
A Pointed Assignment
Jeff Morton

1. P (k)n is the number of maps from the k set (i.e. ”the” set with k elements)
to ”the” n set (set with n elements) multiplied by the number of total
orderings on n, since we choose both such a map and a total ordering on
n. The number of maps f : k → n is just nk since each element of k has
n possible images, and these are all chosen independently (i.e. we allow
repetition). The number of total orderings is of course n!. So the product
of these gives |P (k)n| = nk · n!.

2. We have in general |P (k)|(z) =
∑
n≥0

|P (k)n|zn
n! . In this case, the n! factors

cancel (that is, the total ordering on n! makes this a case we could think
of as an ordinary generating series), so we have:

|P (k)|(z) =
∑
n≥0

n!·nkzn
n! =

∑
n≥0 n

kzn

3. In the special case where k = 0 the generating function above is:

|P (0)|(z) =
∑
n≥0 n

0zn =
∑
n≥0 z

n = 1
1−z

4. To put an NΨ-structure on a set S is to put an A∗AΨ-structure on it, and
this means, by the definition of the A∗ operator, to choose an element x of
S and then put an AΨ-structure on S \{x}. Now, to put an AΨ-structure
on S \ {x} is, by the definition of the A operator, to put a Ψ-structure on
(S \{x})+1, that is, S \{x} with a single point added to it. So, to put an
NΨ-structure on S is to choose a point x ∈ S, remove it from S, then add
a new point to the resulting set, and put a Ψ-structure on the set thus
created. This is equivalent to identifying a special point of S (since we
have a natural isomorphism beween S and the resulting set which sends
every element of S \ x to itself, and x to the new one-point set denoted 1)
and then putting a Ψ-structure on it.

5. To put an NP (k)-structure on a set S is to specify a point x ∈ S and also
put a P (k)-structure on it. Now, a P (k)-structure on S is a k-pointing -
that is, a labelling of k points (possibly with repetition) of S by numbers
1 . . . k. On the other hand, a P (k + 1)-structure is a labelling of k + 1
elements of S by numbers 1 . . . k + 1. There is a natural way to define an
isomorphism between such structures. Given an NP (k)-structure on S,
construct a P (k+1)-structure on S by assigning the numbers 1 . . . k to the
same points in the (k+ 1)-pointing as in the k-pointing, and assigning the
number k + 1 to the specially identified point from the NP (k)-structure.
This is clearly reversible, hence an isomorphism. In particular, it is natural
since there is a unique natural choice for which element of k+ 1 to assign
to the special point. Thus, by thinking of one assignment of labels from
k + 1 as an assignment of labels in k to a pointed set, we have

NP (k) ∼= P (k + 1)
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6. We have seen previously that the effect of the A and A∗ operators on the
generating functions corresponding to a structure type Ψ is, respectively,
|AΨ|(z) = d

dz |Ψ|(z) and |A∗Ψ|(z) = z|Ψ|(z). So combining these, and the
existence of the isomorphism above gives that:

|P (k + 1)|(z) = |NP (k)|(z) = |A∗AP (k)|(z) = z d
dz |P (k)|(z)

7. By part 6, we have that |P (1)|(z) = z d
dz |P (0)|(z), but since by part 3 we

know that |P (0)|(z) = 1
1−z , we find that:

|P (1)|(z) = z d
dz

(
1

1−z

)
= z

(
− −1

(1−z)2

)
= z

(1−z)2

8. Now we come to the point of this assignment - evaluating divergent sums
using our generating function, and using Abel sums. The first says that
if we have the expression above equal to —P (1)|(z), then |P (1)|(−1) =
−1

(1−(−1))2 = − 1
22 = − 1

4 . On the other hand, we know from part 2 that

|P (1)|(z) =
∑
n≥0(n)1zn

But then, if z = −1, this gives that

|P (1)|(−1) =
∑
n≥0 n · (−1)n = −1 + 2− 3 + . . .

Using these two expressions, we could claim that −(−1+2−3+. . . ) = − 1
4 .

This is the same as what we want, namely that 1− 2 + 3− 4 + . . . = 1
4 .

9. We observe that the sum above does not actually converge, since the point
z = −1 is not strictly inside the radius of convergence for the function
|P (1)|(z) written as a power series expanded about z = 0. This is because
the function has a pole at z = 1, so the radius of convergence is 1, but this
function is analytic everywhere else in the complex plane. So the function
can be analytically continued to z = −1, though the power series does not
converge there. This is exactly what the Abel sum:

A
∑∞
n=1(−1)n+1n = − limt↗1

∑∞
n=1 t

n(−1)n · n
is doing: this is an analytic continuation of |P (1)|(z) to z = −1 along the
negative real axis. This is

− limt↗1

∑∞
n=1(−t)n · n = − limt↗1 |P (1)|(−t) = − limt↗1

−t
(1+t)2 = 1

4

So in fact the Abel sum of the series in question is indeed the value we
found using |P (1)|(z).
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10. We have that |P (2)|(z) = z d
dz |P (1)|(z) = z d

dz

(
z

(1−z)2

)
, using parts 6 and

7 respectively. This means that

|P (2)|(z) = (1−2z+z2)+(2z−2z2)
(1−z)4 = 1−z2

(1−z)4 = 1+z
(1−z)3

But on the other hand, we know by part 2 that

|P (2)|(z) =
∑
n≥0 n

2zn

If we evaluate this sum at z = −1, we get the alternating sum −12 + 22−
32 + 42 . . . , so the Abel sum of the series 12 − 22 + 32 − 42 + . . . will be
the negative of |P (2)|(−1), by the same reasoning as above, namely that
|P (2)|(z) as given above is an analytic function on all of C except for a
pole of order 3 at z = 1. Thus we can extend analytically in a unique way
to z = −1, and so:

A
∑∞
n=1(−1)n+1 · n2 = − limt↗1 t

n(−1)n · n2

= − limt↗1(−t)n · n2

= − limt↗1 |P (2)|(−t)
= − limt↗1

(1−t)
(1+t)3

= 0

Now using Euler’s approach, we would say that ζ(−2) = 12 + 22 + 32 + . . .
and we can also get that 4ζ(−2) = 22 + 42 + 62 + . . . , since each term
here is 4 times the corresponding term in ζ(−2). Thus, if we subtract
twice this second series, we should get the alternating series from above:
(1− 2(4ζ(−2)) = 12 − 22 + 32 − 42 + . . . or in other words

−7(12 + 22 + 32 + . . . ) = 12 − 22 + 32 − 42 . . . = 0

In other words, ζ(−2) = 12 + 22 + 32 + . . . = 0.
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