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1. We have

!n = n!−
∑
i

|Ai|+
∑
i<j

|Ai ∩ Aj| −
∑
i<j<k

|Ai ∩ Aj ∩ Ak|+ . . .

where Ai is the set of all permutations that fix i (the ith element). Thus, we can
equivalently consider Ai to be the set of permutations on the (n − 1)-element set
n \ {i}. So |Ai| = (n− 1)!.

But which of the original n elements gets to play the role of i? There are ( n1 )
possibilities in total. Since we are summing over all i,∑

i

|Ai| = ( n1 ) (n− 1)!.

BSA, Ai∩Aj corresponds to those permutations fixing both i and j. Thus |Ai∩Aj| =
(n− 2)! and since there are ( n2 ) ways to choose i and j, we have∑

i<j

|Ai ∩ Aj| = ( n2 ) (n− 2)!.

Continuing in this vein,

!n = n!−
(
n

1

)
(n− 1)! +

(
n

2

)
(n− 2)!− . . .+ (−1)n

(
n

n

)
(n− n)!

2. Since
(
k=

n!
k!(n−k)!

,

)
the above formula for !n simplifies readily as

!n = n!− n!
1!(n−1)!

(n− 1)! + n!
1!(n−2)!

(n− 2)!− . . .+ (−1)n n!
1!(n−n)!

(n− n)!

= n!
(

1− 1
1!

+ 1
2!

+ . . .+ (−1)n

n!

)
.

3. The probability that nobody receives the correct coat is given by (number of derange-
ments)/(number of permutations, i.e., the previous formula gives

!n

n!
=

1

0!
− 1

1!
+

1

2!
− . . .+ (−1)n

n!
=

n∑
k=0

(−1)k

k!

Thus,

lim
n→∞

(
!n

n!

)
= lim

n→∞

(
n∑
k=0

(−1)k

k!

)
=
∞∑
k=0

(−1)k

k!
= e−1

1
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4. Now limn→∞
(
!n e

n!

)
= 1 is equivalent to

!n ∼ n!

e
.

In other words,

∀ε, ∃N s.t. n ≥ N =⇒
∣∣∣∣!n− n!

e

∣∣∣∣ < ε.

In particular, we can choose ε = 1
2
. Then N = 1. Since !n is always an integer, and∣∣!n− n!

e

∣∣ for n ≥ 1, this shows !n is the closest integer to n!
e

.
Actually, that doesn’t quite work because we need some info about the monotonic-

ity of
∣∣!n− n!

e

∣∣, so let’s break out the big guns:
We have

!n

n!
=

1

0!
− 1

1!
+

1

2!
− . . .+ (−1)n

n!
=

1

e
−
∑
k>n

(−1)n

n!
.

So

!n =
n!

e
− n!

∑
k>n

(−1)n

n!
,

and we just need to show ∣∣∣∣∣n!
∑
k>n

(−1)n

n!

∣∣∣∣∣ < 1

2
.

This is a rapidly convergent alternating series, so the sum is trapped between any
two consecutive partial sums:

n!
N∑

k=n+1

(−1)k

k!
≤ n!

∞∑
k=n+1

(−1)k

k!
≤ n!

N+1∑
k=n+1

(−1)k

k!

In particular, it’s trapped between the second and third:

n!
(

(−1)n+1

(n+1)!
+ (−1)n+2

(n+2)!

)
≤ n!

∞∑
k=n+1

(−1)k

k!
≤ n!

(
(−1)n+1

(n+1)!
+ (−1)n+2

(n+2)!
+ (−1)n+3

(n+3)!

)
(−1)n+1

n+1
+ (−1)n+2

(n+1)(n+2)
≤ n!

∞∑
k=n+1

(−1)k

k!
≤ (−1)n+1

n+1
+ (−1)n+2

(n+1)(n+2)
+ (−1)n+3

(n+1)(n+2)(n+3)

Now we can take the absolute value of the left-hand side1:∣∣∣ (−1)n+1

n+1
+ (−1)n+2

(n+1)(n+2)

∣∣∣ =
∣∣∣ 1
n+1
− 1

(n+1)(n+2)

∣∣∣ =
∣∣∣ n+1

(n+1)(n+2)

∣∣∣ =
∣∣ 1
n+2

∣∣ ≤ 1
3
,∀n ≥ 1.

1Since one of {(−1)n+1, (−1)n+2} is 1 and the other is −1, and since we are taking the absolute value, we
can arbitrarily let one be 1 and the other be −1. Hence the first equality.
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Similarly for the right-hand side:∣∣∣ (−1)n+1

n+1
+ (−1)n+2

(n+1)(n+2)
+ (−1)n+3

(n+1)(n+2)(n+3)

∣∣∣ =
∣∣∣ (n+2)(n+3)+1

(n+1)(n+2)(n+3)
− n+3

(n+1)(n+2)(n+3)

∣∣∣
=
∣∣∣ n2+4n+4

(n+1)(n+2)(n+3)

∣∣∣
=
∣∣∣ n+2

(n+1)(n+3)

∣∣∣
≤ 3

8
,∀n ≥ 1

Now the sum in question is trapped between two quantities of absolute value less
than 1

2
(and note that any two consecutive partial sums are less than 1

24
apart), we

have ∣∣∣∣∣n!
∑
k>n

(−1)n

n!

∣∣∣∣∣ < 1

2
,

and hence ∣∣∣∣!n− n!

e

∣∣∣∣ < 1

2
=⇒ !n =

[
n!

e

]
.

