. Proposition 2.2.2 gives the followng:

∣∣(X ∗, •F )n

∣∣ = |F−1〈n〉|
(n− 1)!

= n
|F−1〈n〉|

n!
= n

∣∣(X , F )n

∣∣
The result follows.

3.5 Derivative

The derivative operation on a species is the structure of a set which is one
element larger. The derivative on a stuff type will map to set which is one
element smaller.

34



Definition 3.5.1. For a stuff type F : X −→ E, define the groupoid
X ∗ as for the pointing operation. Define the functor ∂F : X ∗ −→ E as
∂F (X, k) = F (X) \ {k} (the set F (X) excluding k) and ∂F (f) = F (f),
where the domain is restricted to F (X) \ {k}.

Theorem 3.5.2. If F : X → E is a stuff type, then:

|∂F |(z) =
d
dz

|F |(z)

Proof. This result follows from Theorem 3.4.2, since:∣∣(X ∗, ∂F )n

∣∣ = ∣∣(X ∗, •F )n+1

∣∣
The groupoid F̂ ′(Z ) has:

• Objects:
(
(X, n), α, (N ;Z)

)
where α : F (X) \ {n} → N

• Morphisms: (f, (σ,u)) :
(
(X, n), α, (N ;Z)

)
→
(
(X ′, n′), α′, (N ′;Z′)

)
such that the following commutes:

F (X) \ {n} α //

F ′(f)

��

N

σ

��
F (X ′) \ {n′} α′ // N ′

Conceptually an ∂F -stuffed set can be thought of as an F -stuffed set
with a dropped element.

A common feature for any concept called a derivative is that it satisfies
the chain rule. If an F ◦ G-stuffed set is the disjoint union of a family of
G-stuffed sets indexed by an F -stuffed set, then an ∂(F ◦ G)-stuffed set is
the disjoint union in which one of the elements have been dropped. This
is equivalent to dropping the entire G-stuffed set containing the dropped
element (that is dropping an element of index set) which is an ∂F ◦G-stuffed
set, and the disjoint union with a G-stuffed set with a dropped element (a
∂G-stuffed set).

Theorem 3.5.3 (Chain rule). For stuff types F : X → E and G : Y → E,
we have:

∂(F ◦G) ' (∂F ◦G)∂G

Proof. We need to show that there exists an equivalence (T, τ) : ∂(F ◦G) →
(∂F ◦G)∂G. Define the functor T : F̂ (Y )∗ −→ ∂̂F (Y )Y ∗ as:

35



• For any object
(
(X, β, (M ;Y)), k

)
in F̂ (Y )∗ define T such that:

T
(
(X, β, (M ;Y)), k

)
=
(
((X, j), β∗, (M∗;Y)), (Yβ(j), k)

)
where j is the element of F (X) such that k is an element of G(Yβ(j)),
and β∗ is β over the domain F (X) \ {j}, and M∗ is the range of β∗

(that is M \ {β(j)}).

• For any morphism (f, (ρ;g)) :
(
(X, β, (M ;Y)), k

)
→
(
(X ′, β′, (M ′;Y′)), k′

)
in F̂ (Y )∗:

T (f, (ρ;g)) =
(
(f, (ρ∗;g)), (gβ(j))

)
where j is defined as above and σ∗ is the function σ with domain
restricted to M∗. Therefore the following diagram commutes:

∂F (X)
β∗ //

∂F (f)

��

M∗

σ∗

��
∂F (X ′)

β′∗ //M ′∗

Given (f, (ρ;g)) :
(
(X, β, (M ;Y)), k

)
→
(
(X ′, β′, (M ′;Y′)), k′

)
and

(f ′, (ρ′;g′)) :
(
(X ′, β′, (M ′;Y′)), k′

)
→
(
(X ′′, β′′, (M ′′;Y′′)), k′′

)
, with

j ∈ F (X) and j′ ∈ F (X ′) such that k ∈ G(Yβ(j)) and k′ ∈ G(Y ′
β′(j′)),

then we can show T preserves composition:

T (f, (ρ;g)) ◦ T (f ′, (ρ′;g′))
=
(
(f, (ρ∗;g)), (gβ(j))

)
◦
(
(f ′, (ρ′∗;g′)), (g′β′(j′))

)
=
(
(f, (ρ∗;g)) ◦ (f ′, (ρ′∗;g′)), (gβ(j)) ◦ (g′β′(j′))

)
=
(
(f ◦ f ′, (ρ∗ ◦ ρ′∗;g ◦ g′)), (gβ(j) ◦ g′σ(β(j)))

)
= T

(
(f, (ρ;g)) ◦ (f ′, (ρ′;g′))

)
since β′(j′) = σ(β(j)) and hence ρ∗ ◦ ρ′∗ = (ρ ◦ ρ′)∗.

