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Abstract

We show that three dimensional Chern-Simons gauge theories with a compact gauge

group G (not necessarily connected or simply connected) can be classified by the

integer cohomology group H4(BG,Z). In a similar way, possible Wess-Zumino in-

teractions of such a group G are classified by H3(G,Z). The relation between three

dimensional Chern-Simons gauge theory and two dimensional sigma models involves

a certain natural map from H4(BG,Z) to H3(G,Z). We generalize this correspon-

dence to topological ‘spin’ theories, which are defined on three manifolds with spin

structure, and are related to what might be called Z2 graded chiral algebras (or

chiral superalgebras) in two dimensions. Finally we discuss in some detail the for-

mulation of these topological gauge theories for the special case of a finite group,

establishing links with two dimensional (holomorphic) orbifold models.



1. Introduction

Topological gauge field theories in three dimensions are related in an interesting

way to two dimensional mathematical physics [1] and are interesting as well for

their purely geometrical content. One of the key ingredients in formulating three

dimensional topological gauge theories is the Chern-Simons action functional. Thus,

let M be an oriented three manifold, G a compact gauge group, Tr an invariant

quadratic form on the Lie algebra of G, and A a connection on a G bundle E. If E

is trivial, the connection A can be regarded as a Lie algebra valued one form, and

we can define the Chern-Simons functional by the familiar formula

S(A) =
k

8π2

∫
M

Tr
(
A ∧ dA+ 2

3
A ∧ A ∧ A

)
. (1.1)

One can then use this functional as the Lagrangian of a quantum field theory. In

this paper we use a normalization in which the path integral reads

Z(M) =
∫
DA e2πiS(A). (1.2)

The parameter k in (1.1) must be an integer so that the integrand in the path

integral is single-valued.

If G is a connected, simply connected compact Lie group, then a G bundle on a

three manifold is necessarily trivial, so the above definition of the action is adequate.

For more general Lie groups (such as those studied in [2]) non-trivial bundles over

M may exist and we will include in the path integral also a summation over all

possible bundles E. The inclusion of non-trivial bundles actually tells us that we

are considering the gauge group G and not a connected, simply connected group

whose Lie algebra equals Lie(G).

If the bundle E is not trivial, the formula (1.1) for the action S does not make

sense, since a connection on a non-trivial bundle cannot be represented by a Lie al-

gebra valued one form as in that formula. A more general definition can be obtained

2



as follows. Any three manifold M can be realized as the boundary of a four manifold

B. If it is possible to choose B so that E extends over B then (upon picking an

extension of A over B) we can define the Chern-Simons functional by the formula

S(A) =
k

8π2

∫
B

Tr (F ∧ F ) . (1.3)

A standard argument shows that if k is an integer, S(A) is independent, modulo

1, of the choice of B and of the extensions of E and A. Equation (1.3) reduces to

(1.1) when (1.1) makes sense, and so does represent a more general definition of the

Chern-Simons functional.

Depending on π1(M) and G, there may exist non-trivial flat connections on M .

The action S(A) for a flat connection A is in general not zero, but is an interesting

invariant of the representation of the fundamental group of M determined by the

flat connection A. However, (1.3) implies the important fact that

S(A) = 0 (1.4)

for a flat connection A which extends as a flat connection over some bounding four

manifold B. In other words, if B and E and the extension of A can be chosen so

that F = 0 on B, then obviously S(A) = 0.

In general it will be impossible to find a four manifold B, with boundary M ,

over which E can be extended, and therefore (1.3) is still not a completely general

definition of the topological action. One of our goals in this paper is to give a

completely general definition (for an arbitrary compact group G, not necessarily

connected or simply connected). To understand a bit better the nature of the

problem, note that if A and A′ are two different connections on the same bundle E,

then (1.3) can always be used to define the difference S(A) − S(A′). In fact, the

four manifold B = M × I has boundary M ∪ (−M) (here (−M) is M with opposite

orientation). Since B retracts onto M , the bundle E has (up to homotopy) a unique

extension, which we will also call E, over B, and it is possible to find a connection
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A′′ on B that interpolates between A on M × {0} and A′ on M × {1}. So a special

case of (1.3) is

S(A)− S(A′) =
k

8π2

∫
B

Tr (F ∧ F ) , (1.5)

where F is the curvature of A′′; in fact, by standard arguments the right hand side

of (1.5) depends modulo 1 only on A and A′ and not on the choice of A′′. Since

(1.5) defines the difference S(A) − S(A′) for any two connections A and A′ on E,

what remains to be fixed is just an integration constant that depends on M and E

but not on the particular choice of a connection A. To define a topological quantum

field theory, one needs a way to fix these integration constants for all possible three

manifolds M and G bundles E, in a way compatible with basic physical requirements

of unitarity and factorization.

To give an orientation to this problem (and an example which is quite typical

of our interests in this paper), consider an example which is of the opposite type

from the connected, simply connected groups for which (1.1) serves as an adequate

definition of the topological action. Let us consider the case in which G is a finite

group. Every principal G bundle has a unique, flat connection, and corresponds to

a homomorphism λ : π1(M) → G. Since the connections are unique, the integra-

tion constants that we previously isolated by using (1.5) are in this case from the

beginning all that there is to discuss.

Since we want to be able to consider transition amplitudes between initial and

final states (defined on Riemann surfaces), we consider three manifolds M whose

boundaries are not necessarily empty. A ‘topological action’ S for the gauge group

G would be a rule which to every pair (M,λ) (with M being a three manifold and

λ a homomorphism of π1(M) to G) assigns a value S(λ) in R/Z subject to the

following:

(i) Two actions S and S ′ should be considered equivalent if they differ by a

functional that only depends on the restriction of λ to the boundary of M – since

in that case the difference between the transition amplitudes eiS and eiS
′

can be
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absorbed in a redefinition of the external state wave functions.

(ii) If M has no boundary, and it is possible to find a four manifold B such

that ∂B = M (that is, the boundary of B is M) and such that λ extends to a

homomorphism λB : π1(B) → G, then we require S(λ) = 0. As we have seen in

(1.4), this requirement holds for arbitrary G, not just finite groups.

Physically, this requirement amounts to a requirement of factorization. This

point may require some discussion. In fact, if M is the connected sum of three

manifolds M1 and M2, one could find a four manifold B of boundary M ∪ (−M1)∪
(−M2). If one picks B to represent a space-time history of M splitting into M1∪M2,

then every G connection λ on M extends over B, and (1.4) implies

eiS(M) = eiS(M1) · eiS(M2). (1.6)

which is the statement of factorization.

The problem of classifying action functionals S(λ) subject to (i), (ii) is a stan-

dard problem and the answer is as follows. Such action functionals are in one to one

correspondence with elements of the cohomology group H3(BG,R/Z), where BG

is the classifying space of the group G. These concepts will be explained to some

extent in the following sections.

This answer can be reexpressed in the following way. Looking at the long exact

sequence in cohomology derived from the exact sequence of groups

0→ Z→ R→ R/Z→ 0, (1.7)

and using the fact that for a finite group, the cohomology with coefficients R van-

ishes, we find that Hk(BG,R/Z) ∼= Hk+1(BG,Z). In particular, H3(BG,R/Z) ∼=
H4(BG,Z). Therefore, we can consider the topological actions for finite groups to

be classified by H4(BG,Z).

This way of looking at things is fruitful for the following reason. Let us go back to

the case in which G is a connected, simply connected group and the simple definition
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(1.1) of the topological action is adequate. For a group of this type, the topological

actions are classified by the integer k that appears in (1.1) or (1.3). On the other

hand, it is also so for connected, simply connected G that H4(BG,Z) ∼= Z. What

is more, the generator of H4(BG,Z) corresponds exactly to the characteristic class

1
8π2 Tr(F ∧ F ) that appears in (1.3). Thus, we can consider the topological actions

for connected, simply connected groups to be classified by H4(BG,Z).

Thus, a common answer arises for the two opposite kinds of group – the con-

nected, simply connected ones in which the classification of the components of the

space of connections is trivial and the finite groups in which this classification is

the whole story (since there is only one connection on any given principal bundle).

This strongly suggests that the same result will hold for gauge groups intermediate

between these extreme kinds. We will show that this is so – that for an arbitrary

compact Lie group G one can construct a topological action corresponding to any

element of H4(BG,Z).

One reason that this is natural is that general Lie groups can be built in simple

ways from the types considered above. In fact, any Lie group G appears in an exact

sequence

1→ G0 → G→ Γ→ 1, (1.8)

where G0 is the component of the identity and Γ is the group of components. If G

is compact, then Γ is a finite group, one of the two types that we have considered.

G also appears in the fundamental exact sequence

1→ π1(G)→ G̃→ G→ 1, (1.9)

where G̃ is the simply connected universal cover of G. Combining these two exact

sequences, any compact G with finite fundamental group is built from a connected,

simply connected group and some finite groups – the two extreme cases that we

have just considered.

This paper is organized as follows. In section (2) we will briefly review some
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essentials in the theory of group cohomology that we will need in the subsequent

sections. After these preparations we will discuss the construction of topological

actions in section (3). In section (4) we will address the relation of these three

dimensional topological theories to two dimensional WZW conformal field theories

and generalizations of them. Our discussion will be limited here to a derivation

of the two dimenional Wess-Zumino actions. These are classified by the classes in

H3(G,Z), and we will show that the natural map H4(BG,Z) → H3(G,Z) gives

us the correspondence. This map is not surjective, and this gives an alternative

explanation of why for non-simply-connected groups, chiral algebras only exist at

certain particular values of the level k [2]. In fact, the quantization condition on

k is completely explained by topological considerations in four dimensions. Section

(5) contains an extension of the construction of topological gauge theories to the

category of spin manifolds. These topological ‘spin’ theories will require a definite

choice of spin structure on the manifold in order to be well-defined. They are related

in two dimensions to what one might call Z2 graded chiral algebras, or chiral su-

peralgebras. Superconformal field theories are examples of theories with interesting

chiral superalgebras, and it seems more natural to think about superconformal field

theories as theories with chiral superalgebras than to regard them as theories with

chiral algebras in which there just happens to be a primary field of dimension 3/2

with certain interesting properties.

Finally, in section (6) we will return to a theme touched on above – the three

dimensional topological theories with finite gauge group. We will show that these

theories can be very neatly represented in a form similar to lattice gauge theory.

These theories have some claims to being the most simple quantum field theories,

being completely finite, and topological in nature. They also provide an elementary

but enlightening illustration of the functorial description of quantum field theory

along the lines of Segal [6]. We will furthermore establish in some detail the con-

nection between our results and those obtained in the analysis of two dimenional

(holomorphic) orbifold models in [7].
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2. Cohomology of Groups

In order to be more or less self-contained, we will first review some essential ingredi-

ents of homology and algebraic topology that we will need in the following sections.

We give a very brief review of the singular homology and cohomology theory of topo-

logical spaces, in particular of classifying spaces of compact Lie groups, and their

relation to characteristic classes. A much more thorough treatment of the material

in this section can of course be found in the mathematical literature, for instance in

[8, 9, 10, 11, 12]; for an introduction to integer homology, aimed at physicists, that

stresses the importance of torsion, see [13].

2.1. Singular Cohomology Theory

We will first recall the definition of singular homology with integer coefficients.

For any topological space T we can introduce the groups of singular chains Ck(T ).

A singular k-chain is essentially a map of a collection of k-dimensional simplices

into the space T . The group operation is simply addition with integer coefficients.

