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1. States, Observables, and Symmetries

The basic ingredients of a theory of a physical system are mathematical objects de-

scribing 1) a set S of states of the system, 2) the set O of observables of a system, that

is, real-valued properties of the system which can be experimentally determined, and 3)

the group G of symmetries of the system. The difference between classical physics and

quantum theory arises from very different choices of mathematical objects used to describe

states, observables, and symmetries. But in both classical and quantum physics certain

mathematical structures appear that are associated with (S,O,G) . Three of the most

important are:

1. Given a state ψ ∈ S and an observable A ∈ O there is a probability measure µA,ψ

on IR which represents the probability distribution of values that the observable A may

be measured to have when the system is in the state ψ. (We are not assuming that the

observable A has a unique numerical value in a given state ψ; repeated measurements of

the same observable a system in the same state may have different values, and these values

are distributed according to a probability distribution.)

A probability measure µ on a measure space X is a finite measure such that µ(X) = 1.
Measures on a topological space, e.g. IR, will always be assumed to be defined on the σ-algebra
of Borel sets.

2. The group G has an action U on the set S of states.

An action U of a group G on a set S is a mapping U :G × S → S, usually written as
(g, x) 7→ U(g)x, such that: 1) U(e)x = x where e is the identity in G; 2) U(gh)x = U(g)U(h)x.
These imply U(g−1) = U(g)−1.

The most important and simple example is where G = IR and U is time evolution;

i.e. given a state ψ ∈ S and t ∈ IR, the state U(t)ψ is obtained by simply waiting t units

of time, letting the state evolve according to the physical laws the system obeys. The

requirement U(t + s) = U(t)U(s) amounts to saying that the physical laws don’t change

with time, i.e. there are no time-dependent external influences on the system.

3. The group G is a topological group, that is, a group with a topology such multi-

plication is continuous from G×G to G and the map g 7→ g−1 is continuous from G to G.

A continuous homomorphism t 7→ gt from IR to G is called a one-parameter subgroup,
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though strictly speaking its range is a subgroup of G. Given a one-parameter subgroup

let U(t) = U(gt). Then associated to the one-parameter subgroup there is an observable

A ∈ O called the associated conserved quantity, which has the property that µA,U(t)ψ

is independent of t. For example, in physics the conserved quantity associated with time

evolution is called energy or the Hamiltonian. In systems which have symmetry under

spatial translations, the associated conserved quantities are called momenta (in the x, y,

and z directions, for example). In systems which have rotational symmetry the associated

conserved quantities are called angular momenta (about the x, y and z axes, for ex-

ample). In electromagnetism there is a one-parameter group of symmetries called global

gauge transformations which corresponds to the conserved quantity electric charge.

This relation between states, observables, and symmetries is less obvious and more inter-
esting than the first two; it often goes by the name of Nöther’s Theorem, after Emmy Nöther,
the student of Hilbert, since a version of it applicable to problems in variational calculus was
proved in her ‘Invariante Variationsprobleme’ article in 1918, available in English in Transport
Theory and Stat. Phys.1, 186-207 (1971).

We now will say what mathematical objects fill the roles of (S,O,G) in classical

mechanics and quantum theory. In the case of quantum theory we will immediately be led

to the spectral theorem and Stone’s theorem, which we will then prove.

2. States, Observables, and Symmetries in Classical Mechanics

In classical mechanics, the set of states S is IR2n = IRn ⊕ IRn, called phase space,

and the first summand IRn is called configuration space. One uses coordinates {qi}ni=1

for configuration space; these coordinates are called positions, and one uses coodinates

{qi, pi}ni=1 for phase space; the pi being called momenta.

The relation between these ‘momenta’ and the ‘momenta’ mentioned above is indirect. A
typical example of phase space appears in the description of a system of n point particles in
ordinary 3-dimensional space; each particle’s state is described by its position ~qi = (q1i, q2i, q3i)
and its momentum, or mass times velocity vector, ~pi = (p1i, p2i, p3i), and the whole assemblage
is described by the following vector in the phase space S = IR3n⊕ IR3n: (~q1, . . . ,~qn,~p1, . . . ,~pn).

The set of observables O is the space C(IR2n) of continuous real-valued functions on

phase space. Given a state ψ ∈ IR2n and an observable A ∈ C(IR2n), the probabilty

measure µA,ψ mentioned above is just δA(ψ), the Dirac delta measure at A(ψ) ∈ IR. In

other words, if the state is ψ the value of any observable A is always measured to be A(ψ);

there’s no ‘uncertainty’ in the value of A.

We will consider only the simplest case, in which the group G of symmetries is just

IR. Given a smooth function H ∈ C∞(IR2n), we define the associated vector field vH on

2



IR2n by

vH =
∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi
.

A vector field v on R2n is integrable if there is an action U of IR on IR2n such that

d

dt
U(t)ψ = v(U(t)ψ) .

If vH is integrable and U is an action of IR on IR2n such that d
dtU(t)ψ = vH(U(t)ψ), and

we write in coordinates U(t)ψ = (qi, pi) ∈ IR2n, then Hamilton’s equations hold:

dqi
dt

=
∂H

∂pi
;

dpi
dt

= −∂H
∂qi

.

In classical mechanics the action U of the group IR on states is required to be one arising

from some H ∈ C∞(IR2n) in this way, and H is the conserved quantity associated to U .

Exercise: Show that Hamilton’s equations are indeed equivalent to

d

dt
U(t)ψ = vH(U(t)ψ) .

Show that if H ∈ C∞(IR2n) and vH is integrable, the directional derviative vHH equals

zero. Show that this implies that the measure µH,U(t)x is independent of t for any state

x ∈ IR2n. (This is a baby version of Nöther’s theorem.)

Exercise: Show that if H = 1
2

∑n
i=1 q

2
i +p2

i (the harmonic oscillator Hamiltonian)

the vector field vH is integrable by explicitly solving Hamilton’s equations. Show that if

H =
∑n
i=1

1
2 (q2

i + p2
i ) + 1

4λip
4
i (the anharmonic oscillator Hamiltonian) the vector

field vH is integrable if and only if all the coupling constants λi are non-negative.

The setup for classical mechanics as we have described it can be substantially generalized.
The three most important directions of generalization are: 1) The group of symmetries G can
be an arbitrary Lie group (a group which is also a smooth manifold, such that the group
operations are smooth maps). 2) The phase space S can be an arbitrary symplectic manifold
(a manifold with a non-degenerate closed 2-form). 3) The group G and the phase space S can
be infinite-dimensional; this occurs in the study of classical field theory, i.e. the study of wave
equations.
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3. States, Observables and Symmetries in Quantum Theory

In quantum mechanics the set of states S is the unit sphere in a Hilbert space H; i.e.

S = {ψ ∈ H: ‖ψ‖ = 1} .

As we shall see, for many purposes it’s better to take the state space to be the quotient
of this sphere by the equivalence relation: ψ ∼ φ if ψ = cφ for some c ∈ C, i.e. our present
description is ‘redundant’, but this is unimportant for introductory purposes.

The set of observables O is then the set of self-adjoint operators on H. Recall that a

operator on H is a linear map A from a linear subspace of H to H. This subspace, the

domain of A, is denoted D(A), and we are not requiring even that it be dense in H. If

D(A) is dense in H we say that A is densely defined. An operator with domain equal

to all of H, satisfying

∃c ≥ 0 ∀ψ ∈ H ‖Aψ‖ ≤ c‖ψ‖

is called a bounded operator, and the space of all bounded operators on H is denoted by

L(H). The adjoint of an operator A is supposed to have the property 〈φ,Aψ〉 = 〈A∗φ, ψ〉,
where we use 〈·, ·〉 for the inner product in H. (Also, we follow the physicists’ convention

that the inner product is linear in the second variable.) But for operators that are not

bounded this requires some care in formulation. Thus we define the adjoint of a densely

defined operator A to be the operator A∗ with domain

D(A∗) = {φ ∈ H:∃φ′ ∈ H ∀ψ ∈ D(A) 〈φ,Aψ〉 = 〈φ′, ψ〉}

and noting that if φ′ with the above property exists it is unique (because A is densely

defined), we define A∗φ for φ ∈ D(A∗) to be the unique φ′ such that

∀ψ ∈ D(A) 〈φ,Aψ〉 = 〈φ′, ψ〉 .

An operator A on a Hilbert space is said to be self-adjoint if it is densely defined and

equal to its adjoint (which in particular means that D(A) = D(A∗).)

The definition of adjoint may look complicated, but it is the most natural possible defi-
nition for densely defined operators. It foreshadows the fact that densely defined (unbounded)
operators are altogether more subtle than bounded operators. Physicists typically ignore these
nuances, and indeed the fastest way to tell if a physicist is a ‘mathematical physicist’ is to ask
him to define ‘adjoint’.

Given a state ψ in S and a self-adjoint operator A on H there is a probability measure

µA,ψ on IR, called the ‘spectral measure’, which describes the probability distribution
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of measured values for A when the system is in the state ψ. This measure arises as a

consequence of the spectral theorem, which we shall soon state and prove.

A bounded operator T on a Hilbert space H is unitary if TT ∗ = T ∗T = I, or

equivalently if T is onto and ‖Tψ‖ = ‖ψ‖ for all ψ ∈ H. Recall that an action U of a

group G on a vector space V is a representation if U(g) is linear for all g ∈ G; if in

addition S is a Hilbert space and U(g) is unitary for all g ∈ G we say U is a unitary

representation. If G is a topological group we say that a representation of G on a

Hilbert space is strongly continuous if gα → g in G implies ‖U(gα)ψ−U(g)ψ‖ → 0 for

all ψ ∈ H. In quantum theory one requires that the group G of symmetries be a topological

group and that the action U of G on the states S come from a strongly continuous unitary

representation of IR on H. Stone’s theorem then associates to any one-parameter subgroup

gt of G a conserved quantity A, a self-adjoint operator on H also called the ‘generator’ of

U(t) = U(gt).

We recall here the three most important topologies on L(H). The norm topology is defined
by: Tα → T if ‖Tα−T‖ → 0. The strong topology is defined by: Tα → T if ‖Tαψ−Tψ‖ → 0
for all ψ ∈ H. And the weak topology is defined by: Tα → T if 〈φ, (Tα − T )ψ〉 → 0 for all
ψ, φ ∈ H. A function from or to L(H) is said to be norm-continuous, strongly continuous, or
weakly continuous depending on which topology is used for L(H).

Exercise - Let `2 denote the Hilbert space of complex sequences ψ = (ψ1, ψ2, . . .) with

finite norm ‖ψ‖ = (
∑
|ψi|2)1/2, given the inner product 〈ψ, φ〉 =

∑
ψiφi. Let T be the

left shift operator, given by T (ψ1, ψ2, . . .) = (ψ2, ψ3, . . .). Calculate T ∗(ψ1, ψ2, . . .) and

explain why T ∗ is called the right shift operator. These shift operators illustrate some

of the things that bounded linear operators can do in infinite dimensions that they cannot

in finite dimensions. For example, show that T ∗ is an isometry, e.g. ‖T ∗ψ‖ = ‖ψ‖, but

not unitary. Show that an isometry of a finite-dimensional Hilbert space is unitary. Show

that T and T ∗ do not commute.

Exercise - Show that norm convergence implies strong convergence, which implies

weak convergence, but that the converses do not hold. (For counterexamples, consider

the sequences {Tn} and {T ∗n}, where T is the left shift.) Show that converses hold in a

finite-dimensional Hilbert space. Show also that if Uα are unitary and Uα → U weakly

then Uα → U strongly; thus a weakly continuous unitary representation is automatically

strongly continuous.

Exercise - Show that for bounded operators S, T we have T ∗∗ = T , ‖T ∗‖ = ‖T‖,
‖T ∗T‖ = ‖T‖2, (cT )∗ = cT ∗, (S+T )∗ = S∗+T ∗, and (ST )∗ = T ∗S∗. Show that the map

T 7→ T ∗ is norm-continuous and weakly continuous but not strongly continuous. (For the

counterexample consider shift operators.)
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4. The Spectral Theorem - Bounded Case

We begin by proving the spectral theorem for bounded self-adjoint operators and then

deal with the unbounded case. First we define the spectrum of a bounded operator (not

necessarily self-adjoint) T ∈ L(H) to be the set of λ ∈ C such that T −λI is not invertible,

i.e. is not a bijection with a bounded inverse. The spectrum of T is denoted σ(T ). The

complement of the spectrum of T is called the resolvent set of T and denoted ρ(T ). The

exercises below show that the spectrum is a natural generalization of the set of eigenvalues

of a matrix.

Exercise - Show that if H = Cn the spectrum of T ∈ L(H) is just the set of λ ∈ C such

that det(T − λI) = 0. Show in this case that the spectrum of T is the set of eigenvalues

of T (for self-adjoint T this is easy; for general T one can use the Jordan canonical form -

see any advanced book on linear algebra, e.g. Birkhoff and MacLane, A Survey of Modern

Algebra.)

Exercise - Given a bounded operator T on H define λ ∈ C to be an approximate

eigenvalue of T if for any ε > 0 there exists ψ ∈ H with ‖ψ‖ = 1 and ‖Tψ − λψ‖ ≤ ε.

Show that if λ is an approximate eigenvalue for T then λ ∈ σ(T ). For a partial converse,

show that if A is a bounded self-adjoint operator on a Hilbert space and λ ∈ σ(A), then

λ is an approximate eigenvalue of A. Hint for the second part: show that for any densely

defined operator T on L(H),

Ran(T )⊥ = Ker(T ∗) ,

so that for bounded self-adjoint A, (A − λI) is invertible unless λ is an approximate

eigenvalue of A.

Exercise - Show that λ ∈ σ(T ) implies λ ∈ σ(T ∗). Show that if A is bounded and

self-adjoint σ(A) ⊆ IR.

The Spectral Mapping Theorem (for polynomials). If T is a bounded operator and

P is a nonconstant polynomial then σ(P (T )) = {P (λ):λ ∈ σ(T )}. (For short we simply

write σ(P (T )) = P (σ(T )).)

Proof - Let λ ∈ σ(T ). Since x = λ is a root of P (x)− P (λ), we can factor:

P (x)− P (λ) = (x− λ)Q(x) ,
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so P (T ) − P (λ) = (T − λI)Q(T ). Since the operator T − λI is not invertible neither is

P (T )− P (λ), i.e. P (λ) ∈ σ(P (T )).

Conversely suppose µ ∈ σ(P (T )). Factor P (x) − µ as a(x − λ1) · · · (x − λn). Then

P (T )− µI = a(T − λ1) · · · (T − λn). If all the λi are not in σ(T ) then we have

(P (T )− µI)−1 = a−1(T − λ1)−1 · · · (T − λn)−1 ,

so µ is not in σ(P (T )), a contradiction. Thus there must be some λi ∈ σ(T ), and

P (λi)− µ = a(λi − λ1) · · · (λi − λn) = 0

so µ = P (λi). ut

Theorem. The spectral radius of a bounded operator T is defined to be r(T ) =

sup{|λ|:λ ∈ σ(T )} . If A is a bounded self-adjoint operator on H then r(A) = ‖A‖.

Proof - If λ ∈ σ(A) then λ is an approximate eigenvalue for A so there exists ψn ∈ H

with ‖ψn‖ = 1 and ‖Aψn‖ → |λ|. Thus ‖A‖ ≥ |λ|, so ‖A‖ ≥ r(A).

Now choose ψn such that ‖ψn‖ = 1 and ‖Aψn‖ → ‖A‖. Let λ = ‖A‖. If A is

self-adjoint then

‖A2ψn − λ2ψn‖2 = 〈A2ψn − λ2ψn, A
2ψn − λ2ψn〉

= ‖A2ψn‖2 − 2λ2‖Aψn‖2 + λ4

≤ (‖A‖ ‖Aψn‖)2 − 2λ2‖Aψn‖2 + λ4

= −λ2‖Aψn‖2 + λ4 → 0 .

Thus λ2 is an approximate eigenvalue for A2, so λ2 ∈ σ(A2) = σ(A)2. It follows that

‖A‖ ≤ r(A) . Thus ‖A‖ = r(A). ut

The remarkable thing about this theorem is that it relates a topological concept, the norm,
to a concept which is defined purely algebraically, the spectral radius. This interplay of topology
and algebra is behind the beautiful theory of C∗-algebras, a kind of algebra over the complex
numbers which has a norm and ∗ operator satisfying axioms like those which hold for L(H).
C∗-algebras are important in the mathematics of quantum field theory, and in understanding
the relation between classical and quantum physics.
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Exercise - Fill out the following proof of a generalization of the theorem above: if T

is a bounded operator then r(T ) ≤ ‖T‖ and

r(T ) = lim sup
n→∞

‖Tn‖1/n .

The idea is to use the Laurent series for (T − λI)−1, which is modeled after the series for

(z − λ)−1:

(T − λI)−1 = −
∞∑
n=0

λ−n−1Tn .

