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1. k-coloring a finite set.

A k-colouring of the set n is a function f :n→ k. For each element of n there are k choices of the image
of f , and the choices for each of the elements are all independent, so there are kn possible f :n→ k. Hence,

|C(k)n| = kn.

2. The generating function of k-colourings.

|C(k)|(z) =
∑
n≥0

kn

n!
zn = ekz.

3, 4. Annihilation.

Trivially,

a|C(k)|(z) =
d

dz
ekz = kekz = k|C(k)|(z).

Suppose that |C(w)|(z) is an eigenvector of a with eigenvalue w, that is,

d

dz
|C(w)|(z) = w|C(w)|(z).

Letting

|C(w)|(z) =
∑
n≥0

|C(w)n|
n!

zn,

the eigenvalue equation becomes

∑
n≥1

|C(w)n|
(n− 1)!

zn−1 =
∑
n≥0

w|C(w)n|
n!

zn

so ∑
n≥0

|C(w)n+1|
n!

zn =
∑
n≥0

w|C(w)n|
n!

zn

and |C(w)n+1| = w|C(w)n|. It follows that |C(w)n| = wn|C(w)0|, and that

|C(w)|(z) = |C(w)0|ewz,

so for each complex number w there is a one-dimensional space of eigenvectors of the annihilation operator
with eigenvalue w.

5. Categorified eigenvalue problem.

Let K be the structure type such that putting it on a set S is “picking a colour out of k and S is empty”.
It follows that |K|(z) = k.

We seek a structure type Tk such that

ATk ' K × Tk.

Observe that “putting an ATk structure on a set S” is “putting a Tk structure on the set S+1”, and “putting
a K × Tk structure on the set S” is the same as “picking a colour out of k and putting a Tk structure on S.
That is,
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putting a Tk structure on S + 1 is the same as picking a colour out of k and putting a Tk structure on S.

It easily follows by induction on |S| that a Tk structure on the set S is a Tk structure on the empty set, and
a k-colouring of S. How many ways there are to put a Tk structure on the empty set is undetermined, but
it is basically the structure type K ′ for some integer k′. It follows that

Tk ' K ′ × C(k).

6. Inner product on Fock space.

Assume, without loss of generality, that n ≥ m. Then,

〈zn, zm〉 = 〈(a∗)n1, zm〉 = 〈1, anzm〉 =
〈
1,
dnzm

dzn

〉
= δn,mm! = δn,mn!.

7. Normalizing coherent states.

Let ψw = ewz. Then,

〈ψw, ψw〉 =
〈∑
n≥0

wn

n!
zn,

∑
n≥0

wn

n!
zn

〉
=

∑
n,m≥0

w̄nwm

n!m!
〈zn, zm〉 =

∑
n≥0

|w|2n

n!
= e|w|

2
.

Hence, the normalized coherent state is

ψw = e−
|w|2

2 +wz

While we’re at it, we are going to need ‖zψw‖2 later:

〈zψw, zψw〉 = e−|w|
2 ∑
n≥0

|w|2n(n+ 1)
n!

= |w|2 + 1.

8,9,10,11. Heisenberg uncertainty for coherent states.

We use the facts that q = 1√
2
(a+ a∗) and that p = 1

i
√

2
(a− a∗). Then,

〈ψw, qψw〉 =
1√
2

(
〈ψw, aψw〉+ 〈aψw, ψw〉

)
=
w + w̄√

2

〈ψw, pψw〉 =
w − w̄√

2i
.

Similarly,

〈ψw, q2ψw〉 =〈qψw, qψw〉 =
1
2
(
〈aψw, aψw〉+ 〈a2ψw, ψw〉+ 〈ψw, a2ψw〉+ 〈a∗ψw, a∗ψw〉

)
=

1
2
(
|w2|+ w̄2 + w2 + |w2|+ 1

)
= 〈ψw, qψw〉2 +

1
2

〈ψw, p2ψw〉 =
1
2
(
|w2| − w̄2 − w2 + |w2|+ 1

)
= 〈ψw, pψw〉2 +

1
2

It follows that σ2
ψw
p = σ2

ψw
q = 1

2 , as required.
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