One further defines certain subgroups Bk(T ) and Zk(T ) of Ck(T ). The ‘boundaries’

Bk(T ) and the ‘cycles’ Zk(T ) consist respectively of chains C that satisfy C = ∂B

and ∂C = 0, with ∂ the boundary operator. The homology groups are defined as

the quotients Hk(T,Z) = Zk(T )/Bk(T ). Completely similarly, one can introduce the
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space of (integer) cochains

Ck(T,Z) = Hom(Ck(T ),Z), (2.1)

and with the aid of the coboundary operator δ, coboundaries, cocycles and coho-

mology groups Hk(T,Z). Here the coboundary operator is defined by

〈δα, C〉 = (−1)k〈α, ∂C〉, (2.2)

with 〈·, ·〉 the pairing Ck(T ) ⊗ Ck(T ) → Z. The cohomology groups Hk(T, F )

can be defined with coefficients in any abelian group F , by replacing Z by F in

the definition (2.1) of the cochains. In particular, with real coefficients we have

Hk(T,R) = Hk(T,Z)⊗R. Due to the fundamental theorem of De Rham, these real

cocycles can be represented by closed differential forms. We further recall that in

the case that F is a divisible group, so in particular for F = R, we have another

very simple definition of the cohomology groups:

Hk(T, F ) = Hom(Hk(T ), F ), (2.3)

i.e. α ∈ Hk(T, F ) is a homomorphism Zk(T )→ F that vanishes on boundaries.

An element of finite order of an abelian group is called a torsion element. The

homology and cohomology groups of a topological space (with arbitrary coeffi-

cients) are abelian groups. The universal coefficient theorem gives an isomorphism

(but not a completely natural one) between the torsion of Hk−1(T,Z) and that of

Hk(T,Z). Torsion elements in Hk(T,Z) cannot be represented in the usual fashion

by differential forms, since torsion classes are elements of the kernel of the map

ρ : Hk(T,Z) → Hk(T,R). An Abelian group A has a torsion subgroup TorA, but

there is no natural map from A to TorA. Given α ∈ Hk(T,Z), there is no natural

way to identify a torsion part of α unless α is itself a torsion element of Hk(T,Z).

On the other hand, if one wishes to study α modulo torsion, this is naturally done

by studying the image ρ(α) of α in Hk(T,R).
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2.2. Group Cohomology and Classifying Spaces

In order to define the cohomology of a topological group G, we first have to intro-

duce the concept of a classifying space. A classifying space BG is the base space

of a principle G bundle EG, the so-called universal bundle, which has the follow-

ing fundamental property: Any principle G bundle E over a manifold M allows a

bundle map into the universal bundle, and any two such morphisms are smoothly

homotopic. We will write

γ : M −→ BG (2.4)

for the induced map of the base manifolds, the so-called classifying map. The

topology of the bundle E is completely determined by the homotopy class of the

classifying map γ. That is, the different components of the space Map(M,BG)

correspond to the different bundles E over M . It can be shown that up to homo-

topy BG is uniquely determined by requiring EG to be contractible. That is, any

contractible space with a free action of G is a realization of EG. In general the clas-

sifying space BG of a compact group is an infinite-dimensional space as the simple

examples BZ2 = RP∞, BU(1) = CP∞, and BSU(2) = HP∞ show. We notice that

for our class of Lie groups, BG will be a fibre bundle over BΓ with fibre BG0.

The group cohomology of a group — as opposed to its cohomology as topological

space — can now be defined as the cohomology of the associated classifying space

BG. Of course, the group cohomology and the ordinary cohomology of G are in-

timitely related, and one relation between them will be important in section (4).

The elements in H∗(BG,Z) are also called universal characteristic classes, since

under the pullback γ∗ they give rise to cohomology classes in H∗(M,Z) that depend

only on the topology of the bundle E.

For a compact Lie group we have the very useful property, due to Borel, that

with real coefficients all odd cohomology vanishes:

Hodd(BG,R) = 0. (2.5)
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So the odd cohomology (and homology) consists completely of torsion. For finite

groups an even stronger result holds: all cohomology is finite: H∗(BG,R) = 0.

With the use of the exact sequence 0 → Z → R → R/Z → 0 this implies for finite

G the isomorphism

Hk(BG,Z) ∼= Hk−1(BG,R/Z). (2.6)

For the even, real cohomology an important isomorphism exists due to Weil:

H∗(BG,R) ∼= I(G). (2.7)

Here I(G) is the ring of polynomials on Lie(G) which are invariant under the adjoint

action of G. The isomorphism is established using the Chern-Weil homomorphism

that maps a polynomial P ∈ I(G) to the class [P (F )], where F is the curvature of

an arbitrary connection in the universal bundle. P (F ) is a closed differential form

of degree 2k if the polynomial P is of degree k. It is a fundamental result that the

image [P (F )] in H∗(BG,R) is independent of the choice of connection. In this paper

we will be mainly interested in the case k = 2, where P is an invariant quadratic

form on Lie(G), which we usually denote as Tr.

The group cohomology of the unitary groups U(n) is perhaps the most familiar

example. It contains no torsion, and is given by the polynomial ring in the Chern

classes ck of degree 2k

H∗(BU(n),Z) = Pol[c1, . . . , cn]. (2.8)

As an example of a finite group, we can consider the cyclic group Zn. Again the

cohomology ring is finitely generated. There is a single generator x of order n and

degree 2, so that

Hodd(BZn,Z) = 0, Heven(BZn,Z) = Zn. (2.9)

Finally, we recall that for discrete groups the cohomology groups Hk(BG,F )

have an algebraic decription, that is perhaps more familiar to the reader. Cochains
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are represented as functions α : Gk → F , and, if we write the abelian group F

multiplicatively, the coboundary operator is defined as

δα(g1, . . . , gk+1) = α(g1, . . . , gk)
(−1)k+1

α(g2, . . . , gk+1)

×
k∏
i=1

α(g1, . . . , gigi+1, . . . , gk+1)(−1)i . (2.10)

These cochains can be assumed to be normalized, i.e. α(g1, . . . , gk) = 1 if gi = 1

for some i. The equivalence between algebraic cocycles and simplicial cocycles of

BG is proved using Milnor’s construction of BG [14]. We will give an elementary

derivation of this result in section (6) where we treat Chern-Simons theory for finite

groups.

3. Topological Actions

As we have already discussed in some detail in the introduction, the form of the stan-

dard Chern-Simons action for a trivial bundle E over a three dimensional manifold

M with a compact, simple gauge group G is

S(A) =
k

8π2

∫
M

Tr
(
A ∧ dA+ 2

3
A ∧ A ∧ A

)
. (3.1)

It is a (non-trivial) result in cobordism theory that any closed, oriented 3-manifold

M is the boundary of some 4-dimensional oriented manifold B, and the trivial bundle

E can of course always be extended to a bundle over B. This implies that the above

expression can be rewritten in terms of the bounding manifold B as

S(A) =
k

8π2

∫
B

Tr (F ∧ F ) (mod 1), (3.2)

with F the curvature of any gauge field A′ on B that reduces to A at the boundary

∂B = M . Since the right-hand side is an integer when evaluated on a closed 4-

manifold, this form of the action is independent of the choice of bounding manifold

B and connection A′.
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If the bundle E is not topologically a product G×M , the above representation

needs to be modified. It will in general not be possible to extend the bundle E to

a similar bundle over the bounding 4-manifold B. To deal with this problem, we

can be somewhat more general and allow B to be a smooth singular 4-chain, since

a differential form can be integrated over any such chain. Since we are looking for a

4-chain B with a bundle E ′ that restricts to E at the boundary M , we are actually

trying to find a 4-chain in the classifying space BG that bounds the image γ(M)

of M under the classifying map γ. The restriction of the universal bundle to this

4-chain would give us the bundle E ′. The obstruction to the existence of such a 4-

chain is exactly measured by the image γ∗[M ] in the cohomology∗ group H3(BG,Z).

We note that if the bundle E has an extension over B, the connection can always

be extended using a partition of unity. For connected, simply connected Lie groups

H3(BG,Z) vanishes, and (3.2) can serve as a general definition of the action (3.1)

also for bundles with a non-trivial topology. However, for general compact G we

have to take this possible obstruction into proper account.

As we mentioned in the previous section, the third homology group, and in fact

all odd homology of BG, consists only of torsion. This implies that for each bundle

E over M there always exist a positive integer n such that

n · γ∗[M ] = 0. (3.3)

Stated otherwise, E can be extended to a bundle E ′ over a 4-chain B, whose bound-

ary consists of n copies of M , such that the restriction of E ′ on all boundary com-

ponents is isomorphic to E. We shall call such a bundle E of order n. Of course, it

is always possible to choose the connection such that A′ also reduces to A at ∂B.

∗By permitting B to be a general 4-chain, we reduce the problem to homology and avoid having
to consider the bordism theory of BG. If we require B to be a smooth 4-manifold, the obstruction
to the existence of B with a compatible bundle lies in the bordism group Ω3(BG,Z) [15]. Bordism
groups are as generalizations of homology groups. The homology and bordism groups of BG only
differ in their torsion. In fact, if BG has no odd torsion one can prove Ω3(BG,Z) = H3(BG,Z),
see also [16].
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So we have no problem in defining the action modulo 1/n as

n · S =
k

8π2

∫
B

Tr F ∧ F (mod 1). (3.4)

This makes it clear that our task is to resolve an n-fold ambiguity consisting of

the ability to add a multiple of 1/n to the definition of S. We must resolve this

ambiguity, for all possible three manifolds and bundles, in a fashion compatible with

factorization and unitarity.

So far, the basic object that we have used is the differential form

Ω(F ) =
k

8π2
Tr F ∧ F

which represents an element Ω of the de Rham coholomogy group H4(BG,R). This

differential form has integral periods, so it is in the image of the natural map ρ :

H4(BG,Z) → H4(BG,R). Thus, there exists a cohomology class ω ∈ H4(BG,Z)

such that ρ(ω) = Ω. However, the choice of ω may not be unique. It is unique

only modulo a torsion element in H4(BG,Z). We will now show that the choice

of a particular ω such that ρ(ω) = Ω gives a way to resolve the ambiguity in the

definition of the action in (3.4). This should not come as a surprise, since the torsion

part of H4 is related to the torsion in H3 through the universal coefficient theorem.

Let ω be any integer-valued cocycle representing the cohomology class ω. Then,

we define the topological action for a connection on a bundle of order n to be

S =
1

n

{∫
B

Ω(F )− 〈γ∗ω,B〉
}

(mod 1), (3.5)

with γ the classifying map B → BG. (Note that 〈γ∗ω,B〉 is an integer for all chains

B.) We can now perform some consistency checks on this definition. First on closed

4-manifolds we have ∫
B

Ω(F ) = 〈γ∗ω,B〉, (3.6)

so that (3.5) is manifestly independent of the bounding manifold B and the way we

have continued the bundle and the connection on B. It is not difficult to verify that
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our definition is also invariant under homotopy transformations of the classifying

map γ. Also, the action depends only on the cohomology class ω and not on the

particular cocycle chosen to represent it, since under shifts ω → ω + δε, with ε an

integer cochain, the action changes by

δS = − 1

n
〈γ∗δε, B〉 = −〈γ∗ε,M〉 = 0 (mod 1). (3.7)

A further necessary requirement will be gauge invariance, at least on manifolds

without boundary. Let us first establish that result, before we discuss manifolds with

boundary in the next section. Let A and Ag be respectively a specific connection

on E and its gauge transform. Since we can construct an interpolating gauge field

At with t ∈ [0, 1] = I, such that A0 = A and A1 = Ag, on the manifold B = M × I,

we have

S(A)− S(Ag) =
∫
B

Ω(F ) (3.8)

The gauge field A is equal up to a gauge transformation at the two ends of the

‘cylinder’ B and we can identify the two ends of B and consider A to be a connec-

tion on a bundle E ′ over the closed manifold M × S1. This bundle is constructed

with transition function g, and
∫
B Ω(F ) equals the characteristic class of E ′ and is

therefore an integer.

