
QUANTUM GRAVITY HOMEWORK 1

ERIN PEARSE

1. An isomorphism between the structure type T and a function involving T :

T ∼= Z3T + Z2T + ZT + 1.

To put a T -structure on S, either:

(i) Hew it in twain and put the structure of being a totally ordered 3-elt set on the
first part and a T -structure on the second, or

(ii) hew it in twain and put the structure of being a totally ordered 2-elt set on the
first part and a T -structure on the second, or

(iii) hew it in twain and put the structure of being a totally ordered 1-elt set on the
first part and a T -structure on the second, or

(iv) it is the empty set, so give it this structure.

2. By decategorifying the above isomorphism, we obtain |T | = z3|T |+ z2|T |+ z|T |+ 1.

3. Using this relation, we find a recurrence relation for the Tribonacci numbers:

|T | =
∑
n≥0

tnz
n = z3|T |+ z2|T |+ z|T |+ 1

=
∑
n≥0

tnz
n+3 +

∑
n≥0

tnz
n+2 +

∑
n≥0

tnz
n+1 + 1

=
∑
n≥3

tnz
n +

∑
n≥2

tnz
n +

∑
n≥1

tnz
n + 1

Thus, tn = tn−3 + tn−2 + tn−1∀n ≥ 3. We can readily compute the first three terms
by examining the structure on 0,1, and 2-elt sets:

t0 = 1 ← ∅

t1 = 1 •
t2 = 2 • • •|•
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4. Solving the equation in 2, we obtain |T |(z) as an explicit function of z.

|T |(z) = z3|T |(z) + z2|T |(z) + z|T |(z) + 1

|T |(z)− z|T |(z)− z2|T |(z)− z3|T |(z) = 1

(1− z − z2 − z3)|T |(z) = 1

|T |(z) =
1

1− z − z2 − z3

5. Now we find a closed form expression for the poles of |T |. We need to find the roots
of

−1 + z + z2 + z3 = 0,

so the coefficients are a0 = −1, a1 = 1, a2 = 1 and we compute

p = a1 −
a2

2

3
= 1− 1

3
=

2

3
, and

q =
2a3

2

27
− a1a2

3
+ a0 = −−34

27
.

Now we obtain

P =
3

√
−q

2
+

√
p3

27
+
q2

4
=

3

√
17

27
+

√
8

729
+

289

729
=

3

√
17

27
+

3

27

√
33 =

1

3

3

√
17 + 3

√
33,

and

Q =
3

√
−q

2
−
√
p3

27
+
q2

4
=

1

3

3

√
17− 3

√
33.

Let ω = 11/3 be a primitive cube root of unity. Then the poles of |T | are:

α = 1
3

3

√
17 + 3

√
33 + 1

3

3

√
17− 3

√
33− 1

3

β = ω
3

3

√
17 + 3

√
33 + ω2

3

3

√
17− 3

√
33− 1

3

γ = ω2

3

3

√
17 + 3

√
33 + ω

3

3

√
17− 3

√
33− 1

3

Checking the moduli of these numbers,

|α| ≈ 0.5436890126920764

|β| ≈ 1.3562030656262953

|γ| ≈ 1.3562030656262953

we see that α is closest to the origin.
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6. The Souped-Up Hadamard Theorem says: If f(z) =
∑
anz

n is analytic in a disc of
radius R about 0, except for a simple pole at distance r < R from 0, then |an| ∼
c(1
r
)n, c > 0. Let

τ = 1
|α| .

Then for |α| < R < |β| = |γ|, the theorem gives that

tn ∼ cτn.

7. We use the characteristic equation to solve the recurrence relation tn = tn−3 + tn−2 +
tn−1 with the initial conditions t0 = 1, t1 = 1, t2 = 2 and obtain

tn =
βγ − β − γ + 2

(β − α)(γ − α)
αn +

αγ − α− γ + 2

(β − α)(β − γ)
βn +

αβ − α− β + 2

(β − γ)(γ − α)
γn

With this, we compute t100 = 180396380815100901214157639.
Also, using Mathematica, we obtain τ 100 = 2.9170531916003307× 1026. Since

tn ∼ cτn =⇒ tn
τn
∼ c,

we obtain c ≈ 0.6184199223193912.

8. Let b
(k)
2 be the nth k-bonacci number. Then the isomorphism

B(k) ∼= ZkB(k) + Zk−1B(k) + . . .+ ZB(k) + 1

can be decategorified to yield

|B(k)| =
∑
n≥0

b(k)
n zn = zk|B(k)|+ zk−1|B(k)|+ . . .+ z|B(k)|+ 1

=
∑
n≥0

tnz
n+k +

∑
n≥0

tnz
n+k−1 + . . .+

∑
n≥0

tnz
n + 1

=
∑
n≥k

tnz
n +

∑
n≥k−1

tnz
n + . . .+

∑
n≥1

tnz
n + 1

For initial conditions, we still have b
(k)
0 = 1, b

(k)
1 = 1, b

(k)
2 = 2, and (for k > 2) b

(k)
3 = 4.

But (for k > 3) b
(k)
4 takes the 7 partitions of t4 and adds one more: • • • • . So

b
(k)
4 = 8.

In fact, ∀k, b(k)
0 = 0 and b

(k)
n = 2n−1 for n ≤ k. Reason: for the first k terms, we

can chop into blocks of 1, 2, 3, . . . , k. This means that there are no restrictions on
where to place the partitioning lines, so we have a simple counting problem:

2 options for each of n− 1 choices =⇒ 2n−1 ways.



4 ERIN PEARSE

9. The nth k-bonacci numbers:

n=0 1 2 3 4 5 6 7 8 9 10
k=1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 2 3 5 8 13 21 34 55 89
3 1 1 2 4 7 13 24 44 81 149 274
4 1 1 2 4 8 15 29 56 108 208 401
5 1 1 2 4 8 16 31 61 120 236 464
6 1 1 2 4 8 16 32 63 125 248 492
7 1 1 2 4 8 16 32 64 127 253 504
8 1 1 2 4 8 16 32 64 128 255 509
9 1 1 2 4 8 16 32 64 128 256 511
10 1 1 2 4 8 16 32 64 128 256 512

10. Define the∞-bonacci number to be the number of ways of chopping a totally ordered
n-element set into blocks of arbitrarily long integer length.

As mentioned in 8, b
(k)
n = 2n−1 for n ≤ k. Thus, as k → ∞, b

(k)
n = 2n−1 for more

and more of the initial part of the sequence. In fact, if we define a metric σ on the
space of sequences by

σ(u, v) = rmin{j .: uj 6=vj}

for some fixed 0 < r < 1 (say r = 1
2
), then

lim
k→∞
{b(k)
n } = {2n−1},

except for n = 0, because b
(k)
0 = 1, ∀k. I.e., b

(∞)
n = 2n−1. Thus the generating

function will be

|B(k)| =
∑
n≥1

2n−1zn + 1

11. The nth ∞-bonacci number is 2n−1 (but 1 when n = 0), by the above.


