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Abstract

Peing a Mojt Mereie Ceplovation of the Counting of Pactitiont, or: An
Qccount of th Manp and Seteral Wapl to Make Change in FForeign
Fanol whole Coinage ke of the Moft Cecentric Valuel... Fududing a
Categoricall Bemonjteation of a Diftinctie Ooditp at No Crtra Chege

1. We can define a structure type P(1 5 10} which acts on an n-set N by putting an order on
S and then cutting it into 0 or more blocks of size 1, then cutting the remainder into 0 or
more blocks of size 5, then cutting the remainder into blocks of size 10. That is, a
Py 5,10} structure is equivalent to the structure formed by first taking an ordered set of
(ordered) sets of size 1, then an ordered set of ordered sets of size 5, then an ordered set
of ordered sets of size 10. The generating function for structure consisting of an ordered
set of ordered sets of size n is 14+ 2"+ 22" + ... = T We have a product of such struc-

tures, so the generating function p(z) is a product of terms of this form, with n=1,5,10:

p(Z):g%pnzn:(liz)(1—1z5><1—1z10>

2. To make change for ten dollars in pennies, nickels, and dimes is to express 1000 (cents) as
a sum of units of sizes 1, 5, and 10. This is just pjgoo, Which is given by the above as the
coefficient of 2199 in p(z). Computers being what they are, this is easily found to be!:

[z1°°°]<1iz)<1_1z5><1_1210):10201

3. By analogy with the answer to (1), this will be a product over values n € S of geometric
series:

P(Z):Z Dn2" = H <$>

n>0 $;€S

1. We could note that if we were stuck on a desert island with no electricity, we could still calculate this without
much trouble, since it amounts to the number of ways to pick a number d of dimes between 0 and 100 (there are
101 ways), and for each of these, pick a way to write some portion of the remaining quantity in nickels, that is,
some number njckel between 0 and 200 — 2d (the number of nickels needed to make up the rest) since automati-
cally the rest will be pennies. This number is:

% (201 — 2d) = (201)(101) — 2

< 1002+ 100
2
d=0

) =20301 —10100=10201

But, on the other hand, it’s worth remarking that this convenient shortcut is essentially a result of the fact that 5
divides 10, and 1 divides both of them - and all three numbers divide 1000 - greatly simplifying the formula for
the number of ways to choose boundary points between groups of blocks of these sizes. In general, if we have
some other set S of coin values and total value n which we wish to divide, the first method - calculating coeffi-
cient of z™ - will be the better one.



4. We can define a structure-type P (or, to clearly distinguish it, Ps) for which a Ps-struc-
ture on an nm-element set N is a total ordering of N, and a division of this ordered set
into blocks of sizes s; € S, in decreasing order of size (for instance - though taking the s;
in any specified order on Nt would do equally well). A Ps-structure is equivalent to a
partition of n by elements of S, together with an order, hence the ordinary generating
function will have coefficients giving the number of such partitions. Now, a Ps-structure
on N consists of a collection of blocks, so we can think of it as a product of structures;
first, cut NV into two parts, and put the structure of being-an-ordered-set-of-ordered-sets-
of-size-s; on the first part, and on the second part put a structure which consists of cut-
ting a set in two parts, and putting the structure of ordered-set-of-ordered-sets-of-size-ss
on the first part, and... And so on, through all s;. This gives Ps as a product of struc-
tures, since the recursive construction naturally gives an order on all the sub-structures,
each of which naturally puts an order on the elements of N which it uses, and this pro-
duct therefore gives an ordered collection of ordered blocks of the appropriate sizes.

This construction of Pg as a product of structure-types can be written:

. 1
— S 2s; —
Ps= || (1+2Z%5i+2Z%i+..)= || =7+
s;€ES S;ES

for

(Where the "geometric series" has been written in the suggestive notation as #,

whatever that means). Decategorifying this gives the generating function above.

5. This is similar to the case in (3), but instead of the geometric series associated, we only
have a two term polynomial for each s; € S, since it either appears once, or not at all,
rather than any number of times. The generating function is:

02)=Y qun=T[ (1+2%)

n>0 $; €S

6. The construction here is just as in (4), except that the basic structures from which Q is
recursively constructed are not ordered-sets-of-ordered-sets-of-size-s;, but rather are struc-
tures defined as: "either the empty set, or an ordered set of size s;". So rather than the
geometric series (1 + Z% 4 Z2% 4 -..), these structures can be written (14 Z%). So by the
same reasoning as in (4), we get that

Qs=[] Q+2z5+2%+..)=
s;€S s;€S

7. We can show this either at the level of generating functions, or directly in the categorified
setting:

i. The number of ways of writing n as a sum of distinct numbers is the situation
from (5), in the case where S = NT: we are finding a partition of n as a sum of
positive numbers, where each appears at most once. So from (5), the generating
function ¢(z), whose coefficients g, are the number of ways of doing this for n, is:

g)= T +=)

;€S8 om

Now, if we take this expression and use the fact that 1+ 2™ = 11_ we have:

—zn’
n 1_Z2n
II a+=» o
n>1 n>1

Here the second equality comes about because we can cancel all the denominators
with even powers of z with the terms in which these appear as numerators. All
numerators are cancelled in this way since every even positive integer 2n will also
appear as a positive integer. All even-power denominators cancel this way, and so
only and all odd-power denominators remain.



ii.

But now, this expression is actually a special case of the form from (3), where the
set S is the set of odd numbers. So the interpretation is that this is also the gen-
erating function p(z) whose coefficients are the number of partitions of n with odd
parts (which may appear any number of times). Since these are equal as gener-
ating functions, the coefficients are all equal, hence for every n € NT, the number
of ways of writing n as a sum of distinct numbers is the same as the number of
ways of writing n as a sum of odd numbers.

To show this more directly, we want to construct some sort of bijection between
the set of partitions of & by odd numbers and the set of partitions of & by distinct
numbers. Categorifying the generating-function equations above, we observe that
the structure-type Qun+ of partitions of an ordered finite set with distinct-size
parts can be thought of in the following way. The sub-structure "either nothing
or exactly one ordered set of size n" from which the structure was build recursively
(by taking the product over all n), is the same as the structure "ordered sets of
ordered sets of size n, exclusive of sets with two or more elements":

n 1 Z2n
1+Z T1—-2zn 1-2n

Since:

1 2n

_— n 2n n ) = n
7 1+2"+Z2°"(1+ 2"+ )=1+ 2 t1—n

But this means that a block in an arbitrary partition can be thought of as: either
the empty set, or a single part of size n, or a part of size 2n together with an arbi-
trary block with parts of size n. To restrict to partitions having distinct sizes, we
must remove all those with blocks of the third type. Since there is a natural iso-
morphism between partitions with parts of the third type and those with one or
parts of even size (given by taking the part of size 2n in the description from the
n-block and putting it in the 2n-block) this is equivalent to removing ALL parti-
tions having parts of size 2n for any n. That is, removing all partitions having
any parts of even size. This leaves only partitions with blocks of odd size.