In the region in C where the series is norm-convergent, term-by-term multiplication is

justified in showing that (T − λI) multiplied by −
∑∞
n=0 λ

−n−1Tn, in either order, is the

identity. Recall however Hadamard’s theorem that the radius of convergence of
∑
anz

n

is R = 1/ lim supn→∞ |an|1/n, and that |
∑
anz

n| → ∞ for some sequence of z’s with

|z| → R. The same argument (fortified with the uniform boundedness theorem) shows that

the radius of convergence of
∑
Tnzn is r = 1/ lim sup ‖Tn‖1/n, and that ‖

∑
Tnzn‖ → ∞

for some sequence of z’s with |z| → R. Taking λ = 1/z, it follows that (T − λ)−1 exists

for λ ≥ R = lim sup ‖Tn‖1/n, and

‖(T − λI)−1‖ → ∞

for some sequence of λ’s with |λ| converging to R. This immediately implies that r(T ) ≤ R,

and to show that it also implies r(T ) = R it suffices to show that ‖(T−λI)−1‖ is continuous

on ρ(T ), since then r(T ) < R would imply have ‖(T − λI)−1‖ bounded near |λ| = R, a

contradiction. The continuity follows from a similar power series argument.

Exercise - Let T denote the left shift operator on `2. Compute the spectral radius of

T , show that the whole unit circle in C consists of approximate eigenvalues of T , and show

that 0 is an eigenvalue of T . Show that the whole unit circle in C consists of approximate

eigenvalues of T ∗ and that 0 is in the spectrum of T ∗, but 0 is not an approximate eigenvalue

of T ∗.

Theorem. If T is a bounded operator its spectrum is compact.

Proof - In the previous theorem we showed r(T ) ≤ ‖T‖, so σ(T ) is bounded and it

suffices to show that σ(T ) is closed or equivalently that the resolvent set ρ(T ) is open.

Suppose λ0 ∈ ρ(T ) and let R = (T − λI)−1. Then for λ sufficently close to λ0 the power

series
∞∑
n=0

(λ− λ0)nRn+1
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is norm-convergent and

(T − λI)(
∞∑
n=0

(λ− λ0)nRn+1) =

∞∑
n=0

[(T − λ0I)(λ− λ0)nRn+1 + (λ0 − λ)(λ− λ0)nRn+1] =

∞∑
n=0

[(λ− λ0)nRn − (λ− λ0)n+1Rn+1] = I .

The same argument shows that

[(
∞∑
n=0

(λ− λ0)nRn+1)](T − λI) = I ,

so we have found an explicit inverse for (T − λI). Thus λ ∈ ρ(T ). ut

Note the use of power series techniques in both the proof of this theorem and in the proof
that r(T ) = lim supn→∞ ‖Tn‖1/n in the exercise above. Such techniques from complex analysis
are very useful in operator theory; (T −λI)−1 is called an analytic operator-valued function on
ρ(T ) because it admits such local power series expansions in λ.

Spectral Theorem - continuous functional calculus. If A is bounded self-adjoint

operator on the Hilbert space H there is a unique map π:C(σ(A))→ L(H) such that:

1. π is a ∗-homomorphism, i.e.

π(λf) = λπ(f) , π(f + g) = π(f) + π(g) , π(fg) = π(f)π(g) ,

π(f) = π(f)∗ , π(1) = I ,

2. π is continuous, i.e., ‖π(f)‖ ≤ C‖f‖∞,

3. If h is the function h(λ) = λ, then π(h) = A.

We shall usually write f(A) for π(f). In this notation, π has the following properties:

4. If f ≥ 0 then f(A) ≥ 0.

5. ‖f(A)‖ = ‖f‖∞.

6. σ(f(A)) = f(σ((A)). (The spectral mapping theorem.)
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7. If Aψ = λψ then f(A)ψ = f(λ)ψ.

Proof - We first define π on polynomials by π(p) = p(A). The idea is to show that

the definition of a polynomial function of a self-adjoint operator extends to continuous

functions, obtaining a ‘continuous functional calculus’. The trick is to use Weierstrass’

theorem, which says that the set of polynomials is dense in C(σ(A)), since σ(A) is compact.

If we can show 2 for polynomial f , it will then follow that π extends uniquely from the

polynomials to all of C(σ(A)), and satisfies 2 for all f . (Here we are using the easy but

all-important B.L.T. theorem (for ‘bounded linear transformation’), which says that

if X and Y are Banach spaces, D is a dense subspace of X, and f :D → Y satisfies

‖f(x)‖ ≤ C‖x‖ for all x ∈ D, then f extends uniquely to a bounded linear function from

X to Y .) Thus we first verify 2 for a polynomial p. We have

‖π(f)‖ = ‖p(A)‖

= (‖p(A)∗p(A)‖)1/2

= ‖(pp)(A)‖1/2

= r((pp)(A))1/2 ,

the latter since p(A)∗p(A) = (pp)(A) is self-adjoint. By the spectral mapping theorem for

polynomials we have

r((pp)(A)) = sup{p(λ)p(λ):λ ∈ σ(A)}

= ‖p‖2∞ ,

Thus

‖π(p)‖ = ‖p‖∞

if p is the restriction of a polynomial to σ(A), verifying 2 for polynomials.

It follows from the B.L.T. theorem that we may uniquely extend π to continuous

functions, and that 2 and 7 hold. Clearly 3 holds, and since 1 holds for polynomial f, g

its easy to see that it extends by continuity to hold for all f, g ∈ C(σ(A)). It also follows

from the B.L.T. theorem that π as we’ve defined it is the unique function satisfying 1 - 3.

Property 4 clearly holds for polynomial f and extends by continuity to all f ∈
C(σ(A)). We’ve shown that 5 holds. 7 holds for polynomials and extends by continu-

ity to all f ∈ C(σ(A)).

It remains to prove 6, which we know holds for polynomials. We show that f(σ(A)) ⊆
σ(f(A)) as follows. Let λ ∈ σ(A); λ is an approximate eigenvalue of A so choose ψn ∈ H

with ‖ψn‖ = 1 and ‖(A−λI)ψn‖ ≤ 1/n. Choose polynomials Pm converging uniformly to
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f on σ(A), with ‖Pm − f‖ ≤ 1/m. Then for any m,

‖(f(A)− f(λ)I)ψn‖ ≤ ‖(f(A)− Pm(A))ψn‖+ ‖(Pm(A)− Pm(λ)I)ψn‖

+ ‖(Pm(λ)− f(λ)ψn‖

≤ ‖f(A)− Pm(A)‖+ ‖(Pm(A)− Pm(λ))ψn‖+ ‖Pm − f‖L∞(σ(A))

≤ ‖(Pm(A)− Pm(λ))ψn‖+ 2/m .

Since ‖ψn‖ = 1 and ‖Aψ − λψ‖ ≤ 1/n, we have, for any k ≥ 0,

‖Akψn − λkψn‖ = ‖(Ak−1 + λAk−2 + · · ·+ λk−1I)(A− λI)ψn‖

≤ ‖Ak−1 + λAk−2 + · · ·+ λk−1‖/n ,

which goes to zero as n→∞, so

lim
n→∞

‖(Pm(A)− Pm(λ))ψn‖ = 0 ,

so for n large enough this implies that

‖(f(A)− f(λ)I)ψn‖ ≤ 3/m .

Since m is arbitrary this implies that

‖(f(A)− f(λ)I)ψn‖ → 0 .

Thus f(λ) is an approximate eigenvalue for f(A), so f(λ) ∈ σ(f(A)).

To show that σ(f(A)) ⊆ f(σ(A)), suppose that λ /∈ f(σ(A)). Then the function

g(x) = (f(x)− λ)−1 is continuous on σ(A), so we obtain g(A) by the functional calculus,

and

g(A)(f(A)− λI) = I = (f(A)− λI)g(A)

by the ∗-homomorphism property. Thus f(A)− λI is invertible, so λ /∈ σ(f(A)). ut

The spectral theorem has many versions, and a long and tangled history. There are three
main forms of the spectral theorem: the functional calculus form, the projection-valued measure
form (see the remarks on spectral projections in the next section), and the following form: if
A is a self-adjoint operator on a Hilbert space H, there is a measure space (X,µ), a real-
valued measurable function f on X, and a unitary transformation U : H → L2(X) such that
A = U−1MfU , where Mf denotes multiplication by f . That is, every self-adjoint operator is
unitarily equivalent to a multiplication operator.

Exercise - Prove the B.L.T. theorem.
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Note that if ψ ∈ H the above theorem implies that f 7→ 〈ψ, f(A)ψ〉 is a continuous

linear functional from C(σ(A)) to C, which moreover is positive by property 4. Thus by the

Riesz-Markov theorem there is a unique measure µA,ψ on σ(A), the spectral measure,

such that

〈ψ, f(A)ψ〉 =

∫
σ(A)

f(λ)dµA,ψ(λ) .

If ‖ψ‖ = 1 we have
∫
σ(A)

dµA,ψ(λ) = 1, so the spectral measure is a probability measure.

This makes good on our promise that in quantum theory the spectral theorem would yield

a probability measure given a state and an observable - though so far we’ve only shown

this for bounded A.

The spectral measure also immediately allows us to strengthen the above theorem:

Spectral Theorem - measurable functional calculus. Let A be a bounded self-

adjoint operator on H. Let B(σ(A)) denote the bounded Borel functions on σ(A) - not

identifying those which are equal a.e.. Given A on H and f ∈ B(σ(A)), there is a unique

bounded operator π(f) = f(A) such that

〈ψ, f(A)ψ〉 =

∫
σ(A)

f(λ)dµA,ψ(λ) .

Then π : B(IR)→ L(H) is the unique map satisfying:

1. π is a ∗-homomorphism,

2. ‖f(A)‖ = ‖f‖′∞, where the L∞′ norm is defined with the following modified notion

of ‘almost everywhere’: we say a property holds a.e.′ if for each ψ ∈ H the property holds

except for a set of measure zero relative to µA,ψ.

3. If h is the function h(λ) = λ, then h(A) = A.

Moreover 4. If f ≥ 0 then f(A) ≥ 0.

5. σ(f(A)) = f(σ((A)).

6. If Aψ = λψ then f(A)ψ = f(λ)ψ.

7. If AT = TA for some T ∈ L(H), then f(A)T = Tf(A).

8. Suppose that fn → f pointwise a.e.′ and ‖fn‖′∞ is bounded. Then fn(A)→ f(A)

strongly.

Sketch of proof - For the uniqueness one uses the polarization identity (see below),

which implies that a bounded operator is determined by the inner products 〈ψ, Tψ〉. Prop-

erty 8 follows from the dominated convergence theorem and the rest of the properties follow
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by limiting arguments and the previous version of the spectral theorem, using Lusin’s the-

orem that given any Borel measure µ on IR, any f ∈ B(IR) is a pointwise µ−a.e. limit of

a uniformly bounded sequence of continuous functions. ut

Exercise - Prove the polarization identity for any T ∈ L(H):

〈φ, Tψ〉 =
1

4

[
{ 〈ψ + φ, T (ψ + φ)〉 − 〈ψ − φ, T (ψ − φ)〉 }

− i{ 〈ψ + iφ, T (ψ + iφ)〉 − 〈ψ − iφ, T (ψ − iφ)〉 }
]
.

Exercise - Work out the details of the proof of the above theorem.

The following exercises contain important generalizations of the spectral theorem, and

the results will be used in the next section:

Exercise - Prove the following:

Spectral Theorem for Collections. Let A1, . . . , An be a collection of pairwise com-

muting bounded self-adjoint operators on H. Let

X = σ(A1)× · · · × σ(An) ⊆ IRn .

Let B(X) denote the bounded Borel functions on X, again not identifying those which are

equal a.e.. There is a map π : B(X)→ L(H) and for each ψ ∈ H a measure µψ on X such

that

〈ψ, π(f)ψ〉 =

∫
X

f(x)dµψ(x)

and:

1. π is a ∗-homomorphism,

2. ‖π(f)‖ ≤ ‖f‖′∞, where the L∞′ norm is defined with the following modified notion

of ‘almost everywhere’: we say a property holds a.e.′ if for each ψ ∈ H the property holds

except for a set of measure zero relative to µψ.

3. If h:X → IR is the function h(λ1, . . . , λn) = λi, then π(h) = Ai.

4. If f ≥ 0 then π(f) ≥ 0.

5. If some T ∈ L(H) has AiT = TAi for all i, then π(f)T = Tπ(f).

13



6. Suppose that fn → f pointwise a.e.′ and ‖fn‖′∞ is bounded. Then fn(A)→ f(A)

strongly.

One usually writes f(A1, . . . , An) for π(f).

To prove this one can essentially copy the proof for a single operator. However to get

the B.L.T. theorem to work don’t use polynomials in the Ai, but instead linear combina-

tions of ‘rectangle functions’. Namely, define a rectangle in IRn to be a set of the form

S1 × · · · × Sn with each Si a Borel subset of IR. Define π on characteristic functions of

rectangles by:

π(χR) = χS1
(A1) · · ·χSn

(An)

where each χSi(Ai) is defined by the spectral theorem. Using the spectral theorem for

a single bounded operator, and in particular statement 8 of the ‘measurable functional

calculus’ version, show that if Ri is a finite collection of disjoint rectangles then

‖
∑

aiπ(χRi
)‖ ≤ ‖

∑
aiχRi

‖∞ .

Define π on finite linear combinations of rectangle functions by π(
∑
aiχRi

) =
∑
aiπ(χRi

),

and use the B.L.T. theorem to extend π to B(X).

Exercise - A bounded operator is normal if it commutes with its adjoint. E.g.,

unitary and bounded self-adjoint operators are normal. Show that if T is normal then

ReT = 1
2 (T + T ∗) and ImT = 1

2i (T − T
∗) are bounded self-adjoint and commute. Use the

spectral theorem for collections to prove the following:

Spectral Theorem for Normal Operators. Let T be a normal operator on H. Let

B(σ(T )) denote the bounded Borel functions on σ(T ). There is a map π : B(σ(T ))→ L(H)

and for each ψ ∈ H a measure µT,ψ on X such that

〈ψ, f(T )ψ〉 =

∫
σ(T )

f(λ)dµT,ψ(λ) .

and:

1. π is a ∗-homomorphism,

2. ‖f(A)‖ = ‖f‖′∞, where the L∞′ norm is defined with the following modified notion

of ‘almost everywhere’: we say a property holds a.e.′ if for each ψ ∈ H the property holds

except for a set of measure zero relative to µψ.
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3. If h is the function h(λ) = λ, then h(T ) = T .

4. If f ≥ 0 then f(T ) ≥ 0.

5. σ(f(T )) = f(σ((T )).

6. If Tψ = λψ then f(T )ψ = f(λ)ψ.

7. If ST = TS for some S ∈ L(H), then f(S)T = Tf(S).

8. Suppose that fn → f pointwise a.e.′ and ‖fn‖′∞ is bounded. Then fn(T ) → f(T )

strongly.

Exercise - Show using the theorem above that if T is normal, the spectrum of T is the

closure of
⋃
ψ∈H suppµT,ψ. (Hint: show that if λ is not in the closure of

⋃
suppµT,ψ, one

can construct (T − λI)−1 using the functional calculus.)

Exercise - Use the exercise above to show that the spectrum of a normal operator

consists of approximate eigenvalues. Conclude that if U is unitary, σ(U) is a subset of the

unit circle in C.

Exercise - Assume A ∈ L(H). Use the polarization identity to show that if A ≥ 0,

i.e. 〈ψ,Aψ〉 ≥ 0 for all ψ ∈ H, then A is self-adjoint.

Exercise - Show that A ≥ 0 if and only if σ(A) is a subset of [0,∞) (for one direction

use the previous exercise). Show that if A ≥ 0 there exists B ∈ L(H) with B ≥ 0 and

B2 = A.

5. The Spectral Theorem - Unbounded Case

The spectral theorem for unbounded self-adjoint operators proceeds by reduction to

the bounded case. We begin by establishing a useful property of self-adjoint operators. We

define an operator T on H to be symmetric if it is densely defined and for all ψ, φ ∈ D(T )

we have

〈φ, Tψ〉 = 〈Tφ, ψ〉 .

Note that this is equivalent to saying that T ⊆ T ∗, since it says that for every φ ∈ D(T )

there exists φ′ ∈ H (namely Tφ) such that

〈φ, Tψ〉 = 〈φ′, ψ〉 ,

so that D(T ) ⊆ D(T ∗), and T ∗φ = φ′ = Tφ, so that T ⊆ T ∗. Thus every self-adjoint

operator is symmetric, but as we’ll see the converse does not hold.
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Beware: physicists often say self-adjoint when they mean symmetric. This is a result
of insufficient education and the following facts: 1) ‘sufficiently nice’ symmetric operators are
self-adjoint, and 2) it’s much easier to check if an operator is symmetric than if its self-adjoint
- in other words, it can be very difficult to show that a symmetric operator is ‘sufficiently nice’.
To check that an operator T is symmetric one must show that 〈φ, Tψ〉 = 〈Tφ, ψ〉 for every
φ, ψ ∈ D(T ); this is often easy to do, and if T is a differential operator it usually amounts
to integration by parts. To check that T is self-adjoint one must also show that if φ ∈ H
has a φ′ ∈ H such that 〈φ, Tψ〉 = 〈φ′, ψ〉, then φ lies in D(T ). This is usually done indirectly
using various theorems, some of which we will discuss later, and many problems in mathematical
physics consist of proving that symmetric operators are self-adjoint. This is because the spectral
theorem only holds for self-adjoint operators, so self-adjoint operators are much better than
merely symmetric operators.