We note that the phase choice made in (3.5) is very sensitive to the torsion

information in ω. If we transform ω → ω + ω′, where ω′ is a n-torsion element, the

action will pick up a Zn phase. This is in particular relevant if Ω(F ) = 0, i.e. ‘level’

k = 0, as is always the case for finite G. Then the class ω is torsion and determines

a 3-cocycle α ∈ H3(BG,R, /Z) through the isomorphism

TorH4(BG,Z) ∼= H3(BG,R/Z). (3.9)

In that case we can rewrite the action, which is now independent of the connection,

as

S = 〈γ∗α, [M ]〉. (3.10)
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3.1. Differential Characters

The particularly simple formula of (3.10) holds when ω is a torsion element, but

in a certain sense it can be generalized to arbitrary ω. That is, the action S can be

rather naturally written as

S = 〈αA, [M ]〉, (3.11)

where αA is a 3-cocyle in H3(M,R/Z) that depends on the connection A and the

bundle E. The cocycle αA is the pull-back under γ∗ of a cochain α ∈ C3(BG,R/Z)

on the classifying space BG which is defined as the modulo 1 reduction of a real

cochain β that satisfies

δβ = Ω(Fu)− ω. (3.12)

Here Fu is the curvature of a so-called universal connection Au on the classifying

space. These universal connections where shown to exist for compact Lie groups by

Narasinhan and Ramanan [17], and they have the fundamental property that any

connection A on a G bundle E over the manifold M can be obtained as A = γ∗Au

for a suitable classifying map. Although α is evidently not closed and not uniquely

determined by the above equation, the pull-back γ∗α = αA is a well-defined cocycle

on M determined completely by the class ω ∈ H4(BG,Z) and the connection A. In

fact, α is what Cheeger and Simons call a ‘differential character’ [4].

The ring of differential characters Ĥ∗(T,R/Z) is a generalization of the cohomol-

ogy ring. Just like a cocycle, a differential character α is defined to be a homeomor-

phism of the group Zk(T ) of singular cycles into R/Z. But instead of requiring it

to vanish on boundaries, one imposes the weaker condition that the value assigned

to a boundary equals the integral of a certain differential form Ω (of degree k + 1)

on the bounding chain:

〈α, ∂B〉 =
∫
B

Ω (mod 1). (3.13)

If dimT = k, and T is closed, then the definition of Ĥk reduces to the characteriza-
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tion (2.3) of Hk, because on a k-manifold, the k+ 1 form Ω would automatically be

zero. It is furthermore obvious that in order to make the above relation well-defined

Ω should be closed, and that the class [Ω] in the De Rham cohomology should be

necessarily integral. So [Ω] will always be the image ρ(ω) of an integer cocycle ω

under the map ρ : Hk+1(T,Z) → Hk+1(T,R). Note however that Hk+1(T,Z) can

contain torsion, and consequently ω is not completely determined by its image ρ(ω).

However, it is not difficult to proof the following [4]. Let Λk+1(T ) denotes the set of

all pairs (Ω, ω) of degree k + 1 satisfying [Ω] = ρ(ω), then the following sequence is

exact

0→ Hk(T,R)
/
ρ
(
Hk(T,Z)

)
→ Ĥk(T,R/Z)→ Λk+1(T )→ 0. (3.14)

If T equals the classifying space BG, the cohomology with real coefficient vanishes

in three dimensions and the pair (Ω, ω) ∈ Λ4(BG) determines α ∈ Ĥ3(BG,R/Z)

uniquely by relation (3.12). When pulled back to the three manifold γ∗α becomes

a cocycle because of dimensional reasons.

3.2. Manifolds with boundaries

Up to now we only have been able to define the Chern-Simons unambiguously

for closed manifolds. However, in analogy with the Wess-Zumino action in group

manifold models, the topological action for manifolds M with boundaries can in

principle be defined by choosing an arbitrary completion of M to a closed manifold

and compute the action of this closed manifold. This prescription depends of course

on the choice of completion, but the difference between two choices is completely

calculable. This defines the path-integral on M not as a function but as a section

of some (trivial) line bundle over the space of connections on the boundary.

Another approach to manifolds with boundaries is our definition S = 〈α, γ(M)〉
using differential characters. In this light we have to deal with two separate ques-

tions: (i) for fixed classifying map γ, is the topological action well-defined; and (ii)
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how does it transform under homotopy transformations of γ? In particular, what is

the behavior under gauge transformations?

Let us begin to address the first question. We recall that the cochain α in the

classifying space BG was defined as the mod Z reduction of a real cochain β that

satisfied δβ = Ω(Fu)− ω. This relation is not enough to fix α uniquely. In fact, we

have the possibility of a ‘gauge’ transformation

α→ α + δν (3.15)

with ν ∈ C2(BG,R/Z). On closed manifolds this term disappears, but for a 3-

manifold M with boundary ∂M = Σ the topological action transforms under (3.15)

as

S → S + 〈ν, γ(Σ)〉. (3.16)

When the boundary of M is non-empty, the path integral on M represents a tran-

sition amplitude among initial and final states defined on the boundary of M . The

addition to the action of the extra term that appears on the right hand side of (3.16)

will make the path-integral on M change by a phase that only depends on the bun-

dle structure and the connection at the boundary Σ. These phases can be absorbed

into the wave functions of the initial and final states. So, although the action is not

invariant under (3.15), it transforms in a well-defined way with a boundary term,

and the corresponding quantum field theories are identical.

The second question is to what extent is the definition of the action sensitive

to homotopy transformations of the classifying map, in particular gauge transfor-

mations. First we observe that if we choose for each surface Σ, with a principle

G bundle and a connection, a fixed classifying map γ : Σ → BG, and decide to

use only these maps at the boundary of our 3-manifold, the action for a manifold

with boundary is unambiguously defined. The argument that shows invariance of

the action under restricted homotopy transformations of γ : M → BG that leave γ

fixed at the boundary is completely analogous to the case of closed manifolds.
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However, we still have to deal with gauge invariance. Let us first discuss the case

of a trivial bundle E and simple G, so that we can use the explicit representation

(3.1). It is well-known that the Chern-Simons form

Q(A) = Tr
(
A ∧ dA+ 2

3
A ∧ A ∧ A

)
is not invariant under gauge transformations. If Ag is the gauge transform of A by

a gauge transformation g, then

Q(Ag) = Q(A) + d
(
Tr A ∧ dgg−1

)
− 1

3
Tr
(
g−1dg

)3
. (3.17)

This implies in particular that if g 6= 1 at the boundary Σ, the action transforms

under g as

S(A)→ S(A) +
k

8π2

∫
Σ

Tr A ∧ dgg−1 − k

24π2

∫
M

Tr
(
g−1dg

)3
, (3.18)

where the Wess-Zumino term appears. We would like to stress that the variation of

S only depends on the connection at the boundary and the gauge transformation

g. So the path-integral Z(M) transform with the same phase factor as the action

e2πiS. The result of this is that Z(M), a function on the space A of connections at

the boundary Σ, cannot be simply considered to be a function on the space A/G
of connections modulo gauge transformations, which is the (unconstrained) phase

space of the theory. Rather, we should consider it as a section of a line bundle over

A/G.

For non-trivial topology the argument is analogous. As in the last section, let γ0

and γ1 be two homotopic classifying maps that induce the connection A and Ag on

the manifold M . The action will now transform as

S → S + 〈α, γ(Σ× I)〉+
∫
B
γ∗P (F ), (3.19)

with B = M × I. Here the last term has an interpretation as the Chern-Simons

action on Σ × S1, where the bundle is constructed by the transition function g

restricted to Σ. This shows that the variation of S only depends on the data on Σ.
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4. Correspondence with CFT

Part of the interest of three dimensional Chern-Simons theories comes from their re-

lation [1] to two dimensional current algebra theories. In this section, we will discuss

those aspects of this relation that are illuminated by the topological considerations

of the last section. In particular, we wish to gain a better understanding of subtleties

in this correspondence that arise [2] for groups that are not simply connected.

4.1. The Wess-Zumino action

To begin with, we recall [5] that conformally invariant sigma models in two

dimensions with target space a group manifold require the introduction of the so-

called Wess-Zumino term. Let us recall how this is defined. We are given a Riemann

surface Σ and a map g : Σ → G, G being some compact Lie group of interest. We

wish to define the Wess-Zumino term S(g). To begin with, if G is simply connected,

the map g is homotopic to a trivial map, and extends to g : W → G, where W is a

three manifold with ∂W = Σ. Just as in the formulation (1.3) of the Chern-Simons

action, in this situation the Wess-Zumino term has a convenient definition

S(g) =
k

24π2

∫
W

Tr
(
g−1dg ∧ g−1dg ∧ g−1dg

)
, (4.1)

where for reasons explained in [5], k must be an integer. The key object in (4.1)

is the differential form Φ = k
24π2 Tr (g−1dg)

3
on the group manifold G. This form

defines an element of H3(G,R), and since it has integral periods it lies in the image

of the natural map ρ : H3(G,Z)→ H3(G,R).

If G is not simply connected, the maps Σ→ G come in distinct homotopy classes

Ui. It may happen, in general, that for suitable i, the definition (4.1) does not make

sense for g ∈ Ui, since a three manifold W and an extension of g over W may not

exist. The obstruction lies in H2(G,Z). (An example of a semi-simple Lie group with

H2(G,Z) 6= 0 would be SO(3)× SO(3), or more generally the groups Spin(4n)/D2
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as discussed in [18].) Even if W does not exist, if we are given two maps g and g′

both in the same homotopy class Ui, the difference S(g) − S(g′) can be defined as

in (4.1),

S(g)− S(g′) =
k

24π2

∫
W

Tr
(
ĝ−1dĝ ∧ ĝ−1dĝ ∧ ĝ−1dĝ

)
, (4.2)

where now W = Σ × I, and ĝ : W → G is any map that agrees with g on Σ× {0}
and with g′ on Σ×{1}. Just as in our study of the Chern-Simons term, (4.2) defines

the Wess-Zumino term except for an integration constant in each topological sector

Ui. What remains is to fix these integration constants, for all possible Σ and all Ui,
in a way that is compatible with factorization.

If G is semi-simple, H2(G,R) = 0 and the obstruction to definition (4.1) is the

torsion class g∗[Σ] ∈ H2(G,Z). If this class has order n, then S(g) can be defined as

S(g) =
1

n

{∫
W

Φ− 〈g∗φ,W 〉
}

(mod 1), (4.3)

with ∂W = n · Σ and φ an integer class in H3(G,Z) such that ρ(φ) = Φ. So

the torsion information in H3(G,Z) (that gives rise to different ‘periodic vacua’

[18]) suffices to fix the phase ambiguity in the definition of the Wess-Zumino term,

completely analogous to our discussion in section (3) of the Chern-Simons action.

Thus, for semi-simple G, the Wess-Zumino terms — and therefore, according to

[5], the conformally invariant sigma models on group manifolds — are classified by

H3(G,Z).

In general, when G is not semi-simple the relevant notion is that of differential

characters. If α ∈ Ĥ2(G,R/Z) is any differential character of G such that (Φ, φ) is

the corresponding pair in Λ3(G), then a general definition of the Wess-Zumino term

would be

S(g) = 〈g∗α, [Σ]〉. (4.4)

Note that the pair (Φ, φ) does not determine α uniquely, and the ambiguities in α

correspond to generalized θ angles on the torus H2(G,R)/ρ(H2(G,Z)), as can be
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seen from equation (3.14).

4.2. The natural map H4(BG)→ H3(G)

We know now that in general, Chern-Simons theories in three dimensions are

classified by H4(BG,Z), and Wess-Zumino terms in two dimensions (and hence

conformally invariant sigma models) are classified by H3(G,Z). A correspondence

between them must therefore involve a natural map from H4(BG,Z) to H3(G,Z).

Let us first discuss in geometrical terms the map that proves to be relevant. The

universal bundle

G→ EG→ BG

gives rise to a map τ : Hk(BG,F )→ Hk−1(G,F ), with F any group of coefficients,

as follows [3]. Since EG is a contractible space, any cocycle representing an element

ω ∈ Hk(BG,F ) becomes exact when lifted to EG. So we have a relation of the form

π∗ω = δβ. (4.5)

We now define τ(ω) as the restriction of β to the fibre G. Since the restriction of

π∗ω vanishes, the cochain τ(ω) is closed and it is easily verified that the cohomology

class of τ(ω) does not depend on the choice made in the above definition. The

inverse of the map τ is a well-know tool in the study of charactersistic classes and

cohomology of Lie groups and is known as transgression [8].