5. We construct an isomorphism P ∼= EZD.
If f is a permutation on S, then let

A = {x ∈ S ... f(x) = x}, B = S\A.
Now f(b) 6= b, ∀b ∈ B, by definition of B, so f is a derangement of B and the identity
on A. In more categorical terms, f induces a splitting of S into two parts such that
one part is left untouched and the other part is deranged. I.e., the first part is simply
given the structure of a finite set, while the second part is given a derangement. This
process of splitting a set into two pieces and putting different structures on each
piece corresponds to multiplication of structure types. Since P is the structure type
of “being permuted” and EZ is the structure type of “being a finite set” and D is
the structure type of “being deranged”, we have

P ∼= EZD.

6. Decategorifying the above isomorphism, we obtain

1

1− z
= ez|D|.

The left side comes from

|P |(z) = p0

0!
+ p1

1!
z1 + p2

2!
z2 + p3

3!
z3 + . . .

= 0!
0!

+ 1!
1!
z1 + 2!

2!
z2 + 3!

3!
z3 + . . .

= 1 + z + z2 + z3 + . . .

= 1
1−z ,
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where the second line follows because there are n! permutations of the n-element set,
and the last line follows as a geometric series. Multiplying both sides by e−z gives a
formula for |D|:

|D|(z) =
e−z

1− z
.

7. If we differentiate the above formula, the quotient rule yields

d
dz
|D|(z) = d

dz

(
e−z

1− z

)
=
−(1− z)e−z − e−z(−1)

(1− z)2

= e−z
1− (1− z)

(1− z)2

= e−z
z

(1− z)2

Thus, (1− z) d
dz
|D|(z) = e−z z

1−z . On the other hand,

|D|(z)− e−z =
e−z

1− z
− (1− z)e−z

1− z
= e−z

1− (1− z)

1− z
= e−z

z

1− z
,

showing that

(1− z) d
dz
|D|(z) = |D|(z)− e−z.

8. Since the number of derangements of the n-element set is !n, we have

|D|(z) =
∞∑
n=0

!n

n!
zn.

Also, from 7 we have

(1− z) d
dz
|D|(z) = |D|(z)− e−z.

Now, throwing caution to the wind and differentiating infinite sums term-by-term,

(1− z) d
dz
|D|(z) = (1− z)

∞∑
n=1

!n

n!
nzn−1 by above

=
∞∑
n=1

!n

n!
nzn−1 −

∞∑
n=1

!n

n!
nzn distribute

=
∞∑
n=0

!(n+ 1)

(n+ 1)!
(n+ 1)zn −

∞∑
n=1

!n

n!
nzn reindex

=
∞∑
n=1

(
!(n+ 1)(n+ 1)

(n+ 1)!
− (!n)n

n!

)
zn !1 = 0
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Now we manipulate the other side of the equation:

|D|(z)− e−z =
∞∑
n=0

!n

n!
zn −

∞∑
n=0

(−1)n

n!
zn by above

=
∞∑
n=0

!n− (−1)n

n!
zn combine

=
∞∑
n=1

!n− (−1)n

n!
zn !0− (−1)0 = 0

Combining these equalities gives

∞∑
n=1

(
!(n+ 1)(n+ 1)

(n+ 1)!
− (!n)n

n!

)
zn =

∞∑
n=1

!n− (−1)n

n!
zn,

so equating the coefficients gives

!(n+ 1)(n+ 1)

(n+ 1)!
− (!n)n

n!
=

!n− (−1)n

n!
.

Multiplying by n! and cancelling the n+ 1, we get

!(n+ 1)− (!n)n = !n− (−1)n

!(n+ 1) = (!n)n+ !n− (−1)n

!(n+ 1) = !n(n+ 1) + (−1)n+1

There is another way to obtain the same result using just combinatorics. It is much
more basic, but avoids possible irksome analysis technicalities. Note that an n-
derangement can be derived from its predecessors in just one of two ways:

case i) Take a derangement of the first n− 1 elements, then swap the nth with one
of them.

case ii) Derange n − 2 of the first n − 1 elements, then swap the nth with the one
that has remained hitherto fixed.

A moment’s reflection shows that these are all the n-derangements, and one produced
one way cannot be produced the other way. Since there are n− 1 ways to do each of
these things,

!n = (n− 1)·!(n− 1) + (n− 1)·!(n− 2)

= (n− 1)(!(n− 1)+!(n− 2))

= n·!(n− 1)− (!(n− 1)− (n− 1)·!(n− 2))

!n− n·!(n− 1) = −(!(n− 1)− (n− 1)·!(n− 2))
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Note that if the left side of this last equation were denoted Ln, then the right side
would be −Ln−1. This leads to a bizarre but simple reductio ad iteratum:

!n− n·!(n− 1) = −(−(!(n− 2) + (n− 2)·!(n− 3)))

= (−1)k(!(n− k) + (n− k)·!(n− k − 1))) (after k steps)

= (−1)n−2(!2 + 2·!1)) (let k = n− 2)

= (−1)n(1 + 0) (d1 = 0, d2 = 1)

Finally, adding back the n·!(n− 1) gives

!n = n·!(n− 1) + (−1)n.

9. We calculate !n using Mathematica:

In[1] := d1[n ] := n!
∑n

k=0
(−1)k

k!

In[2] := Table[d1[n], n, 1, 10]
Out[2]= {0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961}
In[3] := d2[n ] := Round

[
n!
e

]
In[4] := Table[d2[n], {n, 1, 10}]
Out[4]= {0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961}
In[5] := d3[n ] := d3[n] = nd3[n− 1] + (−1)n

In[6] := d3[0] = 1
In[7] := Table[d3[n], {n, 1, 10}]
Out[7]:= {0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961}