We also note term ‘hermitian’ is also used by mathematicians to mean symmetric, and by
physicists to mean self-adjoint, by which they mean symmetric. . .we will avoid this term.

We define an operator T to be closed if given ψi ∈ D(T ) such that ψi → ψ ∈ H and

Tψi → ψ′ then ψ ∈ D(T ) and Tψ = ψ′. If T is an operator and T ⊆ S for some operator

S, we say S is an extension of T . If T is an operator with a closed extension we say T is

closable. If T is closable the intersection of all closed extensions of T is a closed extension

of T called the closure of T , written T .

Exercise - Prove the claim above the intersection of a set of closed extensions is a

closed extension.

Exercise - Show that if T is a densely defined operator satisfying ‖Tψ‖ ≤ C‖ψ‖ then

T has a unique closed extension, and that this extension is a bounded operator.

Exercise - An operator that’s not closable. Let ψn be an orthonormal basis for a

Hilbert space H and let φ ∈ H be a vector that is not a linear combination of finitely

many ψn. Let D be the set of finite linear combinations of φ and the ψn, and let T be the

operator with domain D defined by:

T

(
aφ+

N∑
n=1

bnψn

)
= aφ .

Show that T is a densely defined linear operator. Show that any closed extension S of T

would have Sφ = φ and Sφ = 0, obtaining a contradiction.

Exercise - A nonzero operator whose adjoint is zero (roughly speaking). Let ψn be an

orthonormal basis for a Hilbert space H and let D be the set of all finite linear combinations

of the ψn. Let T be the operator with domain D defined by:

T

(
N∑
n=1

anψn

)
= (

N∑
n=1

an)ψ1 .

Show that T is a densely defined linear operator. Show that the domain of T ∗ consists of

all vectors orthogonal to ψ1, and that T ∗ is zero on this domain.
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Note that in matrix language

T =


1 1 1 · · ·
0 0 0 · · ·
0 0 0 · · ·
· · · · · ·


So why is T ∗ zero?

The Basic Criterion for Self-adjointness. Let T be a symmetric operator on a Hilbert

space H. Then the following three statements are equivalent:

1. T is self-adjoint.

2. T is closed and Ker(T ∗ ± i) = {0}.

3. Ran(T ± i) = H.

Proof. 1 ⇒ 2: Assume T is self-adjoint. To show that T is closed we need to show

that if ψi → ψ ∈ H and Tψi → ψ′ then ψ ∈ D(T ) and Tψ = ψ′. Since T = T ∗ we only

need to show that ψ ∈ D(T ∗) and T ∗ψ = ψ′. In other words, we need to show that for all

φ ∈ D(T ),

〈ψ, Tφ〉 = 〈ψ′, φ〉 .

Since T is self-adjoint and ψi ∈ D(T ) we have:

〈ψ, Tφ〉 = lim
i→∞
〈ψi, Tφ〉

= lim
i→∞
〈Tψi, φ〉

= 〈ψ′, φ〉

as desired.

Next we need to show that if T is self-adjoint and (T + i)ψ = 0 or (T − i)ψ = 0 for

some ψ ∈ D(T ), then ψ = 0. If (T − i)ψ = 0,

〈ψ, iψ〉 = 〈ψ, Tψ〉

= 〈Tψ, ψ〉

= 〈iψ, ψ〉

= −〈ψ, iψ〉 ,

so ψ = 0, and the other case works similarly.

17



2 ⇒ 3: Assume T is symmetric and closed and Ker(T ∗ ± i) = 0. We shall show

Ran(T±i) is closed and dense in H. Since Ker(T ∗±i) = Ran(T∓i)⊥, and the orthogonal

complement of a subspace is empty if and only if the subspace is dense, clearly Ran(T ± i)
is dense.

To show that Ran(T + i) is closed we naturally use the hypothesis that T is closed

(the proof that Ran(T − i) is closed is similar). Suppose we have (T + i)ψi → φ in H. We

need to show that there exists ψ ∈ D(T ) such that φ = (T + i)ψ. We have

0← ‖(T + i)ψi − (T + i)ψj‖2

= ‖T (ψi − ψj)‖2 + ‖ψi − ψj‖2

+〈i(ψi − ψj), T (ψi − ψj)〉+ 〈T (ψi − ψj), i(ψi − ψj)〉 ,

and the last two terms cancel because T is symmetric. Thus ψi → ψ and Tψi → Tψ for

some ψ ∈ D(T ), since T is closed. Thus we have φ = lim(T + i)ψi = (T + i)ψ.

3 ⇒ 1: Assume that Ran(T ± i) = H. Given φ ∈ D(T ∗) we want to show that

φ ∈ D(T ), since this will imply D(T ) = D(T ∗) which together with T ⊆ T ∗ implies

T = T ∗.

Since Ran(T − i) = H there exists ψ ∈ D(T ) such that (T ∗ − i)φ = (T − i)ψ. Since

T ⊆ T ∗ this implies φ− ψ ∈ D(T ∗) and

(T ∗ − i)(φ− ψ) = 0 .

Since Ran(T + i) = H, Ker(T ∗ − i) = 0 so φ = ψ ∈ D(T ), as was to be shown. ut

Exercise - Let X be a measure space, µ a measure on X, and H = L2(X,µ). Let f

be a real-valued measurable function on X and let Mf be the operator with domain equal

to D = {ψ ∈ H: fψ ∈ H} and for ψ ∈ D let Mfψ = fψ. Mf is called a multiplication

operator. Show that: 1) Mf is densely defined, 2) Mf is symmetric, and 3) Mf is

self-adjoint. One can prove 3) directly from the definitions or using the criterion above.

Spectral Theorem - measurable functional calculus. Suppose that A is a self-adjoint

operator on H. Then for each ψ ∈ H there is a spectral measure µA,ψ, and for each

f ∈ B(IR) there is a unique bounded operator π(f) = f(A) such that

〈ψ, f(A)ψ =

∫
IR

f(λ)dµA,ψ(λ)
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and:

1. π is a ∗-homomorphism,

2. ‖f(A)‖ = ‖f‖′∞, where the L∞′ norm is defined with the modified notion of ‘almost

everywhere’ in which we say a property holds a.e.′ if for each ψ ∈ H the property holds

a.e. except for a set of measure zero relative to µA,ψ.

3. If fn ∈ B(IR) are functions such that fn(λ) → λ pointwise and |fn(λ)| ≤ |λ|, then

fn(x)ψ → Aψ for any ψ ∈ D(A).

4. If f ≥ 0 then f(A) ≥ 0.

5. If Aψ = λψ then f(A)ψ = f(λ)ψ.

6. Suppose that fn → f pointwise a.e.′ and ‖fn‖′∞ is bounded. Then fn(A)→ f(A)

strongly.

Sketch of proof - The idea is to reduce to the bounded case, so we need a function that

‘compresses’ A down to a normal operator without losing any information. For example,

the operator consisting of multiplication by x on L2(IR) is self-adjoint and unbounded,

and our procedure will ‘compress’ it to the operator consisting of multiplication by (x +

i)(x − i)−1, which is unitary. Let α(x) = (x + i)(x − i)−1. Our idea is to construct f(A)

by constructing (f ◦ α−1)(Ã), where Ã = (A + i)(A − i)−1 will be a well-defined unitary

operator, called the Cayley transform of A. Composing f with α−1 ‘undoes’ the effect of

the Cayley transform A 7→ Ã. We begin with some lemmas:

Lemma 1. If A is self-adjoint then Ã = (A+ i)(A− i)−1 is a well-defined unitary operator

on H.

Proof - If A is self-adjoint the maps (A ± i):D(A) → H are 1-1 and onto. Thus the

composite (A+ i)(A− i)−1 is a well-defined 1-1 and onto map from H to H, and to show

that it is unitary it suffices to show that it is norm-preserving.

We need to show that ‖(A + i)(A − i)−1φ‖ = ‖φ‖ for all φ ∈ H. We can use the

criterion for self-adjointness to write φ = (A− i)ψ for some ψ ∈ D(A). Thus it suffices to

show that ‖(A+ i)ψ‖ = ‖(A− i)ψ‖ for all ψ ∈ D(A). This follows from:

‖(A± i)ψ‖2 = ‖Aψ‖2 + ‖ψ‖2 ,

shown earlier in the proof of the criterion for self-adjointness. ut

Lemma 2. Let S1 denote the unit circle in the complex plane. Given f ∈ B(IR) define

f̃ ∈ B(S1) by: f̃(x) = f(α−1(x)) on the range of α, and f̃ = 0 elsewhere. Then the map

19



f 7→ f̃ defines a ∗-homomorphism from B(IR) to B(S1) modulo functions that are zero a.e.

′, where f = 0 a.e.′ means that f = 0 a.e. with repsect to all the measures µ
Ã,ψ

.

Proof - An easy calculation shows that α: IR → S1, so that f̃ ∈ B(S1). The range of

α is just S1−{1}. We prove one of the ∗-homomorphism properties and leave most of the

rest as easy exercises:

(f̃ + g̃)(x) = f(α−1(x)) + g(α−1(x)) = (f + g)(α−1(x)) = ˜(f + g)(x) .

The only tricky point is that we need to show that 1̃, that is the function equal to 1 on

S1−{1} and 0 at {1}, is equal to 1 a.e.′. It suffices to show that µ
Ã,ψ

(1) = 0 for all ψ ∈ H.

We use the:

Sublemma. If T is normal, then λ ∈ σ(T ) has nonzero measure with respect to some

µT,ψ if and only if Tφ = λφ for some nonzero φ ∈ H.

Proof - Suppose µT,ψ(λ) 6= 0. Let χλ be the characteristic function of {λ}, and let

φ = χλ(T )ψ. We claim that φ 6= 0 and Tφ = λφ. First note that by the spectral theorem

‖φ‖2 = 〈ψ, χλ(T )2ψ〉

= 〈ψ, χλ(T )ψ〉

=

∫
χλ(λ′)dµTψ(λ)

= uT,ψ({λ}) > 0 ,

so φ 6= 0. Similarly,

‖(T − λI)φ‖2 = 〈ψ, χλ(T )2(T − λ)∗(T − λ)ψ〉

=

∫
χλ(λ′)2|λ′ − λ|2dµT,ψ

= 0 ,

so Tφ = λφ.

The converse uses similar ideas and is left as an exercise. ut

By this sublemma it suffices to show that there is no nonzero φ ∈ H with Ãφ = φ.

Suppose there was, i.e. suppose that

φ = (A+ i)(A− i)−1φ .
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Let ψ = (A− i)−1φ. Then

(A− i)ψ = (A+ i)ψ

so ψ = 0. It follows that φ = 0 because Ker(A− i)−1 = 0; this is a contradiction. ut

Note that σ(Ã) ⊆ S1 since Ã is unitary. Thus f̃ restricts to a bounded Borel function

on σ(A), and given f ∈ B(IR) we may define f(A) = f̃(Ã) using the spectral theorem for

bounded operators. Most of the statements of the theorem now follow rather simply.

Statement 1 follows from Lemma 2 and the functional calculus for normal operators,

e.g.: (fg)(A) = (̃fg)(Ã) = f̃ g̃(Ã) = f̃(Ã)g̃(Ã) = f(A)g(A).

We define the spectral measures µA,ψ using the formula given in the statement of the

theorem. Note that if µ = µA,ψ and µ̃ = µ
Ã,ψ

then unraveling the definitions implies

∫
fdµ = 〈ψ, f(A)ψ〉 = 〈ψ, f̃(Ã)ψ〉 =

∫
f̃dµ̃

Thus the µ-measure of a set S equals the µ̃-measure of the set α(S), and statement 2

follows from the corresponding statement for bounded operators.

Statements 4-6 also follow easily from the spectral theorem for bounded operators,

and we leave them as exercises. Statement 3 is more touchy since the functions {fn} are

not uniformly bounded. We need a lemma:

Lemma 3. Let g(x) = (x+ i)−1. Then g(A) = (A+ i)−1.

Proof - By definition, g(A) = g̃(Ã), and it is easily computed that g̃(x) = x−1
2ix . Thus

by the functional calculus for normal operators:

g(A) = g̃(Ã) = (Ã− 1)(2iÃ)−1

=
1

2i
(1− Ã−1)

=
1

2i
(1− (A− i)(A+ i)−1)

=
1

2i
((A+ i)− (A− i))(A+ i)−1

= (A+ i)−1 ;

here as always one must take care to justify all the algebraic manipulations involving

unbounded operators, but we leave this as an exercise. ut
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Now suppose fn ∈ B(IR) are functions such that fn(λ) → λ pointwise and |fn(λ)| ≤
|λ|. Let g be defined as in the lemma; then the sequence (fn + i)g ∈ B(IR) is uniformly

bounded and converges to 1 pointwise, so by statement 6 and the lemma we have:

lim
n→∞

(fn(A) + i)(A+ i)−1φ = lim
n→∞

(fn(A) + i)g(A)φ = φ

for all φ ∈ H. Given any ψ ∈ D(A), we may write ψ = (A + i)−1φ, and conclude that

limn→∞(fn(A) + i)ψ = (A+ i)ψ, or

lim
n→∞

fn(A)ψ = Aψ ,

as desired. ut

The criterion for self-adjointness is due to von Neumann. The extension of the spec-
tral theorem to unbounded operators is due to von Neumann, ‘Allgemeine Eigenwerttheorie
Hermitescher Functionaloperatoren,’ Math. Ann. 102,49-131 (1929-1930), and Stone, ‘Linear
Transformations in Hilbert Spaces and their Applications to Analysis,’ A. M. S. Colloq. Publ.
15 (1932). Carleman in 1923 had pointed out that the spectral theorem would not work for
arbitrary symmetric operators.

The spectral theorem has many uses; our first big application of it will be to prove

Stone’s theorem in the next section. Note that it fulfills our promise to associate to each

state ψ and observable A of a quantum system a probability measure µA,ψ. We shall now

describe some basic consequences of this.

It follows from the the theorem above that for all states ψ ∈ D(A) we have

〈ψ,Aψ〉 =

∫
λ dµA,ψ(λ) .

Since µA,ψ represents the probability distribution of values that A can be measured to

have in the state ψ, the quantity 〈ψ,Aψ〉 naturally corresponds to the mean value, or

expectation value, of the observable A in the state ψ. Note that this only makes sense

for ψ ∈ D(A).

Exercise - A projection on a Hilbert space H is a bounded self-adjoint operator

P with P 2 = P . (Sometimes one considers projections that are not self-adjoint, but in

quantum theory one typically assumes self-adjointness, so we build it into the definition.)

Show that there is a 1-1 correspondence between projections and closed subspaces of H

given by associating to each projection its range, or conversely to each closed subspace

the orthogonal projection onto that subspace. Given a self-adjoint operator A on H and a
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Borel set S ⊆ IR, define the spectral projection onto S to be the operator χS(A) given

by the functional calculus, where χS is the characteristic function of S. Show that the

spectral projections are indeed projections and satisfy χS∪T (A) = χS(A) + χT (A) if the

sets S and T are disjoint.

Note that 〈ψ, χS(A)ψ〉 =
∫
S
dµA,ψ(λ), so that 〈ψ, χS(A)ψ〉 corresponds to the proba-

bility that the observable A is measured to have a value in the set S. Spectral projections

are thus very important for computing probabilities.

Exercise - Show that if IR is the disjoint union of a countable collection of Borel sets

Si that the sum of the probabilities pi that A will be measured to have a value lying in Si

is one.

This is only the beginning of detailed correspondence between concepts from prob-

ability theory and from quantum theory. Indeed quantum theory may be regarded as a

‘noncommutative generalization’ of probability theory - the noncommutativity of operator

multiplication gives rise to numerous strange effects such as the ‘uncertainty principle’,

which we will discuss later.

6. Stone’s Theorem

Stone’s theorem gives a 1-1 correspondence between one-parameter subgroups of uni-

tary operators on H and self-adjoint operators on H, which in quantum mechanics connects

symmetries with their associated conserved quantities. To prove it we need the notion of

an ‘essentially self-adjoint’ operator.

Recall that a densely defined operator is closable if it has closed extensions, in which

case the closure of the operator is its smallest closed extension. The following exercise

shows that symmetric operators are always closable.

Exercise - If T is densely defined then T ∗ is closed. If T is symmetric it is closable,

since T ∗ is a closed extension of T .

A symmetric operator A on a Hilbert space H is essentially self-adjoint if its closure

is self-adjoint. The importance of this is that it will be easier to show that operators are es-
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sentially self-adjoint than to show that they’re self-adjoint, and for some purposes essential

self-adjointness is good enough. One has: self-adjoint⇒essentially self-adjoint⇒symmetric.

There are a lot of useful relationships between these concepts, but for we’ll just mention a

couple that we’ll need for Stone’s theorem:

Exercise - If S and T are densely defined and S ⊆ T , then T ∗ ⊆ S∗. If A is self-

adjoint and B is a symmetric extension of A then B = A. (Hint: show A ⊆ B and

B ⊆ B∗ ⊆ A∗ = A.)