We now want to show that the map τ is actually the correspondence between

Chern-Simons actions and Wess-Zumino terms that arises in connecting three di-

mensional quantum field theory with two dimensional quantum field theory. As has

been shown in the concluding section of [1], the chiral algebras of two dimensional

current algebra can be obtained from three dimensions by quantizing the three di-

mensional Chern-Simons theory on the three manifold M = D ×R, with D a disk.

In fact, [2, 20], the two dimensional WZW action can be explicitly derived from
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the three dimensional Chern-Simons action by first integrating over the ‘time’ com-

ponent A0 of the gauge field in the functional integral. The portion of the action

(1.1) that depends on A0 is

S0 =
k

4π2

∫
M

Tr (A0 · F12) , (4.6)

where F12 is the spatial component of the curvature, tangent to D. The functional

integral over A0 therefore gives a delta function setting F12 to zero, and so we are

left with a connection on M whose components tangent to D are pure gauge, i.e.

A = g−1dg for a map g : M → G (g is unique up to a transformation g → ug

where u depends only on ‘time’). Since M is contractible, any bundle E over M is

necessarily trivial, and we can evaluate the topological action by choosing a global

section and pulling the Chern-Simons form to M

S =
∫
M
Q(g−1dg) + exact. (4.7)

The exact terms that we will ignore here just correspond to local terms in the two

dimensional action. The important contribution is the first term which corresponds

to the Wess-Zumino term. With θ the Maurer-Cartan form on G, i.e. the restriction

of the connection to the fibre, we can rewrite the first term as

∫
M
g∗Q(θ), (4.8)

where Q(θ) is a closed differental form on G whose class is integer. That is, the

Chern-Simons form defines an integer cohomology class in H3(G,R).

The transformation just found from an element of H4(BG,R) with integral pe-

riods used to define (1.1) to the element of H3(B,R) with integral periods that

appears in (4.7) is precisely the map τ written out in terms of differential forms.

One should go on to show that even when one takes into account of torsion, the map

from three dimensional theories classified by H4(BG,Z) to two dimensional theories
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classified by H3(G,Z) is the inverse transgression map. However, we will not tackle

this here.

Now, the crucial map τ from H4(BG,Z) to H3(G,Z) is not necessarily onto.

(The special classes in H∗(G) that are images of the map τ are usually refered to

as universally transgressive [8].) This fact implies in particular that not all group

manifold models ‘descend’ from a three dimensional Chern-Simons theory. In fact,

we will see that only those group manifold models that allow a description in terms

of a so-called extended chiral algebra will be generated by three dimensional gauge

theories.

4.3. Non Simply Connected Groups

As an example we first consider the cases G = SU(2) and G = SO(3), with the

relation

1→ Z2 → SU(2)
π→ SO(3)→ 1. (4.9)

For both groups we have H4(BG) = H3(G) = Z. (Here and in the subsequent all

cohomology groups are understood to be with integer coefficients unless otherwise

stated.) The generators for H4(BG) are respectively the second Chern class c2 for

SU(2), and the first Pontryagin class p1 for SO(3). We will denote the respective

generators of the cohomology groups H3(G) by α for SU(2) and β for SO(3), with

the important relation

π∗(β) = 2α. (4.10)

This factor of two is simply due to the fact that the volume of SO(3) is half the

volume of SU(2). This corresponds to the familiar fact that, if we normalize the

Wess-Zumino term with respect to the group SU(2), the corresponding term for

SO(3) can only exist for even k [19].

It is well-known that all classes of H∗(SU(2)) are transgressive [8], so τ(c2) = α
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and this implies a one-to-one correspondence between the SU(2) WZW models and

Chern-Simons theories, which are both characterized by their level k ∈ Z. This will

however not be the case for SO(3). In fact, we will see that only the models based

on even elements of H3(SO(3)), i.e. level k divisible by four, correspond to three

dimensional topological theories. Note that it has been observed [2] that exactly

for these values the chiral algebra for SO(3) exists, since the chiral vertex operators

that are associated with the non-trivial loops in SO(3) have conformal dimensions

k/4, and these dimensions should be integer.

This restriction to k = 0 (mod 4) has a completely topological explanation. Let

us recall that, although every SU(2) bundle naturally gives rise to a SO(3) bundle,

the opposite is not true. Not every SO(3) bundle can be extended to a SU(2)

bundle. In fact, this can only happen for certain specific values of the characteristic

classes. To determine these values we have to compare the ‘instanton charges’ in the

four dimensional SU(2) and SO(3) gauge theories. In a normalization where SU(2)

instantons have integer charge the SO(3) instantons can have fractional charges. The

fact that a non simply connected group can have fractional instantons is a well-known

phenomenon, e.g. on the hypertorus T 4 one can construct SU(n)/Zn instantons with

charge 1/n [22]. We will actually show that the minimal charge of a SO(3) instanton

is 1
4
, and this naturally quantizes k in units of four. Equivalently, if a SO(3) bundle

E on a four manifold extends to a SU(2) bundle, the first Pontryagin class p1(E)

always has to be divisible by four. That is, under the map Bπ : BSU(2)→ BSO(3)

as induced by the exact sequence (4.9), we have (see e.g. [21])

Bπ∗(p1) = 4 c2. (4.11)

This can be seen as follows, though perhaps in a slightly abstract way∗. After lifting

to a suitable flag space, any SU(2) vector bundle V (that is, any rank two complex

vector bundle of structure group SU(2)) splits as a sum of line bundles V = L⊕L−1.

Now recall that p1(E) can also be defined as the second Chern class c2(W ) of the

∗We would like to thank D. Freed for the following argument.
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complexified three dimensional vector bundle W in the adjoint representation of

SO(3). In this case we find W = L2 ⊕ L0 ⊕ L−2, so that p1(E) = c2(W ) = 4 c2(V ).

A concrete example of a SO(3) bundle that has instanton charge 1
4

can be con-

structed on CP 2. Our normalization will be as follows. Let λa denote the generators

of the Lie algebra of SO(3), satisfying [λa, λb] = iεabcλc. A general curvature can be

expressed as F =
∑
a F

aλa and the instanton number reads

q =
1

16π2

∫ ∑
a

F a ∧ F a. (4.12)

For the basic instanton over the 4-sphere q = 1. Now consider the fundamental line

bundle L over CP 2. Its curvature F ′ satisfies

∫
CP 2

F ′ ∧ F ′ = 4π2. (4.13)

We can now make L into a SO(3) bundle using the embedding U(1) ⊂ SO(3), which

maps eiθ → eiθλ3 . This gives F = F ′λ3 and in this case the contribution in (4.12) is

4π2 for a = 3, and zero otherwise, so q = 1
4
, as promised.

The existence of SO(3) bundles of instanton number 1/4 means that in SO(3)

Chern-Simons gauge theory, the level k must be divisible by four (in units in which

an arbitrary integer is allowed for SU(2)). This result was first established in [2].

We can now easily establish that the SO(3) Chern-Simons theories lead to group

manifold models corresponding to even elements of H3(SO(3)). Since we have a

commuting diagram

H4(BSO(3))
Bπ∗−→ H4(BSU(2))yτ yτ

H4(SO(3))
π∗−→ H4(SU(2))

(4.14)

the equations (4.10) and (4.11) immediately imply the relation

τ(p1) = 2 β. (4.15)
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That τ(p1) is necessarily even can also be proved (and generalized to arbitrary

SO(n)) using the fact that the class p1 satisfies p1 = w2 ∪ w2 (mod 2). This

gives τ(p1) = 0 (mod 2), since for any coefficent field F the inverse transgression

τ : Hk(BG,F )→ Hk−1(G,F ) satisfies τ(u ∪ u) = 0 [3].

Let us now consider the somewhat more general situation where we have an exact

sequence

1→ Z → G̃
π→ G→ 1,

with G̃ a connected, simply connected, simple group, and Z is a cyclic subgroup of

the center of G̃. In that case all relevant cohomology groups are still isomorphic

to Z. The relation between the generators of H3(G̃) and H3(G) has been carefully

investigated in [18]: the constant of proportionality is either one or two. As to the

cohomology of the classifying space, let ω̃ and ω denote the generators of respectively

H4(BG̃) and H4(BG). In all generality we have a relation

Bπ∗(ω) = Nω̃, (4.16)

where we wish to determine the integer N . The interpretation will be again that in

four dimensions G instantons can have instanton charge 1/N when compared to G̃

instantons, and that the Chern-Simons theory is only well-defined for k divisible by

N . The calculation of N is as follows. Let T ⊂ G̃ be the maximal torus of G̃ with

rank r, and let Λ be the weight lattice of G̃ as generated by the fundamental weights

wi. The inclusion T ⊂ G̃ gives a natural map H∗(BG̃) → H∗(BT ). Now H∗(BT )

is generated by the 2-cocycles xi, the first Chern classes in the decomposition T =

U(1)r. The xi are the images of the fundamental weights wi under transgression in

the universal bundle ET , i.e. under the isomorphism H1(T ) ∼= H2(BT ). The image

of the generator ω̃ of H4(BG̃) in H4(BT ) is given by the Weyl group invariant

combination ∑
i,j

1
2
Aijxi ∪ xj, (4.17)

with Aij the Cartan matrix.
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Now let the sublattice Λ′ ⊂ Λ be the weight lattice of G = G̃/Z with generators

vi. The corresponding elements of H2(BT ) we will denote by yi. The yi are linear

combinations of the xi with integer coefficients. Since ω̃ is again the smallest Weyl

invariant integer combinations of the yi, the relation (4.16) between ω̃ and ω is simply

determined by comparing the images of ω̃ and ω in H∗(BT ). This gives the following

result for N . Every element za of the center Z corresponds to a fundamental weight

wa, and N is defined as the smallest integer that satisfies for all a

1
2
N〈wa, wa〉 ∈ Z. (4.18)

This result confirms the relation found in [2] where it was established that the

conformal dimensions ha of the vertex operators that create vortices associated to

the fundamental group π1(G) = Z, and that extend the chiral algebra of G̃ to the

chiral algebra of G are given by

ha =
〈kwa, kwa + 2ρ〉

2(k + h)
(4.19)

with h the dual Coxeter number and ρ half the sum of positive roots of G̃. The

conformal dimensions ha should be integer and this reproduces the condition k = 0

(mod N) using the relation 2〈ρ, wa〉 = h〈wa, wa〉 [18].

An interesting example is G = SU(n)/Zn. According to [18] the WZW models

based on G exist at level k ∈ 2Z or k ∈ Z depending on whether n is even or odd

respectively. But according to (4.18) the quantization of k for the corresponding

Chern-Simons theories is in multiples of N , with N = 2n for even n and N = n for

odd n. So we see that the map τ : H4(BG)→ H3(G) is simply multiplication by n.

5. Topological Spin Theories

Up to now all topological theories were defined on oriented 3-manifolds, possibly

with boundary. In general we can consider manifolds with extra structure, and in
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this section we want to discuss topological theories defined on spin manifolds. We

recall that a spin manifold M is an oriented manifold with a choice of spin structure.

A spin structure on an oriented manifold exists if the second Stiefel-Whitney class

w2(T ) of the tangent bundle T of M vanishes. For three dimensional manifolds, this

is always so. (But an oriented three dimensional manifold may admit more than

one spin structure if there is two-torsion in H1(M,Z).) We will refer to topological

theories which require choices of spin structure as ‘topological spin theories’ or simply

‘spin theories’ for short. These theories will have the fundamental property that the

definition of partition functions and transition amplitudes associated with M require

a choice of spin structure on M .

