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1, 2, 3. Bernoulli numbers and hyperbolic functions.

Since
1

ez − 1
=

e−z/2

ez/2 − e−z/2
,

we have
1

ez − 1
+

1
2

=
1
2

ez/2 + e−z/2

ez/2 − e−z/2
,

so
z

ez − 1
+

z

2
=

z

2
coth(z/2).

Since cosh is an even function and sinh is an odd function, their ratio coth is odd, and (z/2) coth(z/2)
is an even function of z. This means its Taylor expansion has vanishing odd coefficients, so by the definition
of the Bernoulli numbers,

B1 = −1
2

and B2n+1 = 0 for all n > 0.

Now,

z coth z =
2z

e2z − 1
+ z =

∑
n≥0

B2n(2z)2n

(2n)!
,

so

z cot z = z
1
i

coth(iz) =
1
i

(
2iz

e2iz − 1
+ iz

)
=

∑
n≥0

B2n(2iz)2n

(2n)!
.

We can use the fact that z cot z has poles at z = ±π to estimate of the growth of the Bernoulli numbers.
The root test for absolute convergence (or Hadamard’s theorem) implies that

lim
n→∞

2n

√
|B2n|(2π)2n

(2n)!
= 1.

With a little undue optimism, we might hope this implies

|B2n| ∼
(2n)!

(2π)2n
.

By Stirling’s approximation, n! ∼ nne−n
√

2πn, we’d then obtain

|B2n| ∼
(2n)2ne−2n

√
4πn

(2π)2n
= 2

( n

eπ

)2n√
πn.

Unfortunately, the correct asymptotics are

|B2n| ∼ 4
( n

eπ

)2n√
πn.

Close, but no cigar! The problem is that

lim
n→∞

2n

√
an

bn
= 1 6⇒ an ∼ bn.

To get the exact asymptotics we’d need to use the ‘souped-up Hadamard’s theorem’ discussed in Week 1 of
this quarter. In fact, we’d need to use a slightly enhanced version of this theorem, since there are two different
poles closest to the origin, at ±π. Perhaps the presence of these two poles with residue 1 is responsible for
the mysterious factor of 2?
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4. Enter the Riemann ζ function.

With the proviso that
∑

n≥0 works only for absolutely convergent sums and that
∑∞

n=0 means the limit
of partial sums as the upper limit goes to infinity, the given formula is written as

π cot πz =
1
z

+
∞∑

n=1

[ 1
z − n

+
1

z + n

]
= 1 +

∞∑
n=1

2z

z2 − n2
,

which is now absolutely convergent. Then,

π cot z =
π

z
+

∑
n≥1

2πz

z2 − π2n2
,

and

z cot z = 1− 2
∑
n≥1

z2

π2n2 − z2
.

Now,

z cot z = 1− 2
z2

π2

∑
n≥1

1
n2

1
1− (z/nπ)2

= 1− 2
z2

π2

∑
n≥1

1
n2

∑
k≥0

( z

nπ

)2k

= 1− 2
∑
k≥1

( z

π

)2k ∑
n≥1

1
n2k

,

so
z cot z = 1− 2

∑
k≥1

ζ(2k)
( z

π

)2k

.

5, 6. The Riemann ζ function and Bernoulli numbers.

We now know that ∑
n≥0

B2n(2iz)2n

(2n)!
= 1− 2

∑
n≥1

ζ(2n)
( z

π

)2n

,

so

ζ(2n) =
(2π)2n

2(2n)!
|B2n|.

In particular,

ζ(2) = π2|B2| =
π2

6
; ζ(4) =

π4

3
|B4| =

π4

90
; ζ(6) =

2π6

45
|B6| =

π6

945
.

By the way, the above formula for ζ(2n) gives a better way to determine the asymptotics of the Bernoulli
numbers: since ζ(2n)→ 1 as n→ +∞, we must have

|B2n| ∼
2(2n)!
(2π)2n

and thus, using Stirling’s formula as before,

|B2n| ∼ 4
( n

eπ

)2n√
πn.

7. Categorification.

The problem with such a structure type would be that some of the Bn are negative, and we don’t know
how to interpret a structure type which can be put on a set in a negative number of ways.

8. Clay prize.

I think I’ll just forgo the $ 1,000,000 and just claim one point of extra credit.
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