Exercise - Copy the proof of the basic criterion for self-adjointness to show the follow-

ing:

Basic Criterion for Essential Self-Adjointness. Let T be a symmetric operator on a

Hilbert space H. Then the following three statements are equivalent:

1. T is essentially self-adjoint.

2. Ker(T ∗ ± i) = {0}.

3. Ran(T ± i) are dense in H.

Stone’s Theorem. Let A be a self-adjoint operator and let U(t) = eitA. Then U(t) is a

strongly continuous one-parameter unitary group, i. e., for all t U(t) is unitary, U(t+ s) =

U(t)U(s), and tα → t implies Uα(t)ψ → U(t)ψ for all ψ ∈ H. Moreover

D(A) = {ψ ∈ H: lim
t→0

U(t)ψ − ψ
t

exists}

and for all ψ ∈ D(A)

iAψ = lim
t→0

U(t)ψ − ψ
t

.

Conversely, if U(t) is a strongly continuous one-parameter unitary group, there is a unique

self-adjoint operator A such that U(t) = eitA. A is called the infinitesimal generator of

U(t).

Proof - If A is a self-adjoint operator it is an easy exercise using the spectral theorem

to show that eitA is a strongly continuous unitary group. If ψ ∈ D(A) then since (eitλ−1)/t
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converges pointwise to λ as t → 0, with |(eitλ − 1)/t| ≤ λ for |t| ≤ 1, statement 3 of the

spectral theorem for unbounded operators implies that

iAψ = lim
t→0

U(t)ψ − ψ
t

.

Defining B by

D(B) = {ψ ∈ H: lim
t→0

U(t)ψ − ψ
t

exists}

and

iBψ = lim
t→0

U(t)ψ − ψ
t

,

it follows from the above that A ⊆ B, and B is symmetric since

〈Bψ, φ〉 = lim
t→0
〈(it)−1(U(t)− I)ψ, φ〉

= lim
t→0
〈ψ,−(it)−1(U(−t)− I)φ〉

= lim
t→0
〈ψ, (it)−1(U(t)− I)φ〉

= 〈ψ,Bφ〉 .

Since B is a symmetric extension of the self-adjoint oerator A, the exercise above implies

B = A. Thus

D(A) = {ψ ∈ H: lim
t→0

U(t)ψ − ψ
t

exists} .

Conversely, suppose that U(t) is a strongly continuous one-parameter unitary group.

We will obtain an essentially self-adjoint operator by differentiating U(t)ψ for ψ in a

domain of ‘smooth’ vectors, and the closure of this operator will be our self-adjoint A.

We use an important trick of G̊arding’s to obtain vectors for which U(t)ψ is differen-

tiable. Given f ∈ C∞0 (IR) define

φf =

∫
f(t)U(t)φdt ,

where the integral can be taken in the sense of Riemann (one can develop a full-blown the-

ory of Lebesgue integration for Hilbert-space-valued functions, but for continuous functions

like we have here the Riemann integral will do). Note that

lim
t→0

(
U(t)− I

t

)
φf = lim

t→0

∫
f(s)

(
U(t+ s)− U(s)

t

)
φds

= lim
t→0

∫
f(τ − t)− f(τ)

t
U(τ)φdτ

= −
∫
f ′(τ)U(τ)φdτ

= φ−f ′ ,
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leaving as an exercise the justification for passing the limit through the integral!

We define the G̊arding domain by D = {φf : f ∈ C∞0 (IR)} and define the operator

B on D by

Bφ = lim
t→0

(
U(t)− I

it

)
φ .

We claim: 1) D is dense, 2) B is essentially self-adjoint, 3) if A = B then U(t) = eitA.

For 1), given φ ∈ H choose a sequence fn ∈ C∞0 (IR) with suppfn ⊂ [−1/n, 1/n] and∫
fn = 1. Then each φfn is in D and

‖φfn − φ‖ = ‖
∫
fn(t)(U(t)φ− φ) dt ‖

≤ sup
t∈[−1/n,1/n]

‖U(t)φ− φ‖ ;

and since U(t) is strongly continuous it follows that φfn → φ, so D is dense.

For 2), first note that B can be proved symmetric in the same way that the operator

B appearing earlier in the proof was shown to be symmetric. Thus to show that B is

essentially self-adjoint we can use the basic criterion and show that Ker(B∗ ± i) = {0}.
We treat (B∗ − i), the case of (B∗ + i) being analogous. Suppose that ψ ∈ D(B

∗
) has

B∗ψ = iψ. Then for each φ ∈ D(B) = D we have

d

dt
〈U(t)φ, ψ〉 = 〈iBU(t)φ, ψ〉

= −i〈U(t)φ,B∗ψ〉

= −i〈U(t)φ, iψ〉

= 〈U(t)φ, ψ〉 ,

where in the first line we use the fact that U(t)ψ ∈ D, so that d
dtU(t)ψ = iBU(t)ψ. Thus

the function f(t) = 〈U(t)φ, ψ〉 satisfies f ′ = f , so f(t) = cet. But f(t) is bounded, since

U(t) is unitary, so we must have c = 0, and in particular 〈φ, ψ〉 = 0 for all φ ∈ D. Since D

is dense this means that ψ = 0 as desired.

For 3) we compare the two unitary groups U(t) and eitA. Given φ ∈ D let w(t) =

U(t)φ− eitAφ. Then w(t) is differentiable and

w′(t) = iBU(t)φ− iAeitAφ = iAU(t)φ− iAeitAφ = iAw(t)

since A|D = B. Thus

d

dt
‖w(t)‖2 = 〈w′(t), w(t)〉+ 〈w(t), w′(t)〉

= 〈iAw(t), w(t)〉+ 〈w(t), iAw(t)〉

= 0
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so w(t) = 0 for all t, since w(0) = 0. Thus for all φ ∈ D we have U(t)φ = eitAφ. Since D

is dense we must have U(t) = eitA (two bounded operators which agree on a dense set are

equal). ut

Note that if U(t) is a strongly continuous one-parameter unitary group with infinites-

imal generator A, for all t and all f ∈ B(IR) we have∫
f(λ)dµA,ψ(λ) = 〈ψ, f(A)ψ〉

= 〈eitAψ, f(A)eitAψ〉

=

∫
f(λ)dµA,U(t)ψ(λ)

so

µA,U(t)ψ = µA,ψ.

This makes good on our promise that Stone’s theorem would associate to each one-

parameter subgroup of symmetries an ‘associated conserved quantity’ - the infinitesimal

generator. In the most basic case U(t)ψ represents the state obtained from ψ by time

translation - that is, wating t units of time. Then the infinitesimal generator of U(t) is

called the Hamiltonian, and is often denote H. The fact that the probability distribu-

tion of measured values of H doesn’t change with time, i.e. µH,U(t)ψ = µH,ψ, is called

conservation of energy.

Also note that if ψ ∈ D(H) then

d

dt
U(t)ψ = HU(t)ψ .

This is called (the abstract) Schrödinger’s equation and is the basic equation of quantum

mechanics, just as Hamilton’s equations are fundamental in classical mechanics. Note also

how much Schrödinger’s equation resembles the modern version of Hamilton’s equations:

d

dt
U(t)ψ = vHU(t)ψ .

This is naturally no coincidence; there is a subject of mathematics called ‘geometric quan-

tization’ which arose from investigations into the relationship between these two equations.

Note that one can’t do anything with Schrödinger’s equation until one knows what the

Hamiltonian H is! In what follows we will describe the Hamiltonians for various important

physical systems, for example atoms and molecules. We will begin, however, with simpler
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examples designed to get a firmer grip on the meaning of the spectral theorem and Stone’s

theorem.

7. Self-adjoint Matrices and the Spin 1
2 -Particle

So far our only examples of self-adjoint operators are multiplication operators. If X

is a measure space, f is a real-valued measurable function on X, and Mf is the operator

on L2(X) with domain D = {ψ ∈ L2(X) : fψ ∈ L2(X)} defined by:

Mfψ = fψ , ψ ∈ D

then Mf is self-adjoint.

Another sort of example comes from finite-dimensional matrices. If H is finite-

dimensional, a dense subspace must be the whole space so a densely defined operator

T on H must have D(T ) = H, and any such operator must be bounded. Thus all self-

adjoint operators on finite-dimensional H are bounded. For any self-adjoint operator A

on H there is a unitary U such that UAU−1 is a diagonal matrix with real coefficients,

the eigenvalues of A, and σ(A) is the set of eigenvalues of A, or the set of numbers along

the diagonal of UAU−1. The following exercise is crucial for getting a feeling for spectral

measures:

Exercise - Let A be a self-adjoint operator on Cn and let {ψi}ni=1 be an orthonormal

basis of eigenvectors with Aψi = λiψi. Let ψ be the state (= unit vector) with ψ =∑n
i=1 aiψi . Show that the spectral measure µA,ψ is given by:

µA,ψ =
∑
|ai|2δλi .

The simplest and also most important use of finite-dimensional matrices in quantum

theory is in the study of ‘spin- 1
2 ’ particles. During 1921-1924, Stern and Gerlach did ex-

periments in which they sent a beam of silver atoms through an inhomogeneous magnetic

field. To their surprise it split into two components. The same effect occurs in a simpler

context if one uses electrons rather than silver atoms. Goudsmit and Uhlenbeck hypoth-

esized in 1925 that this strange effect was due to an intrinsic angular momentum of the

electron, called ‘spin’. The electrons are either ‘spin up’ or ‘spin down’ (relative to the

gradient of the magnetic field). Those with ‘spin up’ are bent one way by the magnetic
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field, and those with ‘spin down’ are bent the other. But this happens no matter from

which angle the magnetic field is applied! It’s as if one had a spinning tennis ball whose

axis of rotation was vertical in any rotated coordinate system, which is clearly impossible.

Wolfgang Pauli, Enrico Fermi, and Paul Dirac developed a mathematical theory of

spin- 1
2 particles (which include protons and neutrons as well as electrons), and we present

part of it here in a summarized form. In what follows we ignore the position and momentum

aspects of the electron’s state and concentrate on the description of its ‘spin’.

The spin of the electron about any axis is always measured to be ± 1
2 h̄, where h̄ = h/2π

and h is Planck’s constant, a physical constant equal to 6.626196×10−27 erg sec in the

metric system. This constant is so important that mathematical physicists typically work

in a modified system of units in which h̄ = 1, and we shall do so from now on.

How can the spin of something always be measured to be ± 1
2 about any axis? This

does not occur in classical mechanics, where the angular momenta (of, say, a spinning

tennis ball) about the x,y, and z axes form a vector ~J = (J1, J2, J3) whose components

can be arbitrary real numbers, and transform in the usual way under rotations. We need to

specify mathematical descriptions of the states, observables, and symmetry group for the

spinning electron. We begin with the states and observables, and discuss the symmetry

group later.

In quantum mechanics the states of an electron (ignoring its position and momentum)

are described by the unit vectors in a 2-dimensional Hilbert space H = C2, and the spin

angular momenta about the x, y, and z axes are observables described by 2×2 self-adjoint

matrices,

Ji =
1

2
σi ,

where the σi are the Pauli matrices:

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
.

We develop the properties of these matrices in the following exercises:

Exercise - Show that the each of the matrices σi has eigenvalues ±1 (thus the matrices

Ji have eigenvalues ± 1
2 ). Determine the eigenvectors of the σi. Note that no two σi have

a (nonzero) eigenvector in common.
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Exercise - Show that the operator J defined by

J = (J2
1 + J2

2 + J2
3 )1/2

has J =
√

3/4I. (In general if ~J are the angular momentum operators for a ‘spin-s particle’

one has J =
√
s(s+ 1)I.)

Exercise - The commutator [S, T ] of S, T ∈ L(H) is defined to be ST − TS. Show

that if A,B ∈ L(H) are self-adjoint then i[A,B] is self-adjoint. Show that

σ2
i = I

and

σiσj = −σjσi = iσk

if (i, j, k) is a cyclic permutation of (1, 2, 3), hence [Ji, Jj ] = iJk.

In particular, this implies that real linear combinations of the matrices iσ1, iσ2, iσ3 and
the identity I form an algebra over IR that is isomorphic to Hamilton’s quaternions, which
recall is an algebra generated by elements i, j, k satisfying

i2 = j2 = k2 = −1 ,

ij = −ji = k , jk = −kj = i , ki = −ik = j .

In the late 1800’s Hamilton’s quaternions (invented 1843) were in strong competition with
Gibbs’ vector notation as a tool for the mathematics of 3-dimensional space. Vector notation,
being more elegant for the problems at hand, eventually won out. But it is now clear that
quaternions (now often represented as matrices) are necessary for describing certain features
of the geometry of IR3. The appropriate generalization to higher dimensions are the ‘Clifford
algebras’, known in the four-dimensionial case by physicists as ‘Dirac matrices’.

Exercise - Let ψ ∈ H be the unit vector (a, b) , |a|2 + |b|2 = 1 . Determine the spectral

measures µσi,ψ, using the exercise above on spectral measures.

In particular, the ‘spin-up’ and ‘spin-down’ states

↑=

(
1
0

)
, ↓=

(
0
1

)
,

are the eigenvectors of the operator J3 :

J3 ↑=
1

2
↑ , J3 ↓= −1

2
↓ ,
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and they correspond to an electron with spin pointing up or down, i.e., rotating counter-

clockwise or clockwise along the z axis. An electron in any state can be written as a linear

combination or, in physics language, superposition of these states:(
a
b

)
= a↑ + b↓ ,

and has the spectral measure

µJ3,ψ = |a|2δ−1/2 + |b|2δ1/2 .

Thus it has probability |a|2 of being measured to have spin 1
2 and probability |b|2 of being

measured to have spin − 1
2 , if one measures its angular momentum along the z axis. If one

measures its spin along the x axis, one will measure it to be ± 1
2 , distributed according to

the probability distribution µJ1,ψ.

Of course there’s nothing special about the x,y, and z axes. Let ~v ∈ IR3 be the unit

vector (v1, v2, v3). Then the self-adjoint operator corresponding to spin in the ~v direction

is

~v · ~J =
3∑
i=1

viJi .

Now we introduce the symmetry group. Recall that the special orthogonal group

SO(n) is the group of n×n real orthogonal matrices with determinant one, and the special

unitary group SU(n) is the group of n× n complex unitary matrices with determinant

one. SO(3) is the group of rotations of 3-dimensional space, and is the obvious candidate

for being the symmetry group of the spinning electron, but in fact the group of symmetries

is SU(2), which we shall show is a double cover of SO(3). That is, there is an onto,

two-to-one homomorphism α:SU(2)→ SO(3).

Note first that the group SU(2) has a natural strongly continuous unitary represen-

tation U on H given by

U(g)ψ = gψ .

(Here as always we give groups of finite-dimensional matrices the topology such that Tα →
T iff (Tα)ij → Tij for all i, j.) Next note that if A is a self-adjoint operator on H which is

traceless, i.e. trA = 0 (where trA =
∑
Aii), then eitA ∈ SU(2), by the following:

Exercise - If H is an arbitary Hilbert space, show that for self-adjoint A ∈ L(H),

eitA =
∞∑
n=0

(itA)n

n!
.
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Show that for any self-adjoint A ∈ L(Cn),

det eitA = eit trA .

For any unit vector ~v ∈ IR3 the one-parameter subgroup eiθ~v·
~J (θ ∈ IR) corresponds

to rotations about the ~v axis. In other words, given an electron with state described by ψ,

if one rotates it by an angle θ about the ~v axis one obtains an electron with state eiθ~v·
~Jψ.

Note however that

eiθJ3 =

(
eiθ/2 0

0 e−iθ/2

)
,

so rotating the state ψ by 2π gives, not ψ, but −ψ! Rotating by 4π, we get back to the

state ψ! This is one reason why it makes sense to call such particles ‘spin- 1
2 ’. And it’s a

physical fact that if you leave an electron lying on the table and someone sneaks in when

you’re not looking and rotates it by 360 degrees, when you come back you can tell - if you

have the right apparatus! But if he it turns around twice you can’t.

Here we are glossing over an important subtlety. For every observable A on the Hilbert
space H we have µA,ψ = µA,−ψ , so there is no obervable property of an electron in isolation
that changes upon rotating it 360 degrees. But its interactions with other parts of a larger
system may differ.

The spin of a particle can be 0, 1/2, 1, 3/2, etc. Mathematically these various spins corre-
spond to the different irreducible strongly continuous unitary representations of SU(2). Various
mesons such as pions, kaons, etc. are spin-zero; electons, protons, neutrons, neutrinos and var-
ious baryons are spin-1/2; and photons are spin-one. Assemblages of particles can act like
particles with various spins, thus atomic nuclei may be said to have spin 5/2 and so on.

We have:

Theorem. There is an onto, two-to-one homomorphism α:SU(2)→ SO(3) such that the

element eiθ~v·
~J , where ~v is a unit vector, is mapped onto the matrix representing a rotation

of angle θ about the ~v axis.

Sketch of Proof - We construct α as follows. There is an isomorphism between IR3

and the 2× 2 self-adjoint traceless matrices given by:

~v 7→ ~v · ~σ =

(
v3 v1 − iv2

v1 + iv2 v2

)
.

Note that

‖~v‖2 = − det(~v · ~J) .

The group SU(2) has a representation on the 2×2 traceless self-adjoint matrices given

by

(g,A) 7→ gAg−1 ;
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we leave it as an exercise to verify this. Via the above 1-1 correspondence this gives rise

to a representation of SU(2) on IR3, which we call α. Note that

‖V (g)~v‖2 = −det g(~v · ~J)g−1

= −det(~v · ~J)

= ‖~v‖2 ,

so that α(g) is an orthogonal 3× 3 matrix.