Just as ordinary topological theories in three dimensions lead to ordinary chiral

algebras in two dimensions, spin theories lead to what one might call Z2 graded

chiral algebras or chiral superalgebras. A chiral superalgebra consists of a collection

of holomorphic fields Ai(z) of integer or half-integer dimension hi which are closed

under operator products,

Ai(z)Aj(w) ∼
∑
k

cij
k(z − w)hk−hi−hjAk(w) (5.1)

(and with cij
k = 0 unless hk − hi − hj is an integer) and obeying certain other axioms

that are just analogous to the axioms for bosonic chiral algebras. If the Ai are all of

integer dimension, this reduces to the notion of an ordinary (bosonic) chiral algebra.

The superconformal algebra in two dimensions should be regarded as a Z2 graded

chiral algebra. But there are many other theories that are not superconformal but

can be conveniently regarded as theories with Z2 graded chiral algebras.

The general axioms of quantum field theory tell us that a topological spin the-

ory will associate to each two dimensional closed surface Σ with a particular spin

structure α a Hilbert space HΣ,α. We would like to identify this Hilbert space as the

space of holomorphic blocks of a Z2 graded conformal field theory on Σ. Elemen-

tary examples are of course free fermion theories, where the chiral superalgebra is

freely generated by the spin 1
2

currents ψi(z). These theories possess for a given spin
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structure only a single holomorphic block whose dependence on the spin structure

is given by a theta-function ϑ[α](0|τ).

We will not treat here the general theory of ‘spin’ Chern-Simons theories with

arbitrary compact gauge group G, but restrict ourselves to two examples. Consider

first the group U(1), and let u be the generator of H4(BU(1),Z). (Here u = c2
1, with

c1 the first Chern class.) Each class k·u defines a topological action, and consequently

there are topological U(1) theories in three dimensions with an arbitrary integer level

k. But if we are given a three manifold with a spin structure, the level need not be

an integer; it can be half-integer.

The reason for this is the following. Recall that H3(BU(1),Z) vanishes, so that

the action of the U(1) theory on a 3-manifold M can always be defined as

S =
k

4π2

∫
B
F ∧ F (mod 1), (5.2)

with B a four manifold that bounds M . The curvature form 1
2π
F represents the

first Chern class c1(L) of some complex line bundle L over M . This formula for the

action is well-defined since the integral

q =
1

4π2

∫
B
F ∧ F, (5.3)

is an integer on any closed 4-manifold B. But if B is a spin manifold this integer is

always even. The reason for this is the following. Equation (5.3) can be interpreted

in terms of the intersection pairing in H2(B,Z). In fact, the right hand side of

(5.3) is a de Rham representation of 〈c1(L)∪ c1(L), [B]〉. But on a four dimensional

spin manifold, the intersection pairing in H2(B,Z) is even, so (5.3) is even. This

statement can be given a rather elementary, geometrical proof. Alternatively, one

purely analytic way to prove that c1(L)2 is even on a four dimensional spin manifold

is to note that the index theorem for the Dirac operator DL on a four manifold B

twisted by the line bundle L gives

IndexDL = 1
12
p1(T ) + 1

2
c1(L)2, (5.4)
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(T is the tangent bundle of B.) Taking L to be trivial and requiring IndexDL to

be an integer, we learn that 1
12
p1(T ) is an integer. (In fact, it can be shown to be

even). Generalizing to arbitrary L and requiring that the index should still be an

integer, we learn that 1
2
c1(L)2 ∈ Z, so that c1(L)2 and thus (5.3) is even.

Because of this, the definition (5.2) of the action still makes sense modulo 1 for

half-integer level k if M is a spin manifold. Note that we tacitly assumed that the

spin bordism group Ωspin
3 (BU(1)) vanishes, so that both the line bundle and the

spin structure of M can always be extended to B. This fact is proved by a spectral

sequence argument, using the fact that Ωspin
n (point) = 0 for n = 1, 2, 3 [15], and that

H∗(BU(1)) is torsion free. Thus, we may conclude that there is a topological spin

theory with U(1) gauge group and half-integer k. These theories should correspond

to a Z2 graded chiral algebras in two dimensions. Indeed in our normalization the

chiral vertex operators that appear in the two dimensional U(1) chiral algebra have

weight k. Since we quantize the theory on a Riemann surface with a fixed spin

structure, we do not require an implementation of the full modular group, but only

of the subgroup which leaves a given spin structure fixed.

Note that k as we define it is half as big as the usual k in most discussions of the

abelian theory. Thus, to compare our discussion to other treatments one must make

a redefinition k → 2k. (However, comparison to [2] needs a redefinition k → 4k.)

So the ‘half-integers’ become integers, and it is usually said that k must be even in

order to define a topological U(1) Chern-Simons theory in three dimensions or in

order to be able to define the U(1) chiral algebra in two dimensions (with Zk fusion

rules). Note that in this normalization the k = 1 theory represents the theory of a

free Dirac fermion. In general the bosonic subalgebra of the level k theory equals

the chiral algebra at 4k, so the spin projection of the Dirac fermion occurs at k = 4,

as is well-known to be true.

A second example of a spin theory is SO(3) Chern-Simons theory. It is likewise

true that on a spin 4-manifold the first Pontryagin number of a SO(3) bundle E is
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always even∗. Therefore, in the spin category, the level k (normalized with respect

to SU(2)) can be half as big as in the bosonic category; that is, k can be any even

number, not necessarily a multiple of four. So our claim is that for k = 2 (mod 4),

the SO(3) affine models do have a chiral superalgebra and have a diagonal partition

function if formulated on Riemann surfaces with spin structure. This corresponds

to the results in [2]. Indeed, if we calculate the conformal weight h of the chiral

field that extends the SU(2) current algebra to SO(3) we find h = k/4, which is

half-integer for k = 2 (mod 4). The extended characters χ̃j (with integer spin j) in

the Neveu-Schwarz sector are of the form χ̃j = χj +χ k
2
−j, where the χj’s represents

the SU(2) characters. If we calculate the partition function of the corresponding

bosonic model that is obtained by the summation over spin structures, we find the

familiar expressions for the SO(3) partition functions. (See also the discussion in

[23].) An elementary example is the case k = 2 which can be described by three free

Majorana fermions. The fermionic model has a single character (ϑ[α]/η)
3
2 , and the

chiral algebra is generated by the three fermionic currents ψi(z).

Now let us look at these results in the Hamiltonian formalism. As we have

stressed, it must be possible to define the topological action S also on a manifold M

with nonzero boundary Σ, so that one can study transition amplitudes. In that case,

the topological action is not defined as a number. Rather, e2πiS must be defined as a

section of a line bundle L over the space A/G of all gauge-inequivalent connections

on Σ. For illustrative purposes let us consider how these line bundles can be defined

in the cases of SU(2) or SO(3) gauge group. For SU(2) the fundamental line bundle

over A/G is obtained as follows. We take the ‘twisted’ ∂ operator on Σ coupled to

two conjugate fields (b, c) of spin 0 and 1. Here b transforms in the two dimensional

representation R of SU(2) and c transforms in the dual representation R—which

is actually isomorphic to R. The line bundle L is now defined as the determinant

∗In fact this is true for all SO(n). It follows from a fact that we used earlier, namely that
p1(E) = w2(E)2 mod 2. As a result, the first Pontryagin number of E, which is 〈p1(E), [M ]〉, is
equal modulo two to 〈w2(E) ∪ w2(E), [M ]〉, and this vanishes because the intersection form on
H2(M) is even for spin manifolds.
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line bundle of the operator ∂ coupled to the SU(2) gauge field taken in the two

dimensional representation R.

Let us now consider SO(3). If we are working on a bosonic surface Σ, the fun-

damental line bundle over A/G is again the determinant bundle of the ∂ operator,

coupled to a similar pair of fields (b, c) of spin 0 and 1, which we now put in the

adjoint representation of SO(3), which is the lowest dimensional non-trivial repre-

sentation. The trace over the Casimir of this representation, which determines the

anomaly in the two point function of the currents, is four times that of the funda-

mental representation of SU(2), and this reproduces the result of section (4) that

the level k should be a multiple of four. But—and here is the key point—if Σ has

a spin structure, we can use a single real field w of spin 1
2
, with w in the adjoint

representation of SO(3) which is real, rather than the pair (b, c). A single spin 1
2

field w in the adjoint representation of SO(3) has twice the anomaly of the pair

(b, c) in the two dimensional representation of SU(2). So in the spin category SO(3)

current algebra can have level k = 2 (mod 4).

6. Finite Gauge Groups

We will now turn to the very special case of a finite gauge group G. Our main

result will be that the structure of topological gauge theories with finite gauge

group will correspond to the two dimensional holomorphic orbifold models that

were considered in [7]. An holomorphic orbifold is a model obtained by modding

out a symmetry group G of a holomorphic or chiral conformal field theory, i.e.

a theory whose partition and correlation functions are the modulus squared of a

section of a holomorphic line bundle over the moduli space of Riemann surfaces. A

famous example of such a holomorphic theory is the E8 level one WZW model, and

holomorphic orbifolds can for instance be obtained by taking the quotient of this

model with any finite subgroup G of E8. According to [2] the modular geometry
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of these orbifold CFT’s will be reproduced by Chern-Simons theories whose gauge

group is the semi-direct product of E8 and G. However, here the group E8 is

essentially used to reproduce a trivial theory in two dimensions, at least for closed

surfaces. This can be accomplished much more economically by simply omitting

the E8 gauge theory, and this leads us naturally to consider Chern-Simons theories

with finite gauge group G. In our opinion these theories are also of some intrinsic

interest, since they are very simple examples of topological ‘quantum field theories.’

That is, they provide an elementary illustration of the approach to quantum field

theory along the lines of category theory — an approach we will now briefly review,

before we turn to the explicit construction of the models.

6.1. Axioms Of Quantum Field Theory

In a convenient axiomatization of quantum field theory [6], the structure of a d+1

dimensional quantum field theory includes (among other things) a functor Φ from

the category of closed d-manifolds into the category of Hilbert spaces. We will use

the term manifold somewhat loosely; the correct terminology for the objects of our

category would be ∗-manifolds. Here ∗ can be any extra structure: for example an

orientation, a spin structure, a complex structure, or a metric. Two manifolds are

isomorphic if there exists a diffeomorphism that preserves the structure. Depending

on the structure we obtain different types of quantum field theories: topological,

‘spin,’ conformal, etc. The ‘arrows’ or morphisms between the objects in these

two categories are respectively cobordisms and linear transformations. So an arrow

M : Σ→ Σ′ is a d+1 dimensional manifold M that interpolates from Σ to Σ′. More

precisely: M is a manifold that satisfies

∂M = Σ ∪ (−Σ′), (6.1)

and whose structure reduces to the respective structures on Σ and −Σ′ at its bound-

ary. Here ‘∪’ denotes the disjoint sum, and −Σ the manifold Σ with inverse struc-
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ture, e.g. reversed orientation, as defined by

∂(Σ× I) = Σ ∪ (−Σ). (6.2)

By definitionM exists iff Σ and Σ′ are cobordant in the category under consideration.

Note that we have split the boundary of M into two components Σ and Σ′, by

labeling them respectively as ‘ingoing’ and ‘outgoing’.

A category also presumes the existence of an associative composition of arrows,

which in this case corresponds to ‘glueing’ together two d+1 dimensional manifolds

M : Σ → Σ′ and M ′ : Σ′ → Σ′′ along their common boundary Σ′ to form the

manifold M ◦ M ′ : Σ → Σ′′. We will further need for each Σ an identity arrow

1Σ : Σ→ Σ, that satisfies

1Σ ◦M = M ◦ 1Σ′ = M, (6.3)

for which we choose the manifold 1Σ = Σ× I.

The functor Φ will associate to each d-dimensional manifold Σ a vector space

that we denote as HΣ, and to each arrow M a linear map ΦM : HΣ → HΣ′ . If Σ and

Σ′ are not homeomorphic ΦM represents a tunneling amplitude between different

space-like topologies. The functor Φ should preserves the associate composition law

which essentially corresponds to the superposition principle of quantum mechanics.

Furthermore, the manifold Σ× I is mapped to the identity map 1 : HΣ → HΣ.