T is clearly essentially surjective, full and faithful, and hence is an equiva-
lence.

Similar results can be shown, such as distribution over additon

∂(F + G) ' ∂F + ∂G

and the product rule:

∂(FG) ' (∂F )G + F (∂G)

36



3.6 Cartesian product

When working with species, the cartesian product involves applying several
structures to the same set. The analogue for stuff types requires the con-
struction of a type of product groupoid such that objects correspond to sets
of the same size from the component stuff types.

For stuff types F : X −→ E and G : Y −→ E we can construct a pseudo-
pullback 〈(X , F ), (Y , G)〉 and the functor 〈F,G〉 : 〈(X , F ), (Y , G)〉 −→ E

〈(X , F ), (Y , G)〉

||xxxxxxxxxxxx

""E
EEEEEEEEEEE

〈F,G〉

��

X

F

##G
GGGGGGGGGGGG

ks +3 Y

G

{{xxxxxxxxxxxxx

E

Definition 3.6.1. Given a finite family of stuff types (Fi)i∈Λ, where Fi :
Xi −→ E, define the groupoid 〈(Xi, Fi)〉i∈Λ with:

• Objects:
(
N, (Xi, γi)i∈Λ

)
where N is a finite set, Xi is an object in Xi

and an isomorphism γi : N → Fi(Xi).

• Morphisms:
(
σ, (fi)i∈Λ

)
:
(
N, (Xi, γi)i∈Λ

)
→
(
N ′, (X ′

i, γ
′
i)i∈Λ

)
, where

σ : N → N ′ in E and fi : Xi → Xi in Xi such that:

N
γi //

σ

��

Fi(Xi)

Fi(fi)

��
N ′

γ′i

// Fi(X ′
i)

commutes for each i ∈ Λ.

The cartesian product is the stuff type 〈Fi〉i∈Λ : 〈(Xi, Fi)〉i∈Λ −→ E which
maps:

• Objects:
(
N, (Xi, γi)i∈Λ

)
7−→ N

• Morphisms:
(
σ, (fi)i∈Λ

)
7−→ σ

This definition is somewhat complex, but we can show it corresponds to
the definition of the cartesian product of species.

37



Theorem 3.6.2. For any a family of stuff types(Fi)i∈Λ, where Fi : Xi −→
E, for any n ∈ N we have:

〈Fi〉−1
i∈Λ〈n〉 '

∏
i∈Λ

F−1
i 〈n〉

Proof. A typical morphism in 〈Fi〉−1
i∈Λ〈n〉 is

(
σ, (fi)i∈Λ

)
:
(
N, (Xi, γi)i∈Λ, α

)
→(

N ′, (X ′
i, γ

′
i)i∈Λ, α′) such that for each i ∈ Λ the following commutes:

N
γi //

σ

��

α

wwoooooooooooo Fi(Xi)

Fi(fi)

��

〈n〉

N ′
γ′i

//
α′

ggNNNNNNNNNNN
Fi(X ′

i)

Construct the functor T : 〈Fi〉−1
i∈Λ〈n〉 −→

∏
i∈Λ F−1

i 〈n〉 which maps:

• Objects:
(
N, (Xi, γi)i∈Λ, α

)
7−→ (Xi, α ◦ γ−1

i )i∈Λ

• Morphisms:
(
σ, (fi)i∈Λ

)
7−→ (fi)i∈Λ

This is clearly essentially surjective, and is easily shown to be fully faithful.
Given objects

(
N, (Xi, γi)i∈Λ, α

)
and

(
N ′, (X ′

i, γ
′
i)i∈Λ, α′) in 〈Fi〉−1

i∈Λ〈n〉
and a morphism (fi)i∈Λ : (Xi, α◦γ−1

i )i∈Λ → (X ′
i, α

′◦γ′−1
i )i∈Λ in

∏
i∈Λ F−1

i 〈n〉,
there is a unique σ = α′−1 ◦ α such that T (σ, (fi)i∈Λ) = (fi)i∈Λ.

We showed previously that the multiplication operation did not corre-
spond to the product operation on Stuff . The cartesian product somewhat
fulfills this role, but not quite.