It’s clear that α(I) = I, and α(gh) = α(g)α(h) because

(gh)A(gh)−1 = g(hAh−1)g−1 .

Thus α is a homomorphism from SU(2) to O(3), the group of 3× 3 orthogonal matrices.

It remains to show that: 1) Ran(α) = SO(3), 2) α is two-to-one, 3) α maps eiθ~v·
~J to the

rotation of angle θ about ~v.

1) can be shown by a calculation, but it’s easier to use a few facts about these groups.

First, since SU(2) is connected and α is continuous, α must map SU(2) into the connected

component of O(3) that contains the identity. This is just SO(3); the other connected

component consists of matrices with determinant -1. Since every element of SO(3) is a

rotation of some angle about some axis, if we show 3) it will follow that α is onto SO(3).

2) is equivalent to saying that the kernel of α consists of two elements. Unraveling

the definitions, g ∈ SU(2) is in Ker α iff for all traceless self-adjoint matrices A we have

gAg−1 = A. It is easily seen that the only matrices which commute with all traceless

self-adjoint matrices are those of the form cI. The only ones of these which lie in SU(2)

are ±I. Thus Ker α = ±I.

To show 3) it suffices to show - differentiating with respect to θ - that:

d

dθ
α(eiθ~v·

~J)~w|θ=0 = −~v × ~w .

(Here the minus sign is an unimportant consequence of our sign conventions; the main

point is that when one rotates the vector ~w about the ~v axis the derivative is ±~v× ~w, with

the sign depending on whether one rotates clockwise or counterclockwise.) Unraveling the

definitions, this is equivalent to:

d

dθ
eiθ~v·

~J(~w · ~J)e−iθ~v·
~J |θ=0 = −(~v × ~w) · ~J .

Doing the differentiation on the left side, it suffices to show:

[i~v · ~J, ~w · ~J ] = −(~v × ~w) · ~J .
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This follows from the result of an exercise above, that

[σi, σj ] = 2iσk .

ut

Note also that by general principles the operator ~v · ~J is the conserved quantity corre-

sponding to the one-parameter group eiθ~v·
~J . This means that the probability distribution

of measured spins in the ~v direction doesn’t change if you rotate the electron by a fixed

angle about the ~v axis - which makes sense.

Rather than meditating further on the oddity of the quantum theory of spin- 1
2 par-

ticles, let us turn to infinite-dimensional diagonal matrices. Recall that `2 is the usual

Hilbert space of complex sequences ψ = (ψi)
∞
i=1 such that ‖ψ‖2 =

∑
|ψi|2 is finite, with

the inner product 〈ψ, φ〉 =
∑
ψiφi.

Theorem. Let (ai)
∞
i=1 be a sequence of real numbers. Let A be the operator on `2 with

domain

D(A) = {ψ ∈ `2:
∑
|aiψi|2 <∞}

given on this domain by

(Aψ)i = aiψi .

Then A is self-adjoint. The restriction of A to the domain D0 = {ψ ∈ `2: only finitely

many ψi are nonzero} is essentially self-adjoint.

Proof - We can think of `2 as L2(N), where N = 1, 2, 3, . . . with the ‘counting measure’

that assigns to each point the measure 1. Then A is a multiplication operator and is self-

adjoint by the general theory of such. To show that A0 = A|D0
is essentially self-adjoint, we

use the basic criterion: it is easily seen that A0 is symmetric, and to show that Ran(A± i)
are dense in H it suffices to show that they contain D0, which is dense. Suppose ψ ∈ D0,

and define φ by φi = (ai±i)−1ψi. Then φ ∈ D0, and (A0±i)φ = ψ. Thus Ran(A±i) ⊇ D0.

ut

Exercise - Show that if A is the self-adjoint operator on `2 given above and ψ ∈ `2

then µA,ψ =
∑
|ψi|2δai .
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The spectrum of an unbounded self-adjoint operator may be defined in more or less

the same way as for bounded operators. We give two definitions and prove that they are

equivalent, after giving an exercise used in the proof:

Exercise - Show that if T is a densely defined operator on H then (T −λI)∗ = T ∗−λI,

where T − λI is the operator with domain D(T ), defined in the obvious way.

Theorem. Let A be a self-adjoint operator on a Hilbert space H. Then the following are

equivalent:

1) λ is in the closure of
⋃

suppµA,ψ.

2) There does not exist R ∈ L(H) such that R(A − λI)ψ = ψ for all ψ ∈ D(A) and

(A− λI)Rψ = ψ for all ψ ∈ H. (Note that for the latter equation to make sense we need

to have Ran(R) ⊆ D(A).)

If either of these holds we say λ is in the spectrum of A, denoted σ(A).

Proof - 1) ⇒ 2): Suppose 1) holds. Then given any ε > 0 there exists ψ ∈ H such

that λ is distance ≤ ε from suppµA,ψ. This implies that the intersection of the interval

I = [λ− ε, λ+ ε] with suppµA,ψ is nonzero, so by the spectral theorem

‖χI(A)ψ‖2 = 〈ψ, χI(A)ψ〉

=

∫
I

µa,ψ > 0 .

Let φ = χI(A)ψ ; by the above φ 6= 0, and clearly φ = χI(A)φ . It is easily seen using the

spectral theorem that φ ∈ D(A). Moreover

‖(A− λ)φ‖2 = 〈φ, (A− λ)2χI(A)φ〉

=

∫
I

(x− λ)2dµA,φ(λ)

≤ ε2
∫
I

dµA,φ = ε2‖φ‖2 .

Thus for any ε > 0 there exists nonzero φ ∈ D(A) such that ‖(A− λI)φ‖ ≤ ε‖φ‖. It

is an easy exercise to show that no bounded R can have R(A− λI)φ = φ for all such φ.

2) ⇒ 1): If 1) does not hold, then the function (x − λ)−1 has finite L∞′ norm, and

we can define Rλ by the functional calculus to be (A−λI)−1. Note that by the functional

calculus we have Rλ = Rλ
∗ . If we let fn be a sequence of functions with fn(x) → x for
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all x ∈ IR and and |fn(x)| ≤ x, then by the functional calculus we have fn(A)ψ → Aψ for

all ψ ∈ D(A), and Rλ(fn(A)− λI)→ I strongly, hence for all ψ ∈ D(A)

Rλ(A− λI)ψ = Rλ lim
n→∞

(fn(A)− λI)ψ

= lim
n→∞

Rλ(fn(A)− λI)ψ

= ψ .

Furthermore, if ψ ∈ H, for all φ ∈ D(A− λI) we have

〈ψ, φ〉 = 〈ψ,Rλ(A− λI)φ〉

= 〈Rλψ, (A− λI)φ〉 .

hence by the definition of adjoint, Rλψ ∈ D((A− λI)∗), and

(A− λI)Rλψ = (A− λI)∗Rλψ = ψ .

Thus 2) does not hold. ut

We apply this to infinite-dimensional diagonal matrices in the following exercises:

Exercise - Show that a self-adjoint operator A on H is bounded if and only if σ(A) is

a bounded set, in which case ‖A‖ = r(A).

Exercise - If A is the self-adjoint operator on `2 given by

(Aψ)i = aiψi ,

show that σ(A) = {ai}. Show that A is bounded if and only if ai is a bounded sequence,

in which case ‖A‖ = sup |ai|.

The theorems above have many applications to differential equations. For example:

Exercise - Show that there is an orthonormal basis of L2[0, 1] consisting of ψn ∈
C∞[0, 1] such that

− d2

dx2
ψn = λnψn

satisfying the Dirichlet boundary conditions:

ψ(0) = ψ(1) = 0 .
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Let D be the space of finite linear combinations of the ψn. Show that − d2

dx2 is essentially

self-adjoint on D, and let ∆D be the closure of this operator. Determine the spectrum of

∆D.

Exercise - Show that there is an orthonormal basis of L2[0, 1] consisting of ψn ∈
C∞[0, 1] such that

− d2

dx2
ψn = λnψn

satisfying the Neumann boundary condtions:

ψ′(0) = ψ′(1) = 0 .

Let N be the space of finite linear combinations of the ψn. Show that − d2

dx2 is essentially

self-adjoint on N , and let ∆N be the closure of this operator. Determine the spectrum of

∆N .

One can then use the functional calculus to define operators such as e−t∆ (the ‘heat

kernel’), which are very useful in mathematics and physics.

8. Translation and Differentiation

Another simple and important self-adjoint operator arises from translation:

Theorem. Let U(t):L2(IR)→ L2(IR) defined for t ∈ IR by

U(t)ψ(x) = ψ(x+ t) .

Then U(t) is a strongly continuous one-parameter unitary group, and the infinitesimal

generator p of U(t) is a self-adjoint operator such that for all ψ ∈ D(p),

pψ = i−1 dψ

dx

where the derivative is taken in the distributional sense.

Proof - Clearly U(t) is a 1-parameter unitary group. Note that to show that a unitary

group is strongly continuous it suffices to show that for all ψ ∈ H, U(t)ψ → ψ as t → 0.
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Given ψ ∈ L2(IR), for all ε > 0 there exists φ ∈ C∞0 (IR) such that ‖ψ − φ‖ ≤ ε. Let

M2 =
∫

IR
|dφ/dx|2. Then

‖U(t)ψ − ψ‖ ≤ ‖U(t)ψ − U(t)φ‖+ ‖U(t)φ− φ‖+ ‖φ− ψ‖

≤ 2ε+ (

∫
|φ(x+ t)− φ(x)|2dx)

1
2

≤ 2ε+ t|M |

so if |t|M ≤ ε then

‖U(t)ψ − ψ‖ ≤ 3ε .

Thus U(t) is strongly continuous.

By Stone’s theorem U(t) = eitp for some self-adjoint p and

D(p) = {ψ ∈ L2(IR) : lim
t→0

U(t)ψ − ψ
t

exists in L2(IR) }

and

ipψ = lim
t→0

U(t)ψ − ψ
t

.

Thus we only need to show that if the limit

lim
t→0

t−1(U(t)ψ − ψ)

exists in L2(IR) then it equals the distributional derivative dψ/dx.

Suppose the limit exists in L2(IR). Then for all test functions φ ∈ C∞0 (IR)∫
dψ

dx
φ dx = −

∫
ψ
dφ

dx
dx

= lim
t→0

∫
t−1ψ(x) (φ(x− t)− φ(x)) dx

= lim
t→0

∫
t−1

(
ψ(x+ t)− ψ(x)

)
φ(x) dx

= lim
t→0
〈t−1 (U(t)ψ − ψ) , φ〉

= 〈ipψ, φ〉 ,

so the distributional derivative dψ
dx equals ipψ. ut

Translation is of course an important physical symmetry, and in the context of physics

the infinitesimal generator p is called ‘momentum’. Of course real physics happens in IR3,
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not IR. Ignoring spin now, the state of a point particle in IR3 is described by a unit vector in

the Hilbert space H = L2(IR3), and the group IR3 of translations has a strongly continuous

unitary representation on H given by

(U(g)ψ)(x) = ψ(x+ g) , g ∈ IR3, ψ ∈ H .

(The proof of the latter is exactly analogous to that of the theorem above.) The infinites-

imal generators of translation in the x, y, and z directions respectively are self-adjoint

operators, the x, y, and z momenta, denoted p1, p2, p3.

We can also obtain the momentum operators, as well as other self-adjoint differential

operators, in terms of the Fourier transform. Recall that the Fourier transform is a unitary

operator on L2(IRn) given by

f̂(~k) = (2π)−n/2
∫
f(~x)e−i

~k·~xdnx ,

where the integral is absolutely convergent for f ∈ L2(IRn) ∩ L1(Rn) but is defined by a

limit for arbitrary f ∈ L2.

Theorem. Let p be the self-adjoint generator of translations on L2(IR). Then the domain

of p is equal to {f ∈ L2(IR): kf̂ ∈ L2(IR)}.

Proof - Let U(t) be the one-parameter group of translations on H = L2(IR), and let

F : H→ H be the Fourier transform. We have

̂(U(t)f)(k) = (2π)−1/2

∫
f(x+ t)e−ikxdx

= (2π)−1/2

∫
f(x)e−ik(x−t)dx

= eiktf̂(k) ,

or, in short,

FU(t) = MeiktF ,

or

U(t) = F−1MeiktF ,

where Meikt denotes the operator of multiplication by eikt (which is a unitary operator on

H). Thus limt→0 t
−1(U(t)− I)ψ exists in H if and and only if limt→0 t

−1(eikt− I)ψ̂ exists

in H, which is is easily seen to hold if and only if kψ̂ ∈ H. ut
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Exercise - As a spot-check on your real analysis skills, prove the ‘easily seen’ claim

above.

Exercise - Determine the spectrum of the operator p. Find approximate eigenvectors.

We can use the following theorem to show that i−1 d
dx is essentially self-adjoint on

C∞0 (IR). More precisely, if A is a self-adjoint operator on H we say D ⊆ D(A) is a

domain of essential self-adjointness for A or a core for A if the closure of A|D is A.

(In particular this implies that A|D is essentially self-adjoint.)

Theorem. Let eitA = U(t) be a strongly continuous 1-parameter unitary group on H and

suppose D ⊂ H be a dense space of differentiable vectors for U(t), i.e., if ψ ∈ D then

the limit

lim
t→0

U(t)ψ − ψ
t

exists in H. Suppose also that D is invariant under U(t), i.e., U(t)D ⊆ D for all t. Then

D is a core for A.

Proof - The proof is much like part of that of Stone’s theorem. Note that by Stone’s

theorem D ⊆ D(A). Next note that B = A|D is symmetric since 〈Aψ, φ〉 = 〈ψ,Aφ〉 for all

ψ, φ ∈ D(A), hence for all ψ, φ ∈ D.

Next we show that B is essentially self-adjoint by the basic criterion, by showing that

Ker(B∗± i) = {0}. We treat (B∗− i), the case of (B∗+ i) being analogous. Suppose that

ψ ∈ D(B
∗
) has B∗ψ = iψ. Then for each φ ∈ D(B) = D we have

d

dt
〈U(t)φ, ψ〉 = 〈iBU(t)φ, ψ〉

= −i〈U(t)φ,B∗ψ〉

= −i〈U(t)φ, iψ〉

= 〈U(t)φ, ψ〉 ,

where in the first line we use the fact that U(t)ψ ∈ D, so that d
dtU(t)ψ = iBU(t)ψ. Thus

the function f(t) = 〈U(t)φ, ψ〉 satisfies f ′ = f , so f(t) = cet. But f(t) is bounded, since

U(t) is unitary, so we must have c = 0, and in particular 〈φ, ψ〉 = 0 for all φ ∈ D. Since D

is dense this means that ψ = 0 as desired.

Thus we have the following situation: A is self-adjoint, B ⊆ A and B is essentially

self-adjoint. We’ll be done if we show the closure of B is A. This follows from:

Lemma. Suppose A is a self-adjoint operator, B is an essentially self-adjoint operator

and B ⊆ A. Then B = A.
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Proof - Since A is self-adjoint it is closed, and it is easily seen that in general

S ⊆ T =⇒ S ⊆ T ,

so B ⊆ A = A . To show the opposite inclusion, note that B ⊆ A implies A∗ ⊆ B∗, but A

and B are self-adjoint, so A ⊆ B. ut

Corollary. The space C∞0 (IR) is a core for the operator p.

Proof - This follows immediately from the theorem. ut

Differentiation on the unit interval [0, 1] is a more subtle matter. Let H = L2[0, 1]. By

Stone’s theorem we know any self-adjoint operator corresponding to i−1 d
dx has to generate

a one-parameter group of unitaries, and by analogy with the IR case we expect this group

to consist of translations, but if one translates a function on [0, 1] it will ‘fall off the edge’ !

Suppose one considers, by analogy with the case of IR, an operator B by:

D(B) = {ψ ∈ H: ψ ∈ C∞[0, 1] , φ(0) = φ(1) = 0}

Bψ = i−1 dψ

dx
.

Is B essentially self-adjoint? An integration by parts shows that it is symmetric:

〈ψ,Bφ〉 =

∫ 1

0

ψ(x)i−1φ′(x) dx

=

∫ 1

0

i−1ψ′(x)φ(x) dx

= 〈Bψ, φ〉 ;

note that no boundary terms appear in the integration by parts since φ(0) = φ(1) = 0.

Unfortunately B is not essentially self-adjoint because the kernels Ker(B∗±i) are nonzero.

Consider the case of B∗ + i (the other is similar). We claim that the function ex ∈ H

is in D(B∗) and B∗ex = −iex, which implies ex ∈ Ker(B∗ + i). To prove our claim it

suffices to show that

〈ex, Bφ〉 = 〈−iex, φ〉
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for all φ ∈ D(B). This follows from integration by parts:

〈ex, Bφ〉 =

∫ 1

0

exi−1φ′(x)dx

=

∫ 1

0

i−1exφ(x)dx

= 〈−iex, φ〉 .

The moral here is that the domain D(B) is too small, so the function ex is orthogonal to

(B − i)φ for all φ ∈ H, giving B∗ + i a nonzero kernel.

So why not try a bigger domain? Define B instead by:

D(B) = {ψ ∈ H: ψ ∈ C∞[0, 1] }

Bψ = i−1 dψ

dx
.