Since the boundary can consist of disjoint components, we will further require

Φ to satisfy the following natural conditions: (i) if Σ consists of the empty set, the

corresponding Hilbert space is one dimensional, and (ii) if Σ is the disjoint union of

several manifolds, the corresponding Hilbert space is the tensor product:

HΣ∪Σ′ = HΣ ⊗HΣ′ . (6.4)

We observe that a closed d+1 manifold M can now be seen as an arrow M : ∅ → ∅,
and accordingly is mapped to a morphism ΦM : C → C. This implies that we can
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associate to M a number Z(M), the partition function. The manifold Σ×I can also

be considered as an arrow Σ ∪ (−Σ)→ ∅. This implies a canonical isomorphism

H−Σ
∼= H∗Σ. (6.5)

If M and M ′ have boundary components −Σ and Σ, labeled respectively as ‘out-

going’ and ‘ingoing’, we can glue the two manifolds together at Σ to form M ′′. Φ

should also respect this partial composition. So if vi and vi are conjugate bases in

HΣ and H∗Σ, we have

ΦM ′′ =
∑
i

ΦM(vi)ΦM ′(v
i) (6.6)

This is the famous ‘glueing’ or ‘sewing’ axiom. It allows us in particular to calculate

the dimensions of the Hilbert spaces HΣ by glueing the two ends of the cylinder

Σ× I together, which gives

dimHΣ = Tr
HΣ

1 = Z(Σ× S1). (6.7)

6.2. Topological Gauge Theories with Finite Gauge Group

After these preliminaries let us now turn to the somewhat esoteric subject of

topological gauge theories with finite gauge groups. We will restrict our discussion

here for obvious reasons to three dimensions, but the generalization to other dimen-

sions is completely straightforward. In the theories under consideration the only

degree of freedom will be the topology of the principle G bundle E over the man-

ifold M . For a discrete group all G bundles are of course necessarily flat, and the

topology can only be detected in the possible holonomy around homotopically non-

trivial closed curves. Accordingly, G bundles are completely determined by homeo-

morphisms of the fundamental group π1(M) of the 3-manifold M into the group G,

up to conjugation. We will denote both this homeomorphism and the correspond-

ing homotopy class of the classifying map M → BG as γ. In accordance with the
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general discussion in section (3) we choose a class α ∈ H3(BG,U(1)) ∼= H4(BG,Z)

as topological action. (Note that in this section we will identify R/Z ∼= U(1) with

the unit circle in C, and write the cohomology groups accordingly multiplicatively,

which might confuse the reader.)

The partition function for a closed 3-manifold M will be defined as the sum over

all possible G bundles over M , weighted with the action W = e2πiS

Z(M) =
1

|G|
∑

γ∈Hom(π1(M),G)

W (γ), (6.8)

with

W (γ) = 〈γ∗α, [M ]〉. (6.9)

In (6.8), π1(M) is defined relative to some choice of base point. We notice that the

path-integral is reduced to a finite sum. The weights W (γ) are manifestly invariant

under diffeomorphisms of M . Since all bundles over the 3-sphere are trivial, we have

in particular

Z(S3) =
1

|G|
. (6.10)

Note that although the isomorphism class of E depends on γ only up to conjugacy,

we sum over all of Hom(π1(M), G). This prescription is required for the property∗

Z(M) · Z(S3) = Z(M1) · Z(M2), (6.11)

where M is the connected sum of the two manifolds M1,M2. This relation follows

immediately from two facts: (i) the fundamental group of M equals the free product

π1(M1) ∗ π1(M2), and (ii) if γ = (γ1, γ2) ∈ Hom(π1(M), G) ∼= [M,BG],

〈α, γ(M)〉 = 〈α, γ1(M1)〉 · 〈α, γ2(M2)〉, (6.12)

∗More generally this definition is necessarily to define a functor as discussed in the previous
section that respects the glueing axioms.
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since we can construct a 4-manifold B (the ‘world-sheet’ swept out during the fac-

torization process M →M1 +M2) that interpolates from M to M1∪M2. Evaluating

δα = 1 on the image of this manifold B into BG gives the required property. The

normalization of the partition sum (6.8) is such that

Z(S2 × S1) = 1. (6.13)

Here we used that π1(S2 × S1) = Z and W (γ) = 1, since any bundle over S2 ×
S1 can be continued over the bounding 4-manifold B3 × S1, with B3 the 3-ball.

Stated otherwise, in the light of (6.43), the Hilbert space HS2 turns out to be one

dimensional.

Note that if α represents a non-trivial class, it is a priori possible that the parti-

tion function vanishes for a particular manifold. For instance, if G equals the cyclic

group Z2 and M = RP 3, there are two possible bundles over M , since the funda-

mental group of M has order two. Now recall that the classifying space BZ2 can be

represented as RP∞. The non-trivial classifying map corresponds to the imbedding

RP 3 ⊂ RP∞, which generates the third homology group and is dual to α. In this

case the two contributions cancel and the partition function vanishes

Z(RP 3) =
1

2
(1 + (−1)) = 0. (6.14)

6.3. Hilbert Spaces and Interactions

An interesting class of objects in any (compact) topological field theory are the

dimensions of the Hilbert spaces HΣg obtained by quantizing the theory on a space-

time Σg×R with Σg a Riemann surface of genus g. At first sight ‘quantization’ seems

quite elementary in this case, since the classical degrees of freedoms are discrete and

finite. The phase space is simply the moduli space Vg of G bundles over Σg

Vg = Hom(π1(Σg), G)/G. (6.15)
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A representation γ of the fundamental group of the Riemann surface consists of

elements (gi, hi) (i=1, . . . , g) satisfying
∏
i [gi, hi] = 1, and a G bundle is determined

by γ up to conjugation. Although Vg is a finite set of points, and naively every point

contributes one quantum state, in general we only have an inequality

dimHΣg ≤ |Vg|. (6.16)

Let us explain why this is true. The dimensions of the Hilbert spaces can be de-

termined in principle — and here also in practice — by calculating the partition

functions Z(Σg × S1). In the case of a trivial cocycle, α = 1, the action W will

always be one, and the definition of the partition function is just the suitably nor-

malized sum over all representations of the fundamental group of the three manifold.

Representations of π1(Σg × S1) are given by representations γ = (gi, hi) of the fun-

damental group π1(Σg) of the Riemann surface, together with an element k, the

holonomy associated to the factor S1, in the common stabilizer subgroup Nγ of the

holonomies gi, hi. For a fixed γ the prefactor in the partition sum is |Nγ|/|G|. Since

|G|/|Nγ| equals the order of the orbit of the representation γ under conjugation, the

partition sum yields exactly Z(Σg × S1) = |Vg|, as expected.

However, if α 6= 1 there can be k ∈ Nγ such that the action W (γ, k) is not equal

to one. In fact, the action will always be a one-dimensional representation of Nγ

W (γ, k1)W (γ, k2) = W (γ, k1k2). (6.17)

This relation can be proved by constructing a 4-manifold that has as its boundary

three copies of Σg ×S1, and which allows a representation of its fundamental group

that reduces at the boundary to the representations appearing in (6.17). We can

take for this 4-manifold Σg×Y , with Y the two sphere with three holes (the trinion

or ‘pair of pants’). With a suitable orientation the monodromies around the three

holes are respectively k1, k2, and k1k2. The summation over all k ∈ Nγ in the

partition sum will now give zero if the representation (6.17) is non-trivial. So in
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that case the bundle over Σg described by γ does not contribute a quantum state,

and the dimension of the Hilbert space is smaller than expected. This effect has

been noted in [2] and can be regarded as a global anomaly.

Now for arbitrary genus and general cocycle α the explicit calculation of the

dimensions of the Hilbert spaces for arbitrary genus might be a complicated calcu-

lation. However, we can make a shortcut. Any Riemann surface can be obtained

by sewing together several copies of the thrice-punctured sphere Y . Similarly the

3-manifolds Σg × S1 can be obtained by sewing manifolds of the form Y × S1. Now

the manifold Y × S1 is not closed. Its boundary consists of three copies of the 2-

torus Σ1 = S1 × S1, and consequently the path-integral on Y × S1 will represent a

tri-linear map

ΦY×S1 : HΣ1 ×HΣ1 ×HΣ1 → C. (6.18)

So let us add a few words to the general definition of Φ in the case of manifolds

with boundaries. Let M be an arbitrary 3-manifold Σ → Σ′. According to our

general assumptions ΦM is a linear map HΣ → HΣ′ , and we should specify its

matrix elements. For fixed maps γ : π1(Σ) → G and γ′ : π1(Σ′) → G the kernel of

ΦM is given by

ΦM(γ, γ′) =
1

|G|
∑

γ′′∈Hom(π1(M),G)

W (γ′′), (6.19)

where the summation is over those γ′′ that restrict to γ and γ′ at the boundaries. It

is not difficult to check that this definition satisfies the conditions that we imposed

in section (4.1).

So in order to calculate the dimensions of the Hilbert space for arbitrary genus

it suffices to know the Hilbert space of the 2-torus and the map ΦY×S1 that we

just described. Let us first evaluate the action for the manifold Y × S1. Since the

manifold has a boundary the action is only well-defined if we choose some fixed

classifying maps at the boundaries. So, as discussed in section (3.2), we will assume

that for each homomorphism of the fundamental group of a Riemann surface into
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Fig. 1. The sphere with four holes can be composed in two distinct
ways from two copies of the sphere with three holes, as indicated in these
diagrams. The group elements correspond to monodromies around the
punctures.

G we have been given some fixed classifying map. (We will belabor this point in

the next section.) An element of γ ∈ Hom(π1(Y × S1), G) is given by elements

gi (i = 1, 2, 3) satisfying g1 · g2 · g3 = 1, that represent the monodromies around

the three punctures of Y , and an element h that commutes with the gi and that

corresponds to the generator of the factor S1. So the independent variables are

g1, g2, and h. Of course, the bundle over Y × S1 is only properly defined in terms

of the elements g1, g2, h once we picked a base point and specified the cycles along

which the holonomies are determined. Let us denote the action as

W (γ) = ch(g1, g2). (6.20)

Our claim is that the object ch is an (algebraic) 2-cocycle of the stabilizer group

Nh ⊂ G, the subgroup of all elements in G that commute with h. That is, we have

the relation

ch(g1, g2) ch(g1g2, g3) = ch(g1, g2g3) ch(g2, g3). (6.21)

for any three elements g1, g2, g3 ∈ Nh. This statement has a very natural geometric

proof. Consider the sphere with four holes. It can be obtained in two different

ways from two copies of Y , as is represented diagrammatically in fig. 1. This is

similarly true after taking the direct product with S1. Since the action cannot
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depend on the way we have chosen to construct the manifold, the above relation

follows immediately.

So we see that on a priori grounds the Chern-Simons theory associates group

cocycles ch to each stabilizer subgroup Nh of G. However, to actually calculate ch

in terms of the 3-cocycle α, we have to resort to a different approach.

6.4. A Lattice Gauge Theory Realization

We would now like to explain why the abstract description of the topological

action can, in the case of a finite gauge group, be reduced to a concrete description

somewhat reminiscent of lattice gauge theory.

Recall that a lattice gauge theory, formulated on a lattice with vertices Vi, links

Lij, etc., associates to each link Lij, oriented form Vj to Vi, a gauge field gij ∈ G. A

gauge transformation is simply a set elements hi ∈ G, and the transformation acts

on the gauge field as

gij −→ hi · gij · h−1
j . (6.22)

The total curvature fijk for a 2-simplex is given by the holonomy

fijk = gij · gjk · gki, (6.23)

and is only well-defined modulo conjugation. The action is some local functional of

the gauge fields. These lattice theories are particularly well suited for finite groups,

where no obvious continuum theory exists. We would like to define here something

close to a lattice Chern-Simons theory.

We have seen that for a finite gauge group G, H4(BG,Z) is isomorphic to

H3(BG,U(1)), and the topological action can be specified by giving an element

α ∈ H3(BG,U(1)). Given an oriented three manifold M without boundary (the

orientation is always assumed in what follows), and a map γ : M → BG, the
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topological action is the pairing 〈γ∗α, [M ]〉. We will now discuss how this can be

evaluated. We may as well assume that M is connected. In addition, we suppose

that we are given a triangulation of M ; given such a triangulation, we will exhibit

a recipe for computing the topological action.

