QUANTUM GRAVITY HOMEWORK 2

ERIN PEARSE

1. We have
n=nl =Y A+ [ANA]= > JAnANAl+. ..
i i<j i<j<k

where A; is the set of all permutations that fix 7 (the i*" element). Thus, we can
equivalently consider A; to be the set of permutations on the (n — 1)-element set
n\ {i}. So|4;| = (n—1)\.

But which of the original n elements gets to play the role of i? There are (7)
possibilities in total. Since we are summing over all 7,

1Al = (1) (- 1)

BSA, A;NA; corresponds to those permutations fixing both ¢ and j. Thus |4;NA;| =
(n — 2)! and since there are (%) ways to choose i and j, we have

ZlAmAj|=<5><n—2)!.

Continuing in this vein,

In =n! — (T)(n—nw (Z)(n—?)!—...+(—1)”(Z>(n—n)!

2. Since ( n! ) the above formula for !n simplifies readily as

RCEDIE

In = n! — gtgy(n — D!+ e (0 = 2)! =+ (= 1) iy (n — n)!

=n!<1—%+%+...+¢>.

n

3. The probability that nobody receives the correct coat is given by (number of derange-
ments)/(number of permutations, i.e., the previous formula gives
m 1 1 1 1) (D)
S S SR O ) (S o )
nl 0 1! 2! n!

. In . g (‘Uk - (_1)k -1
Jim, <E> = lim, ( il ) B B €
k=0 k=0

Thus,
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4. Now lim,,_, ('n%) = 1 is equivalent to

n!
In ~ —.
e

In other words,
|

n!
In — —
e

Ve, AN st. n > N = <e.

In particular, we can choose € = % Then N = 1. Since !n is always an integer, and
‘!n — ”;'| for n > 1, this shows !n is the closest integer to ";'

Actually, that doesn’t quite work because we need some info about the monotonic-
ity of ’!n — %' , so let’s break out the big guns:
We have

mo1 11 (—1) 1 (1)
RS IR T i Dhv

So

and we just need to show

This is a rapidly convergent alternating series, so the sum is trapped between any
two consecutive partial sums:

N 0o N+1
(—1)* (—1)* (—1)*
n ) o= mosn 2 J!
k=n-+1 k=n+1 k=n-+1

In particular, it’s trapped between the second and third:

N k
n!((—”"“ +<—1>"+2> <nl' Y (—kll) Sn!((—m“ Lo +<—1>"+3>

(n+1)! (n+2)! (n+1)! (n+2)! (n+3)!

k=n+1

(_1)n+1 (_1)n+2 + (_1)n+3
n+1 (n+1)(n+2) (n+1)(n+2)(n+3)

IN

o k
(_1)n+1 (_1)n+2 (—]_)
i T e = Z Ll

k=n-+1

Now we can take the absolute value of the left-hand side':

(c)nH (e
n+1 (n+1)(n+2)

— | _ 1
T n+l (n+1)(n+2)

n+1
(n+1)(n+2)

— |l <=1

ISince one of {(—1)"*!, (=1)"*2} is 1 and the other is —1, and since we are taking the absolute value, we
can arbitrarily let one be 1 and the other be —1. Hence the first equality.
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Similarly for the right-hand side:

(=n"*t (=pnt2 (=pnts (n+2)(n+3)+1 ni3

n+1 (n41)(n+2) (n4+1)(n+2)(n+3) | ~ | (n+1)(n+2)(n+3) (n+1)(n+2)(n+3)

n2+4n+4
(n+1)(n+2)(n+3)

n+2
(nr%l)(anB)‘

S%,VnZl

Now the sum in question is trapped between two quantities of absolute value less
than % (and note that any two consecutive partial sums are less than i apart), we

have

(=] 1
| _
nz <3
k>n
and hence
n! 1 n!
m——l<-z = In=|—
e 2 e

. We construct an isomorphism P = EZD.
If f is a permutation on S, then let

A={z e S: f(x)=x}, B=S5\A

Now f(b) # b,¥b € B, by definition of B, so f is a derangement of B and the identity
on A. In more categorical terms, f induces a splitting of S into two parts such that
one part is left untouched and the other part is deranged. I.e., the first part is simply
given the structure of a finite set, while the second part is given a derangement. This
process of splitting a set into two pieces and putting different structures on each
piece corresponds to multiplication of structure types. Since P is the structure type
of “being permuted” and EZ is the structure type of “being a finite set” and D is
the structure type of “being deranged”, we have

P>~ FE?D.