This domain is unfortunately too big: now B isn’t symmetric! For if ψ, φ ∈ D(B), inte-

gration by parts gives:

〈ψ,Bφ〉 =

∫ 1

0

ψ(x)i−1φ′(x) dx

=

∫ 1

0

i−1ψ(x)φ(x)dx+ ψφ
∣∣1
0

6= 〈Bψ, φ〉 .

Don’t despair, however! Suppose we define B by

D(B) = {ψ ∈ H: ψ ∈ C∞[0, 1] , ψ(1) = αψ(0) } ,

Bψ = i−1 dψ

dx
,

where α is a complex number with |α| = 1. Now B is symmetric because, integrating by

parts:

〈ψ,Bφ〉 =

∫ 1

0

ψ(x)i−1φ′(x) dx

=

∫ 1

0

i−1ψ(x)φ(x)dx+ ψφ
∣∣1
0

= 〈Bψ, φ〉 ,

since

ψ(1)φ(1) = |α|2ψ(0)φ(0) = ψ(0)φ(0) .
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Let θ be any real number with eiθ = α. Note that the functions ψn defined by

ψn(x) = ei(2πn+θ)x

are in D(B), and

Bψn = (2πn+ θ)ψn .

By Fourier theory it’s easy to see that the functions ψn form an orthonormal basis of H,

so finite linear combinations of the ψn, which lie in D(B), are dense in H. In particular,

given such a combination, say
∑
anψn, we can write it as∑

anψn = (B ± i)
(∑

an(2πn+ θ ± i)−1ψn

)
,

where the sum on the right side is in D(B), so we see that Ran(B ± i) are dense. Thus B

is essentially self-adjoint. As one would expect from the above calculations, we have:

Exercise - B is a self-adjoint operator with spectrum equal to {2πn+ θ}−∞<n<∞.

Thus we see that in this example the expression i−1 d
dx may be given many different

interpretations as a self-adjoint operator, depending on what domain we choose, and that

the spectrum depends on the domain we choose! Note also that the choice of domain

is closely related to boundary conditions. This is typical in elliptic operator theory; an

elliptic operator on a bounded open set is self-adjoint if we choose the right domain, but

its spectrum depends on the domain.

Exercise - Describe the unitary group eitB generated by the operator B above, and

explain how it depends on α. Hint: evaluate eitBψn.

9. The Canonical Commutation Relations

Ignoring spin, the state of a particle in IR3 is described by a unit vector in L2(IR3).

The function ψ on IR3 is often called the particle’s wave function. As mentioned above,

the momenta are the observables p1, p2, p3 generating translations in the x, y, and z direc-

tions. Other fundamental observables are the position operators, that is, multiplication

operators by the coordinate functions x, y, and z. These self-adjoint operators are denoted

q1, q2, and q3. (The generalization to IRn should be obvious.)

Recall that ψ ∈ L2(IRn) is said to be in the Schwartz space S(IRn) if for all n,m ≥ 0

we have

(1 + r2)n(1 + ∆)mψ ∈ L2(IRn) .
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where

∆ = −
n∑
i=1

∂2

∂x2
i

is taken in the distributional sense. Another equivalent definition is commonly used:

Exercise - Show that ψ ∈ S(IRn) if and only if for all n,m ≥ 0 we have

(1 + r2)n(1 + ∆)mψ ∈ L∞(IRn) .

Much of the importance of the Schwartz space in operator theory comes from the

following facts:

Exercise - Show that if ψ ∈ S(IRn) then piψ ∈ S(IRn) and qiψ ∈ S(IRn) for all i,

1 ≤ i ≤ n.

Exercise - Show that S(IRn) is a core for the operators pi, qi. (Hint: use the theorem

on cores in the previous section.)

Exercise - Let F denote the Fourier transform as a unitary operator on L2(IRn). Show

that F maps S(IRn) to itself in a 1-1 and onto manner.

Suppose that ψ ∈ S(IRn). Then note that for all i, j,

(piqj − qjpi)ψ = i−1

(
∂

∂xi
xjψ − xj

∂

∂xi
ψ

)
= i−1 ∂xj

∂xi
ψ

= i−1δijψ .

We also have

(pipj − pjpi)ψ = 0 , (qiqj − qjqi)ψ = 0 .

These relations, often summarized as

[pi, qj ] = i−1δij , [pi, pj ] = [qi, qj ] = 0 ,

are called the canonical commutation relations. They were discovered by Werner

Heisenberg’s supervisor, Max Born, while studying a paper of Heisenberg’s. At the time

(1925) Born was one of the few physicists who had a good knowledge of matrices. He

interpreted some quantum- mechanical calculations of Heisenberg’s in terms of infinite-

dimensional matrices, explaining in this way the odd non-commutativity of multiplication
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that Heisenberg had gotten himself into. This made physicists learn about matrices and

develop the new ‘matrix mechanics’, as an alternative to Schrödinger’s ‘wave mechanics’.

Only later were Heisenberg’s position and momentum operators correlated by Pauli to

the operators of multiplication and differentiation by coordinates xi, in which form they

had appeared in Schrödinger’s equation for the hydrogen atom (more on which later).

Heisenberg had, in effect, been describing differential operators in terms of an orthonormal

basis for L2(IRn).

10. The Uncertainty Principle

We begin by pointing out how to multiply and add densely defined operators. Given

two densely defined operators A and B, we define the product AB by:

D(AB) = {ψ ∈ D(B): Bψ ∈ D(A)} ,

ABψ = A(Bψ) .

It is not necessarily the case that D(AB) is dense! This needs to be proved in each case;

for example, properties of the Schwartz space make it clear that products of position and

momentum operators such as pq, p2, qp2q and so on are all densely defined operators.

Similarly we define the sum A+B by:

D(A+B) = D(A) ∩D(B) ,

(A+B)ψ = Aψ +Bψ .

Again it needs to be proved that D(A+B) is dense - two dense subspaces of a Hilbert

space can have 0 as their intersection! The properties of the Schwartz space imply that all

polynomials in p and q are densely defined operators.

Exercise - Show that if A is a self-adjoint operator then any polynomial in A is densely

defined, and any real polynomial in A is essentially self-adjoint.

Exercise - Define q̃ by

D(q̃) = C∞0 (IRn) ,

(q̃ψ)(x) = xψ(x) .
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Define p̃ by

D(p̃) = {ψ ∈ L2(IR): ψ̂ ∈ C∞0 (IR) }

(p̃ψ)(x) = i−1 d

dx
ψ(x) .

Show that p̃ and q̃ are essentially self-adjoint and have as closures the usual p and q. Show

however that

D(p̃) ∩D(q̃) = {0}

so p̃ + q̃ has as domain only 0! (Hint: for the last part use the fact that if ψ̂ ∈ L2(IR) is

compactly supported then ψ is analytic, which follows from the Paley-Wiener theorem.)

Exercise - Show that the operator ∆ = p2
1 + p2

2 + p2
3 is essentially self-adjoint. (Hint:

show using the Fourier transform that it’s even essentially self-adjoint when restricted to

the smaller domain S(IR3).)

Given an obervable A on H and a state ψ ∈ D(A2), we can define the standard

deviation of A in the state ψ, usually written ∆A even though it depends on ψ, by

(∆A)2 = 〈ψ,A2ψ〉 − 〈ψ,Aψ〉2 .

Note that this corresponds to the usual definition of standard deviation because 〈ψ,Aψ〉
is the mean value of the observable A in the state ψ, as described in section 5.

The uncertainty principle gives a lower bound on the product ∆A∆B for non-

commuting observables A and B:

Uncertainty Principle. Let A and B be self-adjoint operators on the Hilbert space H,

and suppose ψ ∈ D(A2) ∩D(B2) ∩D(AB) ∩D(BA) is a unit vector. Then

∆A∆B ≥ 1

2
|〈ψ, [A,B]ψ〉| .

Proof - First we note that it suffices to show this for

A′ = A− 〈ψ,Aψ〉

and

B′ = B − 〈ψ,Bψ〉

instead. This is because [A′, B′] = [A,B] and

〈ψ,A′ψ〉 = 〈ψ,Aψ〉 − 〈ψ, 〈ψ,Aψ〉ψ〉 = 0 ,
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hence
(∆A′)2 = 〈ψ,A′2ψ〉

= 〈ψ, (A2 − 2〈ψ,Aψ〉A+ 〈ψ,Aψ〉2)ψ〉

= 〈ψ,A2ψ〉 − 〈ψ,Aψ〉2

= (∆A)2 ,

and similarly for B.

We have
|〈ψ, [A′, B′]ψ〉| = |〈A′ψ,B′ψ〉 − 〈B′ψ,A′ψ〉|

= 2 |Im〈A′ψ,B′ψ〉|

≤ 2 |〈A′ψ,B′ψ〉|

≤ 2‖A′ψ‖‖B′ψ‖ ,

the last step using Cauchy-Schwarz; but

‖A′ψ‖ = 〈ψ,A′2ψ〉1/2 = ∆A′

and similarly for B′, so

|〈ψ, [A′, B′]ψ〉| ≤ 2∆A∆B ,

as was to be shown. ut

Recall that the momentum and position operators have [p, q]ψ = i−1ψ for all ψ ∈
S(IR). Starting from this one can show:

Exercise - For all ψ ∈ D(p2) ∩D(q2) ∩D(pq) ∩D(qp), [p, q]ψ = i−1ψ .

This implies the famous ‘Heisenberg uncertainty principle’:

∆p∆q ≥ 1

2
,

for all states ψ for which both sides make sense. Putting the units back in for once:

∆p∆q ≥ h̄

2
.

The consequence of this is that one can never measure both the position and momentum

of a particle to arbitrary accuracy; accuracy in one must be obtained at the expense of

accuracy in the other past a certain point, which is measured by Planck’s constant.
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Exercise - Show that the Heisenberg uncertainty principle is sharp: if

ψ(x) =
1√
πc
e−x

2/c

show that ‖ψ‖ = 1 and ∆p∆q = 1
2 .

Exercise - Given one of the functions ψ as in the previous exercise, show that for

any t ∈ IR the states eitpψ and eitqψ also have ∆p∆q = 1
2 . These are translated and

‘boosted’ versions of the state ψ, respectively. Such states are often called ‘wave packets’

since they are states for which the wave function ψ has minimal uncertainty in position

and momentum, hence resembles as closely as possible a classical particle.

11. Quantization, Schrödinger’s Equation, and the Hydrogen Atom

To describe the dynamics of a quantum system, i.e. to specify how states evolve in

time, it suffices to specify the Hamiltonian, a self-adjoint operator H on the Hilbert space

H whose unit vectors correspond to states: given the state ψ ∈ H, eitHψ describes the

state t units of time later.

How does one guess the Hamiltonian of a quantum system? I say ‘guess’ because only

the real world knows the Hamiltonian. Many quantum systems correspond to classical

systems for which one knows a Hamiltonian (see section 2). For example, if one has

a classical particle in IR3 in a potential V : IR3 → IR, the Hamiltonian or energy from

classical mechanics is a function H: IR6 → IR given by

Hclass =
1

2m
(p2

1 + p2
2 + p2

3) + V (q1, q2, q3)

where the coordinate functions on the state space IR6 are (q1, q2, q3, p1, p2, p3). The first

term in Hclass is called the kinetic energy; m is a positive number called the mass of

the particle. The second term is called the potential energy. An important example is

an electron in the electric field of a stationary proton; here the energy is

Hclass =
1

2me
(p2

1 + p2
2 + p2

3)− e2

r

where me is the mass of the electron, e is the electric charge of the electron (which is minus

that of the proton), and r = (q2
1 +q2

2 +q2
3)1/2. A hydrogen atom consists of an electron and
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a proton, so classically it would be described by this Hamiltonian. One can show that the

solutions of Hamilton’s equations with this Hamiltonian correspond to circular, elliptical,

parabolic and hyperbolic motions of the electron about the proton: this is essentially what

Newton did in the study of a mathematically isomorphic problem, that of the planets (and

comets) moving in the gravitational potential of the sun. (Newton did not, of course, use

Hamilton’s formalism!)

As always when speaking of real physical systems, we are glossing over some subtleties.
In classical mechanics the earth does not revolve about a stationary sun; rather, the earth and
sun revolve about their common center of mass. Since the sun is much more massive than the
earth the stationary sun is a good first approximation; similarly, the proton is about 1836 times
as massive as the electron. One can solve the problem exactly using a mathematical trick called
separation of variables, and it turns out the only effect is to replace the mass of the electron by
the reduced mass m = memp/(me +mp), where mp is the mass of the proton.

Also, we are temporarily ignoring effects due to the electron’s spin: the proton produces
not only an electric field but also a magnetic field, and the latter interacts with the spin of
the electron. In general, physical systems are described by a hierarchy of increasingly accurate
models which take into account more and more effects, so when someone says ‘the Hamiltonian
is...’ this must always be taken with a grain of salt.

One guesses the Hamiltonian for the corresponding quantum system in the most

simple-minded manner possible: one formally substitutes the position and momentum

operators for the q’s and p’s in the expression Hclass. Thus for the hydrogen atom the

states of the electron are unit vectors in H = L2(IR3), and the Hamiltonian is

H =
1

2m
(p2

1 + p2
2 + p2

3)− e2

r
,

where in this equation pi stands for the momentum operator (i−1∂/∂xi) and r−1 stands

for the operator of multiplication by r−1. Thus H is a differential operator on L2(IR3). As

Schrödinger wrote it, keeping in Planck’s constant (which we normally set equal to 1):

H = − h̄2

2m
∇2 − e2

r
.

The original Schrödinger equation for the hydrogen atom is:

1

i

dψ

dt
= − h̄2

2m
∇2ψ − e2

r
ψ ,

where ψ ∈ D(H) and ψ(t, ~x) = (eitHψ)(~x).

This process of substituting operator p’s and q’s for functions p and q is called quan-

tization. Historically it started as a trick with little justification other than that it seemed

to work, but now there is a well-developed mathematical theory of it, one aspect of which

goes under the name of geometric quantization. (For a mathematically sophisticated
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treatment see, for example, Jȩdrzej Śniatycki, Geometric Quantization and Quantum Me-

chanics.) Note that this process is ambiguous in general, because while pq = qp classically,

in quantum mechanics pq 6= qp, leading to operator ordering problems in the quanti-

zation of expressions involving products of p’s and q’s. These ambiguities can sometimes

be resolved through other criteria; note however that in expressions of the form

H =
1

2m
(p2

1 + p2
2 + p2

3) + V (q1, q2, q3)

they do not occur! Indeed, one wonders what the history of quantum mechanics would

have been like if there has been operator ordering problems in the Hamiltonian of the

hydrogen atom (the first system to which quantum theory was successfully applied).

After deciding upon this strategy for quantization, the first problem we must address

is: is the quantized Hamiltonian a self-adjoint operator? The next problem is: what is its

spectrum? These questions can be answered by computations in the case of the hydrogen

atom Hamiltonian, explicitly determining eigenvectors and approximate eigenvectors. For

more complicated systems this ‘explicit’ approach is hardly ever possible. So rather than

wasting time solving the hydrogen atom, which can be found in any quantum mechanics

text, we simply describe the answer.

The answer is: the operator H0 given by

D(H0) = C∞0 (IR3) ;

H0ψ = (− h̄2

2m
∇2 − e2

r
)ψ ,

is essentially self-adjoint. Note that because of the singularity of the potential e2/r at

r = 0, some work is needed to show that H0 is really well-defined:

Exercise - Show that if ψ ∈ D(H0) then H0ψ ∈ L2(IR3). Show that H0 is symmetric.

Let H0 = H. Then the spectrum of the self-adjoint operator H is

{− me4

2h̄2n2
}∞n=1 ∪ [0,∞) .

For n = 1, 2, 3 . . . there are n2 linearly independent vectors ψ such that

Hψ = − me4

2h̄2n2
ψ ;

the integer n is called the principal quantum number. Eigenvectors of the Hamiltonian

are also called bound states. The n = 1 and n = 2 states are given as follows:
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Exercise - Show that the function

ψ(~x) = e−r/a0 ,

where r = ‖~x‖ and a0 = h̄2/me2, satisfies

Hψ = −me
4

2h̄2 ψ .

Thus ψ is an eigenvector of H with n = 1. Show that the functions

ψ(~x) = xe−r/2a0 , ye−r/2a0 , ze−r/2a0 , and (2− r

a0
)e−r/2a0

are eigenvectors of H with n = 2. The constant a is called the Bohr radius of the

hydrogen atom and is about .529 angstroms, that is, .529× 10−8 centimeters.

In general the states with principal quantum number n are of the form: e−r/na0

multiplied by a polynomial of degree n in x, y, z and r. Thus the probability of finding

the electron in one of these states at a distance greater than r from the proton decreases

rapidly with r. These states correspond physically to states in which the electron is ‘in

orbit’ around the proton, so they are also called, especially in chemistry, orbitals. The

‘orbit’ idea shouldn’t be taken to seriously, however, because none of the bound states is

an eigenvector of the position operators qi (which have no eigenvectors!), so the electron

does not follow a curve as time goes on: rather, at any time its position is described by the

probability density |ψ(~x)|2 (this follows from the probability interpretation of the spectral

measure). If at time t the state is an eigenfunction ψ with Hψ = λψ, then at time t the

state is given by

ψ(t) = eitHψ = eitλψ ,

so the probability distribution |ψ(t, ~x)|2 is independent of time! Thus thinking of the

electron as a little ball moving around the proton is misleading for such states.

