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. To compute the number of ways to k-colour an n-element set, observe that there
are k possible choices for each element. Since all these choices are independent and
repetitions are allowed,

[C(F)al = K"

. Since |C(k),| = |C(k)|n, the generating function for k-colourings is

ce) = Y D o 5 B S e

n n! n!
n>0 n>0 n>0

. Using (a))(z) = L4)(z), we compute

(@O (2) = et = ket = KO (),

thus showing that a|C'(k)| = k|C(k).

. To determine the eigenvectors of the annihilation operator on formal power series,

we consider those
an
f(z) = E o

n>0

which have the property that d% f(2) = kf(z). By the definition (and uniqueness) of
the exponential function, all such functions f will be of the form

f(2) = ce®*  for any nonzero c, k € C.

The eigenvectors which come from k-colourings are precisely those eigenvectors with
real eigenvalues.

. To show that C'(k) is an eigenvector of the annihilation operator on structure types,
we consider AC(k). Let S be the n-element set. Then putting an AC(k)-structure
on n is really just putting a C'(k)-structure on the finite set n+ 1, that is, k-colouring
an (n + 1)-element set. But clearly, k-colouring an (n + 1)-element set is equivalent
to k-colouring n of the elements, and then choosing one of the k colours for the final
remaining element. This is the same thing as chopping n + 1 into two parts, putting
the structure of “being a 1-element set which has been assigned one colour (from a
set of k colours)” on the first part, and putting a k-colouring on the second part.
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The structure type of “being a 1-element set” is Z, but when we allow this element
to be coloured with one of k colours, the structure type becomes kZ. Hence, by the
product rule for structure types,

2", 2") = Opmn!

—~

6. Now we show that

(2", 2") = ((@)"1, (a*)™1)

m>n
), m=n; a, ax are adjoint
m<n

(@™ "™l 1), m > n;

=< (nl, 1), m=n; az" =n""1 = q"2" =nl
(1L,a»™nl), m<n
0,1), m>n; d

=< nl(1,1), m =n; ac=—c=0
(1,0), m<n dz
0, m>n;

=< nl, m=mn;
0, m<n

= dpmn!

7. For any nonzero k,c € C we have the coherent state

ck
b(z2) = _CZ => -

n>0 n>0

Using this, we compute

k™ k™
e <Z e Z>

n>0 n>0
-y (T
n!
n>0 n>0

K" b
= EZ ol Z Cﬂ—,(z”,z")

n>0 n>0
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k ck™
=C)y — — (2", 2™)
| Z | !
=y sy m!
k" k™
:MZEZ;JEﬂnﬂﬂ
m,n>0
n n
= |c|? Z k—k—n'
— n! n!
_ |C|2 Z ‘k‘Q
|
= "
= Jefteh”
Thus, [|¢(2)|| = [lce®|| = |c[el/2. So
w B Cekz
[l Icfelk/2
kz—|k|%2/2

which is just e

=€

changing dummy variable

argcekz—|k|2/2

8. We compute the expected value of position as

(W, q¥) =

a—+a*
V2
(¥, a¥) + (ay), ¥))

(¥, ¥)

Sl -

1

= (k) + (ke )

(k(, ) + kv, ¥))

2
WW,W

2Rek
V2
V2Rek

fviEe]

1

collecting terms

(2", 2") = Opmn!

up to a phase. Is this really beautiful?

ap = ki

sesquilinearity

1 is normalized
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We compute the expected value of momentum as

iv/2
(¥, ah) — (arp, )

(¥, pp) = (¢,

)

7
7 (¢, k) — (Kb, 9)) ay = ky

Z\f

k-
\/w )

QZImk
Z\f
= v2Imk

( (¥, 0) — k(¥ 1/1>) sesquilinearity

Thus, by choosing k carefully, we can make the expectation of position and momen-
tum be any pair of real numbers. But, we can only categorify the resulting state
when £ is a natural number.

9. Now for our normalized ¢, we compute the expected value of position squared

(.4) = <w, (ox )2w>

=1 (0, a®) + (v, a*av) + (b, aa’p) + (¥, (a")*))

— 1 ({(¢h, a®P) + (ah, ath) + (0, (1 + a*a)pp) + (a®, )
= 5 (0, @) + (o, av) + (b, ) + (a9, at) + (™3, )
= 1 (0, K2) + (ko, ko) + (0, 0) + (Ko, k) + (k*, 4))
= 3 (K0 IR0, 0) + () + KL ) + T, )
:%(k +2|k|2+E2+1> (1, )

=1 (k47 +1)1

=3 ((2Rek)*+1)
=2(Rek)>+ 12
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and we compute the expectation of momentum squared

waro) = (v (55) o)

= —1 (¢, a®¥) — (¢, a"ay)) — (b, aa™P) + (¥, (a)*¥))

= —3 (¥, a®¢) — (ap, a) — (¢, (1 + a*a)y) + (a*, 1))

= — 3 (0, @®) — (a, ah) — (¥, 4) — (ag), a) + (a®¢h, )

= —5 (W, K*) — (k) k) — (0, 9) — (ka, k) + (K, )
=~ (K2 0) — KR, 8) — (,0) — KW, 0) + B (, ) )
— 1 (K =2k + T2 1) (5, 0)

= —L((k—F)?-1)1

=%«mmm 1)

=2(Imk)* + 3

10. Now we compute the variance of position and momentum:

(Auq)” = (0, ¢°¢) — (b, qv))?
= @k +3) — (VERek)
=2(Rek)®> + 1 — 2(Rek)?

(Ayp)* = (W, p°0) — (b, p1))?
=1- <\/_Im k)
=2(Im#k)* + % — 2(Imk)?

11. Thus, the standard deviations are
Aypq=AByp = 7,
so that
Ayq-Dyp =3,
the minimum allowed by the Heisenberg Uncertainty Principle!