For any j ∈ Λ we can construct the functor Pj : 〈(Xi, Fi)〉i∈Λ −→ Xj

which maps:

• Objects:
(
N, (Xi, γi)i∈Λ

)
7−→ Xj

• Morphisms:
(
σ, (fi)i∈Λ

)
7−→ fj

Then there exists a natural isomorphism Γj : 〈Fi〉i∈Λ → Fj ◦ Pj where
Γj

(
N, (Xi, γi)i∈Λ

)
= γj so we have the following:

〈(Xi, Fi)〉i∈Λ

〈Fi〉i∈Λ

��:
::

::
::

::
::

Pj //Xj

Fj

����
��

��
��

��
��Γj +3

E

38



The stuff type morphism (Pj ,Γj) : 〈Fi〉i∈Λ → Fj becomes the projection
onto Fj .

Given a stuff type G : Y −→ E and a collection of stuff type morphisms
(Ti, τi)i∈Λ, where (Tj , τj) : G → Fj for each j ∈ Λ, we can construct the
functor [Ti, τi]i∈Λ : Y −→ 〈(Xi, Fi)〉i∈Λ defined thus:

• For an object Y in Y we have:

[Ti, τi]i∈Λ(Y ) =
(
G(Y ), (Ti(Y ), τi(Y ))i∈Λ

)
• For a morphism g : Y → Y ′ in Y we have:

[Ti, τi]i∈Λ(g) =
(
G(g), (Ti(g))i∈Λ

)
Then clearly 〈Fi〉i∈Λ ◦ [Ti, τi]i∈Λ = G, and so we have a stuff type morphism(
[Ti, τi]i∈Λ, 1G

)
: G → 〈Fi〉i∈Λ such that the composite with (Pj ,Γj) gives

the following:

Y

G

!!B
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
[Ti,τi]i∈Λ // 〈(Xi, Fi)〉i∈Λ

〈Fi〉i∈Λ

��

Pj //Xj

Fj

}}{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

{
1G

4<ppppppppp

ppppppppp

Γj

#+NNNNNNNNN

NNNNNNNNN

E

This is equal to (Tj , τj), and so the following commutes:

G

(
[Ti,τi]i∈Λ,1G

)
��

(Tj ,τj)

||yyyyyyyyyyyyyyyy

Fj 〈Fi〉i∈Λ
(Pj ,Γj)

oo

However, the stuff type morphism ([Ti, τi]i∈Λ, 1G) is not unique in having
this property, and so this may be called a “bicategorical” product in Stuff .

3.7 Inner product

An inner product on a real vector space maps two vectors to a real number.
Since a stuff type can be represented as a series, it is possible to think of it as
a vector, whose coefficients are not real numbers, but groupoids. Therefore
the inner product of stuff types will map two stuff types to a groupoid.

39



We have already built such a construction, the being the groupoid con-
structed for the cartesian product. Given two stuff types F : X −→ E and
G : Y −→ E, we have constructed the groupoid 〈(X , F ), (Y , G)〉 soo that
we have the following:

〈(X , F ), (Y , G)〉

P

}}zz
zz

zz
zz

zz
zz

Q

!!D
DD

DD
DD

DD
DD

D

〈F,G〉

��

X

F

""E
EE

EE
EE

EE
EE

E
Γks ∆ +3 Y

G

||yy
yy

yy
yy

yy
yy

E

We call this construction the strict inner product. However since we are only
concerned with the groupoid itself, it is possible to discard some information,
such as the projection onto E.

Definition 3.7.1. The inner product of two stuff types F : X −→ E and
G : Y −→ E is the groupoid

〈〈
(X , F ), (Y , G)

〉〉
with:

• Objects: (X, Y, γ) where X and Y are objects in X and Y respectively,
and an isomorphism γ : F (X) → G(Y ).

• Morphisms: (f, g) : (X, Y, γ) → (X ′, Y ′, γ′) where f : X → X ′ and
g : Y → Y ′ such that the following commutes:

F (X) α //

F (f)

��

G(Y )

G(g)

��
F (X ′) α′ // G(Y ′)

Essentially, we are creating the pseudo pullback without the projection
onto E: 〈〈

(X , F ), (Y , G)
〉〉

~~}}
}}

}}
}}

}}
}

  @
@@

@@
@@

@@
@@

X

F

!!C
CC

CC
CC

CC
CC

C
Γ +3 Y

G

~~||
||

||
||

||
|

E

40



where Γ is a natural isomorphism. One may easily see that:〈〈
(X , F ), (Y , G)

〉〉
' 〈(X , F ), (Y , G)〉

This construction has analagous properties to that of an inner product on
real vector spaces:

Proposition 3.7.2. (i) Let 0 denote the groupoid with no objects, then
for any stuff type F : X −→ E:〈〈