Since BG is connected, we can pick a base point ∗ in BG, and deform the map

γ : M → BG so that every 0-simplex in M is mapped to ∗ by γ. Now let σ be a

one simplex in M . Since the endpoints of σ are mapped to the base point ∗, γ(σ) is

a path from ∗ to ∗ which determines an element of the fundamental group π1(BG).

On the other hand, this group is isomorphic to G (since BG is the quotient of the

contractible space EG by the free action of G). Thus, to every one simplex σ in M ,

the map γ determines a group element gσ ∈ G. The assignment of group elements

to one simplices is reminiscent of lattice gauge theory. In this situation, however,

the lattice field strength vanishes: if the three one simplices σ1, σ2, and σ3 bound a

two simplex, then the product gσ1 · gσ2 · gσ3 vanishes (since it represents an element

of π1(BG), namely γ(σ1 ∪ σ2 ∪ σ3), which must vanish since σ1 ∪ σ2 ∪ σ3 bounds

a two simplex or disc). This product is precisely the field strength in the sense of

lattice gauge theory. Thus, in this lattice gauge theory model, one is limited to flat

connections.

Now, if we really want to establish an analogy with lattice gauge theory, the

topological action 〈γ∗α, [M ]〉 should depend only the the ‘gauge field,’ that is, on

the gσ, and not on other details of γ. In fact, if γ′ : M → BG is some other map that

determines the same gσ’s as those determined by γ, then γ and γ′ are homotopic to

each other. To see this, one constructs a homotopy from γ′ to γ on the k skeleton of

M , inductively in k. For k = 1, the existence of a homotopy from γ to γ′ is precisely

the statement that they determine the same gσ’s. Once the homotopy from γ to

γ′ is established on the k skeleton, the obstruction to extending it over the k + 1

skeleton lies in πk+1(BG) (or more precisely in Hk+1(M,πk+1(BG))), and vanishes

since for G a finite group, the homotopy groups πn(BG), for n > 1, all vanish.

Given that γ and γ′ are homotopic, the cocycle condition on α ∈ H3(BG,U(1))
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implies that for M a manifold without boundary, the topological action is the same

for γ as for γ′. Thus, if M has no boundary, the topological action depends only on

the ‘gauge field’ gσ.

6.5. Manifolds With Boundary; Gauge Theory Action

It remains to understand the case in which M has a boundary. If M has a

boundary, the topological action cannot be defined as W = 〈γ∗α, [M ]〉, because the

fundamental class [M ] does not exist for a manifold with boundary. Also, we want

a somewhat different formulation that will be concrete and closer to lattice gauge

theory.

Given a three simplex T and a map γ : T → BG, the cocycle α ∈ H3(BG,U(1)),

by definition, assigns an elementW (T ) ∈ U(1) to this data. ¿From this point of view,

a three simplex T is not just a tetrahedron; it is a tetrahedron with an ordering of the

edges as 0, 1, 2, 3. Roughly, we would like to regard M as a union of three simplices

M = ∪iTi and define the topological action as
∏
iW (Ti). A chosen triangulation

of M gives a realization of M as a union of tetrahedra. To give an ordering of the

vertices in each of these tetrahedra, we order the vertices in M as 1, 2, 3, . . . , n (if

there are n 0-simplices in M), and then in each tetrahedron Ti, we order the vertices

in ascending order.

In a given tetrahedron Ti, the ordered vertices appear in either a right-handed

arrangement or a left-handed arrangement; this determines an orientation of Ti

which either agrees or disagrees with the orientation induced from that on M . Let

us define an integer εi that is 1 or −1 depending on whether these orientations agree.

Then if M has no boundary, the fundamental class of M can be defined as

[M ] =
∑
i

εiTi. (6.24)

It follows from the definition of singular cohomology groups that the topological

action, which we earlier defined as W = 〈γ∗α, [M ]〉, can equivalently be defined as
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the product over all individual simplices as

W =
∏
i

W (Ti)
εi . (6.25)

This formula makes sense and is valid whether or not M has a non-empty boundary.

In (6.25) we write the topological action as a product of terms that only depend

on the maps to BG of the individual tetrahedra Ti. This goes in the direction of a

lattice gauge theory description, but we have not achieved such a description yet,

since in general the W (Ti) do not depend only on the gσ, as we wish, but on all of

the details of the map γ.

To overcome this problem, we proceed as follows. For each choice of the gσ’s

(with vanishing curvature), we will describe how to pick a particular map γ from M

to BG. By considering only these γ’s we will ensure that the W (Ti)’s depend only

on the gσ. The recipe for associating a particular map γ with every collection of

gσ’s is very simple. As in a previous argument, we consider the k-skeleton of M and

work by induction in k. For every homotopy class of paths from ∗ to ∗ in BG, that

is, for every element g ∈ G, we pick a particular path ug, and we agree to use only

these paths. This ensures that the map γ on the 1-skeleton is uniquely determined

by the gσ’s. When we consider extending γ over the 2-skeleton, we see that the

map to BG of a two simplex ∆2 in M is given by a triple ug1 , ug2 , and ug3 (with

g1g2g3 = 1). For each such triple we pick a particular map v : ∆2 → M . Similarly,

when it comes to the 3-skeleton, for each three simplex ∆3, the map of its boundary

to BG consists of a certain collection of v’s, and for each such collection, we pick a

particular map w : ∆3 → BG. This completes the story for M of dimension three,

but otherwise the induction would obviously continue indefinitely.

At this point we have what we want: (6.25) is a formula for the topological action

that depends only on the gauge theory data, and is similar to a lattice gauge theory

action in that the total action is a product of local terms, one for each three-simplex.

So the basic object is the value of the action W (T ) associated to a 3-simplex T .
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Fig.2. A 3-simplex T with gauge fields g, h, k has action W (T ) = α(g, h, k).

Once we have identified the vertices of the tetrahedron this action is a function of

the three independent gauge fields g, h and k on the links, that we can choose as in

fig. 2. We would now like to show that the action

W (T ) = α(g, h, k), (6.26)

is a group cocycle in the algebraic sense, i.e. we would like to prove

α(g, h, k)α(g, hk, l)α(h, k, l) = α(gh, k, l)α(g, h, kl). (6.27)

This relation follows quite easily if we consider a 4-simplex with independent gauge

fields g, h, k, l. Its boundary consists of 5 tetrahedra, and the above equality just

expresses the general fact that the action of a boundary vanishes. Note that under

a ‘gauge’ transformation α→ α δβ, we have the transformation property

α(g, h, k) −→ α(g, h, k)
β(g, hk) β(h, k)

β(g, h) β(gh, k)
. (6.28)

Let us summarize our lattice construction. For a given 3-manifold M , possibly

with boundary, we choose an arbitrary triangulation. (The definition (6.9) of the

topological action makes it clear that the choice of the triangulation does not matter,

though this is not completely obvious in the lattice construction.) We assign gauge
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fields to the links of the lattice, with the restriction that the curvature vanishes

for all 2-simplices that occur in the triangulation. We will sum over all gauge

field configurations, modulo gauge transformations that leave one point fixed. This

leaves overall conjugation of the gauge fields as a physical degree of freedom. Since

flat connections have only non-trivial holonomy around non-contractible loops, our

gauge field configurations are labeled by homeomorphisms of the fundamental group

π1(M) into the gauge group G. With an arbitrary choice of ordering of the vertices,

we associate to three simplex Ti the action W (Ti) as in (6.26). The total action is

simply the product over all elementary simplices (6.25).

We can now explicitly check some properties of the definition, which are clear

on a priori grounds.

First, for a closed manifold, the value of W does not depend on the choice of

cocycle used to represent α ∈ H3(BG,U(1)). Under a transformation α → α δβ

we will pick up terms that are defined on the 2-simplices. These are summed over

twice, once in each orientation, and cancel. For example, the simplex depicted in

fig. 2 would transform with (among other terms) a term β(g, h) associated to the

2-simplex labelled by 0, 1, 2. However, since the manifold is closed, there will be

a neighbouring 3-simplex of opposite orientation that will contribute β(g, h)−1. So

both terms cancel.

It is further not difficult to show that this expression is also invariant under fur-

ther refinement of the lattice. It is sufficient to consider the barycentric subdivision

of a 3-simplex T , since every two triangulations have a common subdivision in three

dimensions. The barycentric subdivision will replace T by 4 new simplices. It is

again exactly due to the cocycle condition (6.27) that the sum of the actions of these

4 simplices equals W (T ).

Another important property is gauge invariance on closed manifolds. This is

due to the fact that a gauge transformation hi ∈ G on a vertex Vi of a simplex

T changes the weight W (T ) by terms that only depend on the gauge fields on the

47



2-simplices containing Vi. If every plaquette belongs to two 3-simplices, as is the

case for a closed manifold, the terms cancel two by two. More precisely, a gauge

transformation c ∈ G acting on the vertex V0 of the simplex of fig. 2, will transform

the action W (T ) as

W (T )→ α(c, g, h)α(c, gh, k)

α(c, g, hk)
W (T ). (6.29)

Each of the three factors will be cancelled by the neighbouring simplices.

We would like to close this section with one related remark. Depending on the

divisability of the order of the group it may be possible to choose the gauge

α(g, g−1, h) = α(g, h, h−1) = 1. (6.30)

In this gauge the above prescription becomes considerably simpler, since now the

action W (T ) is invariant under chance of labelling of the vertices. One also has the

convenient reality condition

α(g, h, k)−1 = α(k−1, h−1, g−1). (6.31)

6.6. The Partition Function of the 3-Torus

We can now compute several interesting quantities using triangulations. We will

first reconsider the manifold Y × S1. We have seen that the Chern-Simons theory

associates to each group element h ∈ G a 2-cocycle ch of the stabilizer group Nh, and

we would now like to express the cocycles ch in terms of the fundamental 3-cocycle

α. Once we have realized that a sphere with three holes can be represented by a

2-simplex with its three vertices identified, it is not difficult to imagine that Y × S1

can be represented as in fig. 3. Three simplices suffice to triangulate Y × S1, and

the corresponding action is given by

ch(g1, g2) =
α(h, g1, g2)α(g1, g2, h)

α(g1, h, g2)
. (6.32)
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Fig.3. The manifold Y × S1, the direct product of the 2-sphere with
three holes and the circle. The top and bottom and all vertices should be
identified. The group elements indicate a homomorphism π1(Y × S1)→
G.

It can now be explicitely checked, using repeatedly the cocycle condition δα = 1,

that ch is indeed a 2-cocycle of the stabilizer subgroup Nh. Note that under (6.28)

ch transforms as ch → ch δβh, with

βh(g) = β(g, h) β(h, g)−1. (6.33)

Let us now move on to the partition function of the 3-torus S1 × S1 × S1. It

can be conveniently triangulated with 6 simplices. This can be easily seen when we

represent the 3-torus as a cube with periodic boundaries as in fig. 4. If g, h, k are

the three commuting gauge fields on the edges of the cube, the partition function

can be evaluated to give

Z(S1 × S1 × S1) =
1

|G|
∑

g,h,k∈G
[g,h]=[h,k]=[k,g]=1

W (g, h, k), (6.34)

with the action given by

W (g, h, k) =
α(g, h, k)α(h, k, g)α(k, g, h)

α(g, k, h)α(h, g, k)α(k, h, g)
. (6.35)

We can now explicitly check some general properties of W . First we observe that it is

indeed invariant under transformations α→ α δβ, in particular W = 1 whenever α
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Fig. 4. The 3-torus and one of the six 3-simplices that can be used to
triangulate it.

is cohomologically trivial. Furthermore, it can be verified that the above expression

is inert under the mapping class group of the 3-torus SL(3,Z).

