A Pointed Assignment
Jeff Morton

. P(k)y, is the number of maps from the k set (i.e. ”the” set with k elements)
to 7the” n set (set with n elements) multiplied by the number of total
orderings on n, since we choose both such a map and a total ordering on
n. The number of maps f : k — n is just n* since each element of k has
n possible images, and these are all chosen independently (i.e. we allow
repetition). The number of total orderings is of course n!. So the product
of these gives |P(k),| = n* - n!.

. We have in general |P(k)[(2) = >, “J(ﬁl#. In this case, the n! factors
cancel (that is, the total ordering on n! makes this a case we could think

of as an ordinary generating series), so we have:

Lok om
|P(k)|(2) = ano B = ZnZO k"
. In the special case where k = 0 the generating function above is:

|P(0)|(2) = ano nfz" = ano 2= 1%2

. To put an NW-structure on a set S is to put an A* AU-structure on it, and
this means, by the definition of the A* operator, to choose an element x of
S and then put an A¥-structure on S\ {z}. Now, to put an AU-structure
on S\ {z} is, by the definition of the A operator, to put a ¥-structure on
(S\{x})+1, that is, S\ {z} with a single point added to it. So, to put an
NW-structure on S is to choose a point € S, remove it from .S, then add
a new point to the resulting set, and put a W-structure on the set thus
created. This is equivalent to identifying a special point of S (since we
have a natural isomorphism beween S and the resulting set which sends
every element of S\ z to itself, and = to the new one-point set denoted 1)
and then putting a ¥-structure on it.

. To put an N P(k)-structure on a set S is to specify a point « € S and also
put a P(k)-structure on it. Now, a P(k)-structure on S is a k-pointing -
that is, a labelling of k points (possibly with repetition) of S by numbers
1...k. On the other hand, a P(k + 1)-structure is a labelling of & + 1
elements of S by numbers 1...k + 1. There is a natural way to define an
isomorphism between such structures. Given an N P(k)-structure on S,
construct a P(k+1)-structure on S by assigning the numbers 1.. .k to the
same points in the (k -+ 1)-pointing as in the k-pointing, and assigning the
number k 4 1 to the specially identified point from the N P(k)-structure.
This is clearly reversible, hence an isomorphism. In particular, it is natural
since there is a unique natural choice for which element of k + 1 to assign
to the special point. Thus, by thinking of one assignment of labels from
k + 1 as an assignment of labels in k to a pointed set, we have

NP(k) = P(k+1)



6. We have seen previously that the effect of the A and A* operators on the
generating functions corresponding to a structure type W is, respectively,
|AT|(2) = L|¥|(z) and |A*T|(2) = 2|¥|(z). So combining these, and the
existence of the isomorphism above gives that:

|P(k+1)|(2) = INP(k)|(2) = [A*AP(k)|(2) = 25| P(K)|(2)
7. By part 6, we have that [P(1)|(z) = z-<L|P(0)|(2), but since by part 3 we
know that |P(0)|(z) = 2, we find that:

1—27

POI(2) =28 () =2 (-ale) = op
8. Now we come to the point of this assignment - evaluating divergent sums

using our generating function, and using Abel sums. The first says that

if we have the expression above equal to —P(1)|(z), then |P(1)|(-1) =

ﬁ = —2% = —%. On the other hand, we know from part 2 that

[P(DI(2) = X pzo(n)te"
But then, if z = —1, this gives that
|[P(1)|(-1) = anon- ()" =-142-3+...

Using these two expressions, we could claim that —(—14+2—-34...) =
This is the same as what we want, namely that 1 — 243 -4+ ... =

_1

it

i

9. We observe that the sum above does not actually converge, since the point
z = —1 is not strictly inside the radius of convergence for the function
|P(1)|(#) written as a power series expanded about z = 0. This is because
the function has a pole at z = 1, so the radius of convergence is 1, but this
function is analytic everywhere else in the complex plane. So the function
can be analytically continued to z = —1, though the power series does not
converge there. This is exactly what the Abel sum:

AN ()" = im0 (1) n
is doing: this is an analytic continuation of |P(1)|(z) to z = —1 along the
negative real axis. This is
So in fact the Abel sum of the series in question is indeed the value we
found using |P(1)|(2).



10. We have that |P(2)[(2) = z-L|P(1)|(2) = 2L (ﬁ), using parts 6 and

7 respectively. This means that

1—2z2+422)4(22—222 — 22 z
|P(2)|(z) = +(12-:)(4 ) — (i,z)zl = (11:;)3

But on the other hand, we know by part 2 that

[P2)I(2) = X pzon?2"
If we evaluate this sum at z = —1, we get the alternating sum —12 + 22 —
32 442 ..., so the Abel sum of the series 12 — 22 + 32 — 42 4 ... will be
the negative of |P(2)|(—1), by the same reasoning as above, namely that
|P(2)|(2) as given above is an analytic function on all of C except for a

pole of order 3 at z = 1. Thus we can extend analytically in a unique way
to z = —1, and so:

A (-D)then? = —limy o t7(—1)" - n?
= —limy -~ (—t)" - n?
—limg ~ [P(2)[(=1)
¢

. 1

— hmt/1 ((1+—t)3
0

Now using Euler’s approach, we would say that ¢(—2) = 12 +22+32 4 ...
and we can also get that 4¢(—2) = 22 + 42 + 62 + ..., since each term
here is 4 times the corresponding term in ¢(—2). Thus, if we subtract
twice this second series, we should get the alternating series from above:
(1 —-2(4¢(-2)) =12 — 22 + 3% — 42 + ... or in other words

—7(12 422432 +...)=12-22+32-4%2...=0
In other words, ((—2) =12 +22 +32 4+ ... =0.