. Decategorifying the above isomorphism, we obtain
1 z

— =€°|D|.

T, = ¢l

The left side comes from
|Pl(z) =20 + Bt 4 B2 4 B8 4
=3+ 8+ 22+ +
=14+2+22+22+...
1

1-27
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where the second line follows because there are n! permutations of the n-element set,
and the last line follows as a geometric series. Multiplying both sides by e™* gives a
formula for |D|:

—z

e
1—2z

|D|(2) =

. If we differentiate the above formula, the quotient rule yields

4|D|(z) = £ (;jz) - —z()le—_zz_>26—z<_1)

_ 1= (0=2)
B (1—2)?
_672 <
(=2
Thus, (1 — 2)-£|D[(z) = e7*1%. On the other hand,
_ e ( z)e” L 1=(1=2) .,z
D % _ Lz _ ,Z
[DI(z) —e 1—2  1—=z ‘ 1—2z 1

showing that
(1= 2)7IDI(z) = D|(2) — ™.

. Since the number of derangements of the n-element set is n, we have

n TL
|DI(= Z e
Also, from 7 we have
(1= 2)#IDI(z) = D|(2) —e™*.

Now, throwing caution to the wind and differentiating infinite sums term-by-term,

gy
(1=2)L|D|(2) = (1 - 2) Z ﬁ' nz"! by above
n!
n=1
= In L o=
= —nZ" — —nz" distribut
;n!nz ;n!nz istribute
= (n+1) N ,
:ZO(n+1)! (n+1)z —Zlmnz reindex
(A D)+1)  (m)n .
_Z n+1! : T
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Now we manipulate the other side of the equation:

|D|(z)—e‘zzzsz”—2%z" by above

n=0

ln — (—
— Z P combine

_E:m—-— o 10— (=1)° =0

Combining these equalities gives

Z( (n+1)! ol )z _Z n! “

n=1

so equating the coefficients gives

n+1)(n+1) (In)n  In—(=1)"
(n+1)! ol n! '

Multiplying by n! and cancelling the n + 1, we get

m+1)—(Im)n=In—(-1)"
n+1) = ("m)n+n - (=1)"
I(n+1)=n(n+1)+ (=1)"*

There is another way to obtain the same result using just combinatorics. It is much
more basic, but avoids possible irksome analysis technicalities. Note that an n-
derangement can be derived from its predecessors in just one of two ways:

case i) Take a derangement of the first n — 1 elements, then swap the n'" with one

of them.

case ii) Derange n — 2 of the first n — 1 elements, then swap the n'® with the one

that has remained hitherto fixed.

A moment’s reflection shows that these are all the n-derangements, and one produced
one way cannot be produced the other way. Since there are n — 1 ways to do each of

these things,

In=mn-1)(n—-1)+(n—-1)!(n-2)
= (n=D((n - 1D+!(n-2)
=nln—1) = ((n—-1) = (n—-1)!ln-2))

n—nln—1)=—((n—-1)—(n—1)(n—2))
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Note that if the left side of this last equation were denoted L,, then the right side
would be —L,,_;. This leads to a bizarre but simple reductio ad iteratum:

m—nln—-1)=—(—(n—-2)+ (n—2)!(n—3)))

=(=D)*((n—k)+(n—k)!(n—k—1))) (after k steps)
= (=1)""2(12+2:11)) (let k =n—2)
— (11 +0) (A= 0.dy = 1)

Finally, adding back the n-!(n — 1) gives
In=n!n—1)+(=1)"

9. We calculate In using Mathematica:
1] := di[n] == n! 30_, EE
In[2] := Table[d1[n],n, 1, 10]
Out[2]={0,1,2,9, 44,265, 1854, 14833, 133496, 1334961 }

In[3] := d2[n_] := Round [%]
In[4] := Table[d2[n],{n, 1, 10}]
Out[4]= {0,1,2,9, 44,265, 1854, 14833, 133496, 1334961 }

In[5] := d3[n_] := d3[n] = nd3[n — 1] + (—1)"

In[6] := d3[0] = 1

In[7] := Table[d3[n], {n, 1, 10}]

Out[7):= {0,1,2,9, 44, 265, 1854, 14833, 133496, 1334961}