(X , F ), (X , F )
〉〉 ∼= 0 if and only if X ∼= 0

(ii) For any stuff types F : X −→ E, F ′ : X ′ −→ E and G : Y −→ E we
have:〈〈
(X +X ′, F+F ′), (Y , G)

〉〉 ∼= 〈〈(X , F ), (Y , G)
〉〉
+
〈〈
(X ′, F ′), (Y , G)

〉〉
(iii) For any stuff types F : X −→ E and G : Y −→ E we have:〈〈

(X , F ), (Y , G)
〉〉 ∼= 〈〈(Y , G), (X , F )

〉〉
(iv) For any stuff types F : X −→ E and G : Y −→ E, and any groupoid

U we have:〈〈
(U ×X ,U F ), (Y , G)

〉〉 ∼= U ×
〈〈
(X , F ), (Y , G)

〉〉
Proof. (i) The ‘if’ part is obvious, and the ‘only if’ part can be seen by

noticing that for any object X in the groupoid X , there is always an
object (X, X, 1F (X)) in the groupoid

〈〈
(X , F ), (X , F )

〉〉
.

(ii) Any object in
〈〈
(X + X ′, F + F ′), (Y , G)

〉〉
corresponds to a unique

object in
〈〈
(X , F ), (Y , G)

〉〉
or
〈〈
(X ′, F ′), (Y , G)

〉〉
.

(iii) For an object (X, Y, γ) in
〈〈
(X , F ), (Y , G)

〉〉
, the morphism γ : F (X) →

G(Y ) is invertible, and so there exists an isomorphism

T :
〈〈
(X , F ), (Y , G)

〉〉
−→

〈〈
(Y , G), (X , F )

〉〉
which maps:

• Objects: (X, Y, γ) 7−→ (Y, X, γ−1)

• Morphisms: (f, g) 7−→ (g, f)

(iv) For any objects U and X in U and X respectively, we have U F (U,X) =
F (X), and so we can construct an isomorphism

S : 〈(U ×X ,U F ), (Y , G)〉 −→ U × 〈(X , F ), (Y , G)〉

which maps:

41



• Objects:
(
(U,X), Y, γ

)
7−→

(
U, (X, , Y, γ)

)
• Morphisms:

(
(h, f), g

)
7−→

(
h, (f, g)

)
Remark 3.7.3. All these results are also true for the strict inner product.

Theorem 3.7.4. For any stuff types F : X −→ E and G : Y −→ E we
have:

|
〈〈
(X , F ), (Y , G)

〉〉
| =

∞∑
n=0

|(X , F )n| · |(Y , G)n| · n!

Proof. By Proposition 2.2.2 and Theorem 3.6.2 we have:

|
〈〈
(X , F ), (Y , G)

〉〉
| = |〈(X , F ), (Y , G)〉|

=
∞∑

n=0

∣∣(〈(X , F ), (Y , G)〉, 〈F,G〉
)
n

∣∣
=

∞∑
n=0

|〈F,G〉−1〈n〉|
n!

=
∞∑

n=0

|F−1〈n〉|
n!

· |G
−1〈n〉|
n!

· n!

=
∞∑

n=0

|(X , F )n| · |(Y , G)n| · n!

3.8 Stuff operator

Continuing in the spirit of thinking of stuff types as vectors, we seek to
create an analogous construct on stuff types. In fact we have already seen
two such examples, being the pointing (•) and the derivative (∂) operations.

Definition 3.8.1. An operator on a stuff type PL
K is a groupoid P and

two functors K : P −→ E and L : P −→ E:

P
K

~~}}
}}

}}
}} L

  A
AA

AA
AA

A

E E

An operator acts on a stuff type F : X −→ E by constructing the pseudo

42



pullback: 〈〈
(X , F ), (P,K)

〉〉
~~~~

~~
~~

~~
~

 @
@@

@@
@@

@@
PL

KF

��

X

F
 B

BB
BB

BB
BB

B
Γ +3 P

K
~~||

||
||

||
||

L
 B

BB
BB

BB
BB

B

E E

The resultant stuff type is the composite: PL
KF :

〈〈
(X , F), (P,K)

〉〉
−→ E

which maps:

• Objects: (X, P, γ) 7−→ L(P)

• Morphisms: (f, h) 7−→ L(h).

Linear operators on vector spaces preserve vector addition and scalar
multiplication. We can show stuff operators have analagous properties:

Proposition 3.8.2. (i) For any stuff operator PL
K and stuff types F :

X −→ E and F ′ : X ′ −→ E we have:

PL
K(F + F ′) ∼= PL

KF + PL
KF ′

(ii) For any stuff operator PL
K , stuff type F : X −→ E and groupoid U

we have:
PL

K(U F) ∼= U (PL
KF)

Proof. Both of these results follow from Proposition 3.7.2, which allow the
creation of the relevant isomorphisms in Stuff .

Example 3.8.3. Consider the operator E1E
+{∗}, where +{∗} : E −→ E is the

functor which adds the element ∗ to the set, and maps to itself in any
morphism. 〈〈

(X , F), (E,+{∗})
〉〉