The action can also be simply rewritten in terms of the 2-cocycles cg. Since the

three torus can be constructed out of two copies of the manifold Y × S1 we have

W (g, h, k) = cg(h, k) cg(k, h)−1. (6.36)

This is especially easily visualized with the aid of the triangulated manifolds of fig.

3 and fig. 4. We will use this observation to evaluate and interpret the partition

function of the 3-torus.

For any finite group G let the positive integer r(G) denote the number of non-

isomorphic irreducible representations. It is a familiar fact that r(G) also equals the

number of conjugacy classes. Similarly we can define for any 2-cocycle c of G the

number r(G; c) of irreducible projective representations R(g) that satisfy

R(g)R(h) = c(g, h)R(gh). (6.37)

It can be shown that r(G; c) is the rank of the center of the twisted group algebra

and that it equals the number of so-called ‘c-regular’ conjugacy classes [24], which
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implies

r(G; c) ≤ r(G). (6.38)

An element g ∈ G is called c-regular if c(g, h) = c(h, g) for all h ∈ Ng. If g is c-

regular then so are all its conjugates, and all elements of the form gnhm with h ∈ Ng.

If we write for fixed g

εg(h) = c(g, h)c(h, g)−1, (6.39)

then by a simple computation we can show that εg is a one dimensional represen-

tation of the stabilizer of g. An element g is c-regular iff εg = 1. This implies the

following expression for r(G; c)

r(G; c) =
1

|G|
∑
g,h∈G
[g,h]=1

c(g, h)c(h, g)−1. (6.40)

Here we used again the property that the summation
∑
k∈K ε(k) vanishes for any

non-trivial one-dimensional representation ε(k) of a group K. Comparing with the

expressions (6.34) and (6.36) for the partition function of the 3-torus we obtain

Z(S1 × S1 × S1) =
∑
g∈C

r(Ng; cg), (6.41)

where C is a set of representatives of the conjugacy classes CA of G. So in particular

we find that the partition function is an integer, in accordance with its interpretation

as the dimension of the Hilbert space associated to the 2-torus S1 × S1.

In this calculation of the Hilbert space for genus one, we recognize the general

phenomenon that not all G bundles give rise to quantum states in the theory. Ac-

cording to the result (6.41), only those bundles contribute for which the pair (g, h)

satisfies the condition that h is cg-regular (or vice versa, the condition is symmetric).

So we can take the following basis in the Hilbert space. Let Rg
α be the irreducible,

projective modules of the stabilizer group Ng with cocycle cg. Since the stabilizer

subgroups Ng are isomorphic for all g in a conjugacy class CA, we can denote these
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groups as NA and their representations by RA
α . The basis elements vAα can now be

defined by

vAα (g, h) =


ρgα(h) = Tr Rg

α(h) if g ∈ CA,

0 otherwise.
(6.42)

Note that the ‘wave functions’ vAα : Vg → C indeed satisfy vAα (g, h) = 0, if h ∈ Ng is

not a cg-regular class. It can be verified that this basis is orthonormal. (Recall the

manifold Σ1 × I furnishes a natural inner product on the Hilbert space HΣ1 .)

We will now proceed to show that the analysis of this three dimensional topo-

logical gauge theory, reproduces the same result obtained in the two dimensional

analysis [7] for the dimensions of the Hilbert spaces for arbitrary genus, namely

dimHΣg =
∑
A,α

(
|NA|

dimRA
α

)2(g−1)

. (6.43)

The calculation is not difficult. In [7] the fusion algebra of the two dimensional

holomorphic orbifold models was derived, and this was shown to lead to the above

dimensions. We only have to check that, when expressed in the basis vAα in HΣ1 , the

morphism ΦY×S1 reproduces these fusion rules. This is indeed true, since

ΦY×S1(vAα , v
B
β , v

C
γ ) =

1

|G|
∑

g1∈CA,g2∈CB ,g3∈CC ,h∈G
g1g2g3=1, [gi,h]=1

ρg1
α (h)ρg2

β (h)ρg3
γ (h) ch(g1, g2), (6.44)

which is completely identical to the fusion algebra that was found in the two dimen-

sional analysis. It is now a straightforward result from the formula of Verlinde [25]

that the dimensions of the Hilbert spaces for arbitrary genus are given by equation

(6.43), see also [7].

As special case occurs when all the cocycles cg are trivial. This is in particular

true for abelian G, and implies that there exist phases εg(h) (defined up to a 1-

cocycle) such that

cg(h, k) = εg(h)εg(k)εg(hk)−1. (6.45)
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It is easy to check that the phases εg(h) satisfy

εg−1(h) = εg(h
−1) = εg(h)−1. (6.46)

Let us now introduce the quantities

σ(g|h) = εg(h)εh(g). (6.47)

These objects are manifestly invariant under the transformation (6.28), and so are

determined only by the cohomology class α ∈ H3(BG,U(1)) and are invariants of

the theory. They equal the phases that were used to describe the modular trans-

formation properties of holomorphic orbifold models in [7]. In fact, the genus one

modular transformations S, T read in the basis vAα

SABαβ =
1

|G|
∑

h∈CB ,g∈CA
[h,g]=1

ρgα(h−1)ρhβ(g−1)σ(g|h), (6.48)

TABαβ = δαβδ
ABρgα(g)ρgα(1)−1σ(g|g)−

1
2 . (6.49)

Using surgery with this representation of the modular group as in [1], partition

functions of the three dimensional theory can be obtained. For instance we can use

genus one Heegaard splittings. A genus g Heegaard splitting [26] is a decomposition

of a 3-manifold M into two ‘handle-bodies’ M1 and M2 of genus g by cutting M

along a Riemann surface Σg. Such a decomposition is always possible, as an easy

triangulation argument shows [26]. The boundaries of M1 and M2 are identified by

a mapping class group element Γ. Genus one Heegard splittings with a modular

transformation Γ ∈ SL(2,Z) that maps the homology cycle b to apbq give rise to

the Lens spaces Lp,q. Here b is the generator of the fundamental group of the solid

torus. The corresponding partition function is given by

Z(Lp,q) = 〈v0,Γv0〉. (6.50)

with v0 the vacuum state in HΣ1 . Special Lens spaces are Ln,1 = S3/Zn where we
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can choose Γ = (TST )n. For instance we immediately find [1]

Z(S3) = S00 =
1

|G|
(6.51)

in accordance with (6.10). For another concrete example consider again the group

Z2. The genus one Hilbert space has 4 states with an Z2×Z2 fusion algebra. Since

H4(BZ2,Z) = Z2 there are two possible choices for the phase σ(g|h): with g the

generator of Z2 we have σ(g|g) = ±1. We can now calculate the partition function

of S3/Zn using the above representations of S and T , with the result

Z(S3/Zn) = 〈v0, (TST
)n
v0〉 =


1
2
(1 + (±1)

n
2 ) n even,

1
2

n odd,
(6.52)

confirming in particular (6.14).

The requirement that the above matrices S, T lead to a consistent representation

of the mapping class group leads to certain condition on σ(g|h) that were investigated

in [7] and are now seen to be solved by giving a cohomology class α ∈ H3(BG,U(1)).

For example we can compare our results with the one obtained for the group G = S3,

where the group of possible phases σ(g|h) was calculated to be Z3×Z2. This result

agrees with the three dimensional calculation, since H3(BS3, U(1)) = Z6
∼= Z3×Z2.

6.7. Discrete Torsion

We would like to close with some remarks on discrete torsion [27]. The reader

must have noticed a very close similarity of our discussion to the idea of discrete

torsion, as it appears in the theory of two dimensional orbifolds. Recall also that

discrete torsion is supposed to be classified by the classes β ∈ H2(BG,U(1)). Indeed,

it has a very natural interpretation as a two dimensional topological theory with

finite group G, since it associates to each G bundle E over a Riemann surface Σ

with classifying map γ a phase W (γ) = 〈γ∗β, [Σ]〉.
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We would like to briefly clarify why if is true that it is H2(BG,U(1)) that

classifies discrete torsion. Consider strings propagating on a manifold M . For every

string world sheet Σ (Σ is a Riemann surface perhaps with boundary) and homotopy

class of maps X : Σ→M , one wants to find an R/Z valued topological action I(X)

such that

(i) two such actions I and I ′ are considered equivalent if they differ by a func-

tional that only depends on the restriction of X to the boundary of Σ;

(ii) if Σ is a Riemann surface without boundary, and is the boundary of a three

manifold Y , and if X extends to a map X̂ : Y →M , then I(X) = 0.

And of course we tacitly assume that the action of a disjoint union of surfaces

Σ ∪ Σ′ is additive, I(Σ ∪ Σ′) = I(Σ) + I(Σ′). It then follows from (ii) that the

topological action is odd under reversal of orientation, I(Σ) = −I(−Σ), since Σ ∪
(−Σ) is the boundary of the three manifold Σ× I.

The requirements (i),(ii) follow from the same consideration as explained in the

introduction. The physical reason for requiring (i) is that under the stated condition,

the difference between I and I ′ can be absorbed in a redefinition of the wave functions

of the initial and final states. As for (ii), it corresponds to factorization. (To see this,

bear in mind that the prototype of factorization is a Riemann surface Σ splitting into

a union of two surfaces Σ1 and Σ2. In such a case, a space-time history describing

this splitting is a three manifold X such that ∂X = Σ ∪ (−Σ1) ∪ (−Σ2), and the

statement of (ii) that I(∂X) = 0 amounts then to I(Σ) = I(Σ1) + I(Σ2).)

The requirements (i),(ii) above precisely state that I(X) = 〈X∗α, [Σ]〉 for some

element α ∈ H2(M,Z). Therefore, if one is given a sigma model of maps of Riemann

surfaces in to a target M , and one asks how this model can be modified by weighting

the different topological sectors with different phases, the answer is that the possible

ways of doing this are classified by H2(M,Z).

Now, suppose that M is obtained as M0/G, where G is a finite group which we

suppose at first acts freely on M0. We suppose that a quantum field theory for maps
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to M0 has already been defined, and we want to define a quantum field theory for

maps of Riemann surfaces to M . In this process, one has the chance of modifying

the naive definition by phases. From what we have just seen, the possible ways of

doing this are determined by H2(M,Z). In general, knowledge of G alone does not

give complete knowledge of H2(M,Z) (even if one supposes that G acts freely on

M0), and therefore the possibilities for discrete torsion do not reduce simply to a

statement about G; to give a full statement of the possibilities one needs to consider

the nature of M0 and compute H2(M,Z).

However, what is usually considered under the heading of discrete torsion are

the possibilities that exist universally, just because of taking the quotient by G, and

irrespective of any properties of M0. In this case M0 may as well be topologically

trivial (contractible). In that case, M = M0/G is a model of BG and H2(M,Z) can

be identified with H2(BG,Z). In this way, by considering only the possibilities for

discrete torsion that exist universally, only because of the group action, the study

of discrete torsion reduces to group cohomology.

Of course, here we have supposed that G acts freely on M0 to get a situation

that can be conveniently understood geometrically and to make the relevance of

group cohomology obvious, without any formulas. It is well known that the formal

construction of the quantum field theory associated with the quotient of M0/G goes

through in much the same way whether G acts freely on M0 or not. The formulation

and verification of the conditions that arise for modifying the quantum field theory

on M0/G with phases likewise makes sense regardless of the nature of the G action,

and the possible phases that exist universally are still classified by H2(BG,Z).

As was shown in [7], discrete torsion also gives rise to a natural automorphism of

the fusion algebra of a conformal field theory. In the light of the three dimensional

framework, this will correspond to a phase transformation of the states in the Hilbert

spaces HΣ that is an invariance of all the morphisms ΦM , i.e. all interactions. Let

us recall that states v ∈ HΣ are functions v(γ) with γ ∈ V , the moduli space of G
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bundles on Σ. An element β ∈ H2(G,U(1)) transforms the states as

v(γ)→ v(γ) 〈γ∗β, [Σ]〉. (6.53)

However if Σ = ∂M , as is always the case for a transition amplitude, this phase

dissappears because of the condition δβ = 1.
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