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1, 2, 3. Bernoulli numbers and hyperbolic functions.
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Since cosh is an even function and sinh is an odd function, their ratio coth is odd, and (z/2) coth(z/2)
is an even function of z. This means its Taylor expansion has vanishing odd coefficients, so by the definition
of the Bernoulli numbers,
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We can use the fact that z cot z has poles at z = +7 to estimate of the growth of the Bernoulli numbers.
The root test for absolute convergence (or Hadamard’s theorem) implies that
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With a little undue optimism, we might hope this implies
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By Stirling’s approximation, n! ~ ne™"+/27n, we’d then obtain
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Unfortunately, the correct asymptotics are
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Close, but no cigar! The problem is that
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To get the exact asymptotics we’'d need to use the ‘souped-up Hadamard’s theorem’ discussed in Week 1 of
this quarter. In fact, we’d need to use a slightly enhanced version of this theorem, since there are two different
poles closest to the origin, at +7. Perhaps the presence of these two poles with residue 1 is responsible for
the mysterious factor of 27



4. Enter the Riemann ( function.

With the proviso that ), ., works only for absolutely convergent sums and that Zf;o means the limit
of partial sums as the upper limit goes to infinity, the given formula is written as
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which is now absolutely convergent. Then,
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5, 6. The Riemann ( function and Bernoulli numbers.
We now know that (2i2)?
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In particular,
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By the way, the above formula for {(2n) gives a better way to determine the asymptotics of the Bernoulli
numbers: since ((2n) — 1 as n — +00, we must have
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and thus, using Stirling’s formula as before,

n \2n
| Boy| ~ 4(5) N

7. Categorification.

The problem with such a structure type would be that some of the B,, are negative, and we don’t know
how to interpret a structure type which can be put on a set in a negative number of ways.

8. Clay prize.
I think I'll just forgo the $ 1,000,000 and just claim one point of extra credit.