~~~~
~~

~~
~~

~

  @
@@

@@
@@

@@
E1E

+{∗}F

��

X

F
  B

BB
BB

BB
BB

B
+3 E

+{∗}
~~||

||
||

||
||

1E
  B

BB
BB

BB
BB

B

E E

The groupoid
〈〈
(X , F ), (E,+{∗})

〉〉
• Objects: (X, N,α) such that α : F (X) → N + {∗} which maps to N

under E1E
+{∗}F

43



• Morphisms: (f, σ) : (X, N,α) → (X ′, N ′, α′) such that the following
commutes:

F (X)

F (f)

��

α // N + {∗}

σ+{∗}

��
F (X ′)

α′
// N ′ + {∗}

which maps to σ under E1E
+{∗}F .

This acts in a similar manner to the derivative operator (∂), by drop-
ping a distinguished element. In fact for any stuff type F : X −→ E
it is possible to show that ∂F ' E1E

+{∗}F .

The obvious question is what happens if we switch the functors of the
operator. We can show that this is becomes the adjoint on the inner product.

Theorem 3.8.4. Given two stuff types F : X −→ E and G : Y −→ E and
a stuff type operator PL

K , we have:〈〈
(U ,PL

KF ), (Y , G)
〉〉 ∼= 〈〈(X , F ), (V ,PK

L G)
〉〉

where U =
〈〈
(X , F ), (P,K)

〉〉
and V =

〈〈
(Y , G), (P, L)

〉〉
.

Proof. This proof can be obtained rather easily by constructing the follow-
ing:

A

}}||
||

||
||

!!B
BB

BB
BB

B

U

}}||
||

||
||

!!B
BB

BB
BB

B
Φ +3 V

}}||
||

||
||

!!B
BB

BB
BB

B

X

F !!B
BB

BB
BB

B
Γ +3P

K}}||
||

||
||

L !!B
BB

BB
BB

B
∆ +3 Y

G}}||
||

||
||

E E
where Γ,∆,Φ are all natural isomorphisms.

Example 3.8.5. Considering the adjoint of the previous example, we obtain:〈〈
(X , F ), (E, 1E)

〉〉
~~~~

~~
~~

~~
~

 @
@@

@@
@@

@@
E+{∗}

1E
F

��

X

F
 B

BB
BB

BB
BB

B
+3 E

+{∗}
 B

BB
BB

BB
BB

B

1E
~~||

||
||

||
||

E E

44

So the operator E+{∗}
1E

adds a new element to the set. Let I : E1 −→ E be
the property type of “being a one element set”. Then it is possible to show
that:

E+{∗}
1E

F ' I × F

where I × F is the multiplication of stuff types.

The operators from Examples 3.8.3 and 3.8.5 are used in [1] to corre-
spond to the annihilaation (A) and creation (A∗) operators in the quantum
harmonic oscillator, as they have the nice property that:

AA∗F = A∗AF + F

for any stuff type F .

45

Bibliography

[1] John C. Baez, Quantum gravity seminar lecture notes: Quantization
and Categorification, http://math.ucr.edu/home/baez/qg-spring2004/,
Spring 2004.

[2] John C. Baez and James Dolan, From finite sets to Feynman dia-
grams, Mathematics unlimited—2001 and beyond, Springer, Berlin,
2001, pp. 29–50.

[3] André Joyal, Une théorie combinatoire des séries formelles, Adv. in
Math. 42 (1981), no. 1, 1–82.

[4] G. M. Kelly, An abstract approach to coherence, Coherence in categories,
Springer, Berlin, 1972, pp. 106–147. Lecture Notes in Math., Vol. 281.

[5] , Many-variable functorial calculus. I, Coherence in categories,
Springer, Berlin, 1972, pp. 66–105. Lecture Notes in Math., Vol. 281.

[6] J. P. May, The geometry of iterated loop spaces, Springer-Verlag, Berlin,
1972, Lectures Notes in Mathematics, Vol. 271.

[7] K.H. Wehrhahn, Combinatorics: An Introduction, 2nd ed., Carslaw Pub-
lications, 1992.

46