For λ ≥ 0 there is no eigenvector ψ ∈ D(H) such that Hψ = λψ, rather, these λ are

only approximate eigenvalues of H. The states which are orthogonal to the bound states

are called scattering states and correspond physically to states in which the electron is

ionized, that is, has enough energy to move arbitrarily far from the proton, rather than

orbit it. Approximate eigenvectors for H corresponding to the approximate eigenvalues

λ ≥ 0 are given as follows:

Exercise - Let f ∈ C∞0 (IR) be a decreasing function with f(r) = 1 for 0 ≤ r ≤ 1/2

and f(r) = 0 for r ≥ 1. Given ~k ∈ IR3 let

ψn(~x) = cf(‖~x− ~x0‖/n)ei
~k·~x/h̄
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where ~x0 is any point with ‖~x0‖ = 2n and c is chosen such that the L2 norm of ψn equals

1. Show that ψn ∈ D(H) and that

lim
n→∞

‖Hψn − λψn‖ = 0 ,

where λ = ‖~k‖2/2m. Conclude that [0,∞) is in the spectrum of H.

12. The Kato-Rellich Theorem

In this section we describe a general method for showing that ‘sufficiently small’

perturbations of self-adjoint operators are self-adjoint. Using it we will show that the

hydrogen atom Hamiltonian of the previous section is self-adjoint.

Suppose that A and B are densely defined operators on a Hilbert space H and that:

1) D(B) ⊇ D(A); 2) for some a, b ∈ IR,

‖Bφ‖ ≤ a‖Aφ‖+ b‖φ‖

for all φ ∈ D(A). Then B is said to be A-bounded. The infimum of such a is called the

relative bound of B with respect to A. Typically b will have to be chosen larger as a is

chosen smaller.

We begin with two exercises that we’ll need:

Exercise - Show that if A is a self-adjoint operator then so is cA for any real c 6= 0

(where D(cA) = D(A)). Conclude that if A is densely defined and symmetric then A is

self-adjoint if and only if Ran(A ± is) = H for some s > 0, in which case it holds for all

s > 0.

Exercise - Show that if A is densely defined and symmetric then A is essentially self-

adjoint if and only if Ran(A± is) is dense in H for some s > 0, in which case it holds for

all s > 0.
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Kato-Rellich Theorem. Suppose that A is self-adjoint and B is A-bounded with relative

bound < 1. Then A + B is self-adjoint on D(A) and essentially self-adjoint on any core

for A.

Proof - To show that A+B is self-adjoint we will show that Ran(A+B+ is) = H for

all s ∈ IR with |s| large enough. Since A is self-adjoint, (A+ is):D(A)→ H is onto and

(A+B + is)φ = (I +B(A+ is)−1)(A+ is)φ

for all φ ∈ D(A). Thus to show that Ran(A + B + is) = H we need to show that

Ran(I + B(A + is)−1) = H. For this it suffices to show that −1 /∈ σ(B(A + is)−1),

and since the spectral radius is less than or equal to the norm it suffices to show that

‖B(A+ is)−1‖ < 1.

For φ ∈ D(A) we have

‖(A+ is)φ‖2 = ‖Aφ‖2 + s2‖φ‖2 .

Letting φ = (A + is)−1ψ, it follows that ‖A(A + is)−1‖ ≤ 1 and ‖(A + is)−1‖ ≤ |s|−1.

Since B is A-bounded, we have

‖B(A+ is)−1ψ‖ ≤ a‖A(A+ is)−1ψ‖+ b‖(A+ is)−1‖

≤ (a+ b|s|−1)‖ψ‖ .

Thus for |s| sufficiently large, B(A + is)−1 has norm less than one, since we can choose

a < 1.

Suppose D0 is a core for A. Then (A+ is)D0 is dense in H if s 6= 0, s ∈ IR. Choosing

|s| large enough, Ran(I + B(A + is)−1) = H by the above. It follows from the exercise

below that Ran(A+B + is) = (I +B(A+ is)−1)(A+ is)D0 is dense in H. Thus D0 is a

core for A+B. ut

Exercise - Show that if T ∈ L(H), RanT = H, and D ⊆ H is dense in H, then TD is

dense in H.

To apply the Kato-Rellich theorem to the hydrogen atom we take

A = − 1

2m
∇2 , B = −e

2

r
.

The work will consist of showing that B is A-bounded. More precisely, recall that −∇2 =

p2
1 + p2

2 + p2
3 is essentially self-adjoint (an exercise in section 10). We let ∆ denote the

closure, a self-adjoint operator on L2(IR3). By the following exercise C∞0 is a core for ∆:
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Exercise - Use the fact that C∞0 (IR3) is dense in S(IR3) to show that ∆ is essen-

tially self-adjoint when restricted to C∞0 (IR3). (Hint: express ∆ in terms of the Fourier

transform.)

Theorem. Suppose V ∈ L∞(IR3) + L2(IR3), that is, V = V1 + V2 with V1 ∈ L∞(IR3)

and V2 ∈ L2(IR3). Then the operator ∆ + V , where here V denotes the operator of

multiplication by V , is essentially self-adjoint on C∞0 (IR3) ⊂ L2(IR3) and is self-adjoint on

D(∆).

Lemma. For all a > 0 there exists b such that

‖ψ‖∞ ≤ a‖∆ψ‖2 + b‖ψ‖2

for all ψ ∈ D(∆) ⊆ L2(IR3).

Proof - If f is the Fourier transform of ψ, we have

‖ψ‖∞ ≤ ‖f‖1

by the Riemann-Lebesgue lemma and

‖ψ‖2 = ‖f‖2 , ‖∆ψ‖2 = ‖k2f‖2

by the Plancherel theorem, so it suffices to show that for all a > 0 there exists b such that

‖f‖1 ≤ a‖k2f‖2 + b‖f‖2 .

Since ψ ∈ D(∆), k2f ∈ L2(IR3), so for any c > 0, ((ck)2 + 1)f ∈ L2(IR3). It is easily seen

that ((ck)2 + 1)−1 ∈ L2(IR3), so by the Cauchy-Schwartz inequality

‖f‖1 ≤ ‖((ck)2 + 1)−1‖2 ‖((ck)2 + 1)f‖2

Note that by a change of variables

‖((ck)2 + 1)−1‖2 = (

∫
d3k

((ck)2 + 1)2
)1/2

= (

∫
c−3d3k

(k2 + 1)2
)1/2

= c−3/2‖(k2 + 1)−1‖2 ,
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so letting d = ‖(k2 + 1)−1‖2, we have

‖f‖1 ≤ c−3/2d‖((ck)2 + 1)f‖2
≤ dc1/2‖k2f‖2 + dc−3/2‖f‖2 .

Choosing d such that dc1/2 = a,

‖f‖1 ≤ a‖k2f‖2 + b‖f‖2 . ut

Proof of Theorem - It suffices to show that V is ∆-bounded with relative bound less

than one. We have

‖V ψ‖2 = ‖(V1 + V2)ψ‖2 ≤ ‖V1‖2‖ψ‖∞ + ‖V2‖∞‖ψ‖2 ,

so by the lemma, for any a > 0 there exists b such that

‖V ψ‖2 ≤ ‖V1‖2(a‖∆ψ‖2 + b‖ψ‖2) + ‖V2‖∞‖ψ‖2 ,

so V is ∆-bounded with relative bound zero. ut

Corollary. The hydrogen atom Hamiltonian,

1

2m
∆− e2

r
,

is essentially self-adjoint on C∞0 (IR3) and self-adjoint on D(∆).

Proof - It suffices to show that ∆ − 2me2r−1 has these properties, so by the Kato-

Rellich theorem it suffices to show that r−1 ∈ L2(IR3) + L∞(IR3). We may write

r−1 = χ{r≤1}r
−1 + χ{r>1}r

−1 ,

and the first term is in L2 while the second is in L∞. ut

Kato’s theorem is an extension of the corollary above to Hamiltonians describing

arbitrary atoms and molecules, or more generally, collections of charged particles. To

describe a system of n particles in IR3 one uses the Hilbert space L2(IR3n), where we give
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IR3n the coordinates (x1i, x2i, x3i)
n
i=1. The position and momentum operators for the ith

particle are

q1i = Mx1i
, q2i = Mx3i

, q3i = Mx3i

and

p1i = i−1 ∂

∂x1i
, p2i = i−1 ∂

∂x2i
, p3i = i−1 ∂

∂x3i
.

If the ith particle has mass mi and charge ei, the Hamiltonian is

H =
n∑
i=1

1

2mi
(p2

1i + p2
2i + p2

3i) −
∑

1≤i<j≤n

eiej
‖~qi − ~qj‖

.

Exercise - Prove Kato’s Theorem: the Hamiltonian H above is essentially self-

adjoint on C∞0 (IR3n). (Hint: copy the proof for the hydrogen atom).

The kinetic energy term, H0 =
∑n
i=1

1
2mi

(p2
1i + p2

2i + p2
3i) , is often called the free

Hamiltonian, since it is the Hamiltonian for n ‘free’ or non-interacting particles:

Exercise - Let the classical free Hamiltonian be given by

Hclass =
n∑
i=1

1

2mi
(p2

1i + p2
2i + p2

3i) ,

where here the p’s are functions on IR6n as in section 2. Show that the solutions of

Hamilton’s equations correspond to particles moving with constant velocity along straight

lines.

Showing that the potential energy term or interaction Hamiltonian

Hint = −
∑

1≤i<j≤n

eiej
‖~qi − ~qj‖

is H0-bounded is a way of making precise the idea that it is in some sense a ‘small pertur-

bation’ of the free Hamiltonian. This situation is typical of mathematical physics: one tries

to model a complicated ‘interacting’ system as a perturbation of a simpler ‘free’ system.

This approach has failed so far to prove self-adjointness of the quantum-field-theoretic

Hamiltonians describing the basic laws of physics, i.e., quantum electrodynamics, or more

comprehensively, the ‘standard model’ of the known particles, interacting via the elec-

tromagnetic, weak, and strong forces. These Hamiltonians are not even known to be

well-defined operators on a dense domain in some Hilbert space! This is probably the

problem of mathematical physics today, and the subject of ‘constructive field theory’ is
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the hardest testing-ground for new techniques in analysis. There is no reason (any more)

to think that in quantum field theory the interaction Hamiltonian is a ‘small’ perturbation

of the free Hamiltonian, but there is no other clear way to begin an attack on the problem.

Recently, however, I. Segal has proposed a method which amounts to considering the free

Hamiltonian as a small perturbation of the interacting Hamiltonian! While this idea is

unlikely to crack the problem without a lot of work being put into it, it is an amusing

twist.

The Kato-Rellich theorem is originally due to F. Rellich, ‘Störungstheorie der Spektralz-
erlegung, II’, Math. Ann. 116 (1939) 555-570. Kato’s application of this result to atomic
Hamiltonians appeared in ‘Fundamental properties of Hamiltonian operators of Schrödinger
type’, Trans. Amer. Math. Soc. 70 (1951), 195-211. For introductions to mathematically
rigorous quantum field theory, try Introduction to Axiomatic Quantum Field Theory by Bo-
golubov, Logonov and Todorov, or Quantum Physics: A Functional Integral Point of View by
Glimm and Jaffe, or - please forgive the advertising - Introduction to Algebraic and Constructive
Quantum Field Theory by Baez, Segal and Zhou.
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13. Singular Perturbations and Deficiency Indices

Let Hp,c be the following generalization of the hydrogen atom Hamiltonian:

Hp,c = ∆ + cr−p , p ≥ 0 .

Of course, this is not an honest operator until we also specify its domain. We have seen

that for p = 1, Hp,c is essentially self-adjoint on C∞0 (IR3). We will now study the question:

for which c, p is ∆ + cr−p essentially self-adjoint on some reasonable domain? Note that

as p increases, the potential r−p becomes more singular at the origin, so our question is an

example of the general problem of ‘singular perturbations’: how ‘big’ can the interaction

Hamiltonian Hint be compared to the free Hamiltonian H0 and still have H0 + Hint be

self-adjoint? Mathematically the situation turns out to be rather complicated, but there

are good physical reasons for this complexity.

The important thing is not the particular operator Hp,c we’ll be studying but certain

general methods that have been developed to study such situations. In this section we

consider situations where a symmetric differential operator admits many self-adjoint ex-

tensions due to different choices of boundary conditions. We will introduce the ‘deficiency

indices’ as a way of measuring how many self-adjoint extensions a symmetric operator has.

First, note the following:

Exercise - Show using the Kato-Rellich theorem that Hp,c is essentially self-adjoint on

C∞0 (IR3) for 0 ≤ p < 3/2.

Exercise - Show that r−pψ need not be in L2(IR3) for ψ ∈ C∞0 (IR3) if p ≥ 3/2.

Thus Hp,c is only defined on C∞0 (IR3) for p ≤ 3/2, in which case it is essentially

self-adjoint. One might hope that some other domain would work for larger p. In a rather

misleading sense this is true for all p. First, we note that we can always choose a dense

domain on which Hp,c is symmetric:

Exercise - Show that the operator H0
p,c defined by

D(H0
p,c) = C∞0 (IR3 − 0) ;

H0
p,cψ = (∆ + cr−1)ψ ,
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is densely defined and symmetric. (Recall that C∞0 (IR3 − 0) is the space of all compactly

supported C∞ functions on IR3 that vanish in a neighborhood of the origin.)

The next step is to ask: can we find a dense domain on which Hp,c is closed and

symmetric? The answer is yes, because the closure of a symmetric operator is symmetric:

Exercise - Show that if T is a closable operator, then the graph of the closure of T is

the closure of the graph of T :

{(ψ, Tψ): ψ ∈ D(T )} = {(ψ, Tψ): ψ ∈ D(T )} .

(Hint: showing ⊇ is easy from the definitions; to show ⊆ show that the right side is the

graph of a closed extension of T , hence contains the graph of T .)

Exercise - Recall the result of an exercise in section 6: every symmetric operator is

closable. Show that if T is symmetric then T is symmetric, using the exercise above.

Thus we can take the closure of H0
p,c and get a closed symmetric operator. But is

this closure self-adjoint, or if not, does it have self-adjoint extensions? Given a symmetric

operator T on H, define the deficiency subspaces H± of T by:

H± = Ran(T ± i)⊥ = Ker(T ∗ ∓ i) .

Define the deficiency indices of T to be n± = dim H±. The basic criterion for self-

adjointness says that a closed symmetric operator T is essentially self-adjoint if and only

if n+ = n− = 0. The following generalization is due to von Neumann:

Theorem. Let T be a symmetric operator with deficiency indices n+ and n−. Then T

has self-adjoint extensions if and only if n+ = n−. There is a one-to-one correspondence

between self-adjoint extensions of T and unitary maps from H+ to H−.

Proof - We omit the proof; see for example Reed and Simon, Methods of Modern

Mathematical Physics, vol. II, Theorem X.2 and corollary thereof. ut

We can use this to show that H0
p,c has self-adjoint extensions. Define a conjugation

on a Hilbert space H to be a map K: H→ H such that:

K(ψ + φ) = Kψ +Kφ , K(cψ) = cK(ψ) ,
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K2 = I , ‖Kφ‖ = ‖φ‖ ,

for all c ∈ C and φ, ψ ∈ H. These properties abstract those of the usual complex conjugate.

Exercise - Show that if K is a conjugation, then for all ψ, φ ∈ H

〈Kψ,Kφ〉 = 〈ψ, φ〉 .

(hint: use the polarization identity - but K is conjugate-linear, not linear, so watch out!)

Theorem. If T is a closed symmetric operator on H and K is a conjugation on H such

that K:D(T ) → D(T ) and KT = TK, then the deficiency indices n± of T are equal, so

T admits self-adjoint extensions.

Proof - Suppose that ψ ∈ H+. Then for all φ ∈ D(T ),

〈ψ, (T + i)φ〉 = 0 ,

so by the exercise above,

〈Kψ,K(T + i)φ〉 = 〈Kψ, (T − i)Kφ〉 = 0 .

We thus can conclude that Kψ ∈ H− if we can show that every vector in D(T ) is of the

form Kφ for some φ ∈ D(T ). By our hypotheses K:D(T ) → D(T ), and since K2 = I,

we have K−1 = K, so K is one-to-one and onto from D(T ) to itself. Thus every vector in

D(T ) is of the form Kφ for some φ ∈ D(T ).

Thus K: H+ → H−. The same argument shows that K: H− → H+. Since K = K−1

this implies that the map K: H+ → H− is 1-1 and onto, so that the dimensions of H± are

equal, i.e. n+ = n−. ut

Corollary. If V is a real-valued measurable function on IR3 such that ∆ + V is densely

defined, then ∆ + V admits self-adjoint extensions.

Proof - It is easily checked that if ∆ +V is densely defined then it is symmetric, since

∆ and V are. Let K: H→ H be given by:

(Kψ)(x) = ψ(x) .

Then K is a conjugation, and since V is real and differentiation commutes with K, K

commutes with ∆ + V . It follows from the theorem above that ∆ + V admits self-adjoint

extensions. ut
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Corollary. The operator H0
p,c admits self-adjoint extensions.

