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Let me start by pointing out that the spectrum of the algebra of entire functions is C, while the spectrum
of the algebra of formal power series is just {0}, because a formal power series is invertible if, and only if,
its constant term is nonzero, so the only character of C[[z]] is the “evaluation at z = 0”.

1. Taylor’s theorem.

f(z + t) =
∑
k≥0

tkf (k)(z)
k!

=
∑
k≥0

[
(ta)kf

]
(z)

k!
=

[∑
k≥0

(ta)k

k!

]
f(z) = (etaf)(z).

2. First difference operator.

(∆f)(z) = f(z + 1) − f(z) = (eaf)(z) − f(z) = (ea − 1)f(z).

3. Fundamental theorem of difference calculus.

F (n) − F (0) =
n−1∑
i=0

[
F (i + 1) − F (i)

]
=

n−1∑
i=0

(∆F )(i) =
n−1∑
i=0

f(i).

4. Integration is a one-sided inverse of differentiation.

It is well-known that the derivative of an integral is the integrand, but the integral of a derivative may
differ from the function to be differentiated by any constant. That is, aa−1 = 1 but a−1a 6= 1.

5, 7, 8, 9. Identities involving Bernoulli numbers.

Clearly,

x = (ex − 1)
x

ex − 1
=

∑
k≥1

xk

k!

∑
n≥0

Bn
xn

n!
.

This means that
x =

∑
m≥1

xm
∑

0≤n<m

Bn

n!(m − n)!
,

so

B0 = 1 and 0 =
∑

0≤n<m

Bn

n!(m − n)!
=

1
m!

∑
0≤n<m

Bn

(
m

n

)
,

and 
1 0 0 0 0
1 2 0 0 0
1 3 3 0 0
1 4 6 4 0
1 5 10 10 5




B0

B1

B2

B3

B4

 =


1
0
0
0
0

 .

so
B0 = 1; B1 =

−1
2

; B2 =
1
6
; B3 = 0; B4 =

−1
30

.

Since the identity

x =
∑
k≥1

xk

k!

∑
n≥0

Bn
xn

n!
.

involves cancellations of finite sums, so

a =
∑
k≥1

ak

k!

∑
n≥0

Bn
an

n!
.

for any operator a.
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6. The inverse of ∆.

∆∆−1 = ∆
a

ea − 1
a−1 = aa−1 = 1.

Obviously, since ∆f = 0 whenever f is constant, ∆ cannot have a left-side inverse, so ∆−1∆ 6= 1.

10.

Let f(z) = z4. Then,

n∑
i=0

i4 =
n∑

i=0

f(i) =
n∑

i=0

(∆∆−1f)(i) = (∆−1f)(n + 1) − (∆−1f)(0).

But (a−1f)(z) = 1
5z5, and

(∆−1f)(z) =
1
5

∑
n≥0

Bn

n!
dnz5

dzn
=

1
5

∑
n≥0

Bn

(
5
n

)
z5−n,

So
n∑

i=0

i4 =
1
5

∑
k≥1

Bk

(
5
k

)
(n + 1)5−k =

1
5
(n + 1)5 − 1

2
(n + 1)4 +

1
3
(n + 1)3 − 1

30
(n + 1),

11. A trick.

1p + · · · + np =
1

p + 1

∑
k≥1

(
p + 1

k

)
Bk(n + 1)p+1−k =

1
p + 1

(∑
k≥0

(
p + 1

k

)
Bk(n + 1)p+1−k − (n + 1)p+1

)
=

=
(B + n + 1)p+1 − (n + 1)p+1

p + 1

if we interpret Bk to mean Bk. If we take n = 0 this reduces to

0 = (B + 1)p+1 − Bp+1

which is the recursive formula for the Bernoulli numbers from part 8.
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