Proof - H0
p,c is symmetric and commutes with K as in the previous corollary. ut

One might think that the corollary above solves our problems: can’t one simply take

one of the self-adjoint extensions of Ho
p,c to be the Hamiltonian? Unfortunately, if there is

more than one self-adjoint extension, different choices of self-adjoint extensions generate

different one-parameter unitary groups, corresponding to different rules for time evolution.

As Reed and Simon put it, ‘different self-adjoint extensions correspond to different physics.’

For example, by analogy with the Hamiltonians we’ve considered so far, the ‘free par-

ticle on a half-line’ should be described by the Hilbert space L2[0,∞) and the Hamiltonian:

− 1

2m

d2

dx2
.

But the interpretation of −d2/d2x as a self-adjoint operator depends on what domain we

choose. If we define T by:

D(T ) = C∞0 (0,∞) ;

Tψ = −d
2ψ

dx2
,

clearly T is densely defined, and it is easily seen using integration by parts that T is

symmetric: ∫ ∞
0

ψTφ =

∫ ∞
0

ψ ′φ′ =

∫ ∞
0

Tψφ

since ψ, φ ∈ C∞0 (0,∞). We can determine the deficiency indices n± of T as follows. If

ψ ∈ H+, then ∫ ∞
0

ψ(T + i)φ = 0

for all φ ∈ D(T ) = C∞0 (0,∞). Integrating by parts,∫ ∞
0

(ψ′′ − iψ)φ = 0 ,

and since is this is true for all φ ∈ C∞0 (0,∞), we must have ψ′′ = iψ. Thus ψ ∈ H+ must

be a linear combination of the solutions

ψ1(x) = e
√
ix , ψ2(x) = e−

√
ix .

But only ψ2 ∈ L2(0,∞), since ψ1(x) grows exponentially as x → +∞. Therefore H+ is

spanned by ψ2, so n+ = 1. Similarly one can show that H− is spanned by the complex

conjugate ψ2; this also follows from the theorem on conjugations. Thus n− = 1 as well.
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It follows that T has self-adjoint extensions. These are described as follows:

Exercise - Let Ta, a ∈ IR, be the operator given by:

D(Ta) = {ψ ∈ C∞0 [0,∞) : ψ′(0) + aψ(0) = 0} ,

Taψ = −d
2ψ

dx2
.

Let T∞ be given by:

D(T∞) = {ψ ∈ C∞0 [0,∞) : ψ′(0) = 0} ,

T∞ψ = −d
2ψ

dx2
.

Show that Ta and T∞ are essentially self-adjoint by determining H± as above. Conclude

that T a and T∞ are self-adjoint extensions of T .

Thus the choice of self-adjoint extension of T corresponds to a choice of boundary

conditions. The choice of boundary conditions determines what happens when a wave

function ψ ∈ C∞0 (0,∞) is evolved in time according to the 1-parameter group generated

by the Hamiltonian until it ‘hits’ the ‘wall’ at 0. Dirichlet boundary conditions correspond

to the operator T∞; they produce a situation like that which occurs when one wiggles

one end of a rope up and down and the other end is held fixed, so the displacement at

that end is zero. If instead the the other end is free to move up and down in a slot, one

has Neumann boundary conditions, which correspond to the operator T 0. (A real rope

satisfies the wave equation, not Schrödinger’s equation, but the similarities rather than the

differences concern us here.) If one shakes the rope once, producing a pulse which travels

to the other end and bounces back, the pulse will come back upside down given Dirichlet

boundary conditions, but right-side up given Neumann boundary conditions!

To verify this, note that i−1 d
dx
eikx = keikx, so that, roughly speaking, eikx is an eigen-

vector of p with eigenvalue k, or a state with momentum exactly k. (Of course eikx is not
in L2[0,∞), but one can obtain approximate eigenvectors by ‘cutting it off’ at some large
value of x.) Show that ψ = e−ikx + αeikx (suitably cut off) is in the domain of Ta where
α = (ik − a)/(ik + a) (where possibly a = ∞). Show that ψ is an eigenvector of Ta (ignoring
the cutoff). Physically, one interprets ψ as a ‘plane wave’ of momentum k moving to the left
superposed with a ‘plane wave’ of momentum k moving to the right, i.e. ‘reflecting’, with the
reflected wave having a ‘phase shift’ of α. Note that Dirichlet boundary conditions correspond
to a phase shift of −1 for all momenta, while Neumann boundary conditions correspond to a
phase shift of 1 for all momenta.

Something similar happens with H0
p,c. If it has more than one self-adjoint extension,

different self-adjoint extensions say different things about how the particle ‘pops out’ when

it hits the singularity at r = 0. In other words, the dynamics is not uniquely determined

by H0
p,c. The following theorem says when there are such different choices.
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Theorem. H0
c,p is essentially self-adjoint if cr−p ≥ 3

4r
−2. H0

c,p has more than one self-

adjoint extension if cr−p < 3
4r
−2.

Proof - The proof is similar to our study of the free particle on the half-line; one

obtains a differential equation ψ ∈ H± must satisfy and sees which solutions are in L2(IR3).

Unfortunately it’s rather lengthy, so we omit it. The proof for c ≥ 0 is Theorem X.11,

Reed and Simon, Methods of Modern Mathematical Physics, vol. II. The case c < 0 can

be dealt with by also using Theorem XIII.24, Dunford and Schwartz, Theory of Linear

Operators, vol. II. ut

Thus we only have essential self-adjointness on C∞0 (IR3−0) if p > 2 and c > 0 or r = 2

and c ≥ 3/4! These conditions are saying, roughly, that the potential cr−p is sufficiently

positive, i.e. repulsive, to make sure that the particle doesn’t blunder into the origin, so

that no extra rules are needed to describe how it pops out.

Exercise - Let T be the operator on L2[0, 1] given by:

D(T ) = C∞0 (0, 1) ,

Tψ = − d2

dx2
ψ .

Show that the deficiency indices of T are n+ = n− = 2 by explicitly determining H±.

(Hint: write down the definition

H± = {ψ ∈ H: ∀φ ∈ D(T )

∫ 1

0

ψ(T ± i)φ = 0 } ,

and integrate by parts to get a differential equation ψ must satisfy.)

Exercise - Let T be the operator on L2[0,∞) given by:

D(T ) = C∞0 (0,∞) ,

Tψ = i−1 dψ

dx
.

Show that the deficiency indices of T are n+ = 1, n− = 0. Show that T has no self-adjoint

extensions. Show that T is a closed symmetric operator that is not self-adjoint!
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14. Singular Perturbations and Positivity

Recall that an operator T is bounded below if for some c, T ≥ cI, that is, for all

ψ ∈ D(T )

〈ψ, Tψ〉 ≥ c‖φ‖2 .

The operator T is nonnegative if T ≥ 0, that is,

〈ψ, Tψ〉 ≥ 0

for all ψ ∈ D(T ). The operator T is positive if 〈ψ, Tψ〉 > 0 for all nonzero ψ ∈ D(T ).

In physics, ‘well-behaved’ Hamiltonians are bounded below; roughly speaking, systems

with Hamiltonians not bounded below would be ‘unstable’, being able to emit an infinite

amount of energy. This idea is made precise in thermodynamics, where it is seen that at

low temperatures a system in thermal equilibrium with its surroundings is in the state of

least possible energy (roughly), and that ‘equilibrium’ is only well-defined for Hamiltonians

that are bounded below. Note that the free Hamiltonian for a particle in IR3, 1
2m∆, is

bounded below, in fact positive, for m > 0, since

〈ψ,∆ψ〉 =

∫
|∇ψ|2 =

∫
k2|ψ̂|2d3k > 0

for all nonzero ψ ∈ D(∆). (Here the gradient is taken in the distributional sense.) This

is one reason why Schrödinger’s equation is only a reasonable description of particles with

positive mass.

Photons and neutrinos are thought to have zero mass, although present experimental
evidence does not rule out a small mass for neutrinos. Any reasonable description of massless
particles require special relativity to be taken into account; such particle always move at the
speed of light, and at speeds near that of light the classical Hamiltonian is seen to be only
an approximation to a ‘relativistic’ Hamiltonian. Electrons in heavy atoms move at speeds
near enough to that of light for these corrections to become important; in the hydrogen atom
relativistic effects are quite small (the speed of the electron is about 1/137 times that of light)
but very well measured, and provide important confirmation of quantum electrodynamics, the
theory of electromagnetism which takes quantum theory and special relativity into account.

Mathematically, bounded below operators are nice in many ways. First of all, it

follows from polarization that if T is positive then T is symmetric. As we will show in

the next section, there is a nice self-adjoint extension of any positive operator, called the

Friedrichs extension.

We will apply these ideas to our Hamiltonian

D(H0
p,c) = C∞0 (IR3 − 0) ,
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H0
p,cψ = (∆ + cr−p)ψ .

Theorem. H0
p,c is not bounded below if c < 0 and p > 2.

Proof - Let ψ ∈ C∞0 (IR3 − 0) be nonzero. Then clearly 〈ψ,∆ψ〉 > 0 while if c < 0,

〈ψ, cr−pψ〉 < 0 . Thus for some ε > 0,

〈ψ,∆ψ〉 = ε‖φ‖2

and for some δ > 0,

〈ψ,ψ〉 = −δ‖φ‖2

Now let ψa be the ‘dilation’ of ψ given by

ψa(x) = ψ(ax) .

Note that by a change of variables

‖ψa‖2 =

∫
|ψ(ax)|2d3x =

∫
|ψ(y)|2 a−3d3y = a−3‖ψ‖2 .

On the other hand,

〈ψa,∆ψa〉 =

∫
ψa ∆ψa

= a2

∫
ψ(ax) (∆ψ)(ax)d3x

= a2

∫
ψ(y) ∆ψ(y) a−3d3y

= a−1〈ψ,∆ψ〉

= a−1ε‖ψ‖2 ,
while

〈ψa, c−pψa〉 =

∫
c‖x‖−pψ(ax)ψ(ax)d3x

=

∫
c‖y/a‖−pψ(y)ψ(y)a−3d3y

= ap−3〈ψ, cr−pψ〉

= −ap−3δ‖ψ‖2 .
It follows that for any a > 0, ψa satisfies

〈ψa, H0
p,cψa〉 = 〈ψa, (∆ + cr−p)ψa〉

= (a−1ε− ap−3δ)‖ψ‖2

= (a2ε− apδ)‖ψa‖2 .
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It follows that if p > 2, no matter how large M is we can choose a large enough that

〈ψa, H0
p,cψa〉 ≤ −M‖ψa‖2 .

Thus H0
p,c cannot be bounded below if c < 0 and p > 2. ut

This is a typical example of a scaling argument: many counterexamples can be produced
by considering the family of all dilations ψa of a given function. Here the proof worked by
showing that for functions concentrated sufficiently near the origin, namely ψa with a large,
cr−pψa is bigger than ∆ψa if p > 2. The exponent p = 2 is an example of a critical exponent,
at which the proof breaks down because ∆ and r−2 have the same behavior under scaling. In
physics terminology, ∆ and r−2 both have dimensions of length−2. Many subtle and interesting
problems in mathematics and physics arise from critical exponents.

Theorem. H0
p,c is bounded below if c > 0 or p < 2. If p = 2, H0

p,c is nonnegative if

c ≥ −1/4, and unbounded below if c < 1/4.

Proof - H0
p,c is clearly positive if c > 0, since ∆ is positive and cr−p is nonnegative.

For the rest, we use the following beautiful inequality:

Lemma. Let ψ ∈ C∞0 (IR3). Then∫
IR3

1

4r2
|ψ(x)|2 d3x ≤

∫
IR3

|∇ψ(x)|2 d3x .

Proof - We may suppose without loss of generality that ψ is real-valued. Note that if

r > 0

∇(r1/2ψ) = r1/2∇ψ +
1

2
r−3/2~xψ

so

|∇ψ|2 = (r−1/2∇(r1/2ψ)− 1

2
r−2~xψ)2

≥ −r−5/2ψ ~x · ∇(r1/2ψ) +
1

4
r−2|ψ|2 ,

where we are using the fact that (~v − ~w)2 ≥ ~v 2 − 2~v · ~w. Recalling that ~x · ∇f = r ∂f∂r , we

obtain

|∇ψ|2 ≥ −r−3/2ψ
∂

∂r
(r1/2ψ) +

1

4
r−2|ψ|2 .

and using the fact that

r−3/2ψ
∂

∂r
(r1/2ψ) = r−1ψ

∂ψ

∂r
+

1

2
r−2ψ2

=
1

2
r−2 ∂

∂r
(rψ2)
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we obtain

|∇ψ|2 ≥ − 1

2r2

∂

∂r
(rψ2) +

1

4r2
|ψ|2 .

Integrating, this yields∫
|∇ψ|2 ≥

∫
1

4r2
|ψ|2 − 1

2

∫
∂

∂r
(rψ2) sin2 θ drdθdφ ,

and doing the second integral by parts we get zero, so the lemma is proved. ut

Proof of Theorem, continued - If p = 2, the lemma above immediately implies that

H0
p,c is nonnegative if c ≥ −1/4. We treat the case c < 1/4 in the exercise below. We treat

the case p < 2, c < 0 as follows. Given a > 0, choose ε such that r−p ≤ ar−2 for all r ≤ ε.
Then if ψ ∈ C∞0 (IR3), we use the lemma to show that:∫

IR3

r−p|ψ|2 =

∫
r≤ε

r−p|ψ|2 +

∫
r>ε

r−p|ψ|2

≤
∫
r≤ε

ar−2|ψ|2 + ε−p
∫
r>ε

|ψ|2

≤ a
∫

IR3

r−2|ψ|2 + ε−p
∫

IR3

|ψ|2

≤ 4a

∫
IR3

|∇ψ|2 + ε−p
∫

IR3

|ψ|2

In particular, if ψ ∈ C∞0 (IR3 − 0), we have

〈ψ,H0
p,cψ〉 =

∫
cr−p|ψ|2 + |∇ψ|2

≥ (1 + 4ac)

∫
|∇ψ|2 + cε−p

∫
|ψ|2 ,

so if we choose a small enough that 1 + 4ac ≥ 0,

〈ψ,H0
p,cψ〉 ≥ cε−p

∫
|ψ|2 = cε−p‖ψ‖2 ,

which shows that H0
p,c is bounded below. ut

Exercise - Show that if p = 2 and c < −1/4 then H0
p,c is not bounded below, as follows.

Assuming 0 < a < 1/2, show that the function ψ(r) = r−a satisfies

|∇ψ| = a

r
|ψ| ,
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and the integrals ∫
IR3

|∇ψ|2 ,
∫

IR3

1

r2
|ψ|2

converge and satisfy ∫
|∇ψ|2 =

∫
a2

r2
|ψ|2 .

Show that for any ε > 0 there exists φ ∈ C∞0 (IR3 − 0), obtained by making ψ smooth and

zero near the origin, such that ∫
|∇ψ|2 =

∫
(
a2

r2
+ ε)|ψ|2 .

Show that if c < −1/4, for any M > 0 we can choose a near 1/2 and ε small, so that

〈φ,H0
p,cφ〉 < −M‖φ‖2 .

15. Singular Perturbations and Sesquilinear Forms

Fundamental problems in mathematical physics often require for their solution the

generalization of existing concepts. Often these generalizations arise from the need to deal

with more singular objects than the existing framework is capable of handling. For exam-

ple, distributions arose as a generalization of functions in order to make sense of objects

such as the Dirac delta ‘function’. Densely defined operators arose as a generalization of

bounded operators because most of the Hamiltonians arising in physics are not bounded.

It turns out that there is a very useful further generalization of densely defined operators,

called ‘sesquilinear forms’, which are useful in dealing with singular perturbations of self-

adjoint operators. In this section we will develop a bit of the theory of sesquilinear forms

and apply it to the Hamiltonian Hp,c we have been discussing.

A sesquilinear form on a Hilbert space H is a map q:Q(q) × Q(q) → C, linear in

the second argument and conjugate-linear in the first, where Q(q) is a dense subspace of

H, called the form domain of q. (‘Sesqui’ is Greek for ‘one and a half’.)

Given a densely defined operator T there is a sesquilinear form q with Q(q) = D(T )

given by:

q(ψ, φ) = 〈ψ, Tφ〉 .
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Not all sesquilinear forms arise in this way, however; a different sort of example is the

sesquilinear form q with Q(q) = C∞0 (IR) ⊂ L2(IR) given by

q(ψ, φ) = ψ(0)φ(0) .

Roughly speaking, q corresponds to ‘multiplication by the delta function at zero’, since

q(ψ, φ) =

∫
ψ(x)δ(x)φ(x)dx ,

though of course there is no such multiplication operator, since δ is a distribution but not a

measurable function. Thus sesquilinear forms are able to describe more singular situations

than operators can.

The product of a sesquilinear form q by a complex number c is defined to have form

domain Q(cq) = Q(q) and on that domain is given by:

(cq)(ψ, φ) = c q(ψ, φ) .

The adjoint of a sesquilinear form q is defined to have form domain Q(q∗) = Q(q) and on

that domain is given by:

q∗(ψ, φ) = q(φ, ψ) .

Note that we always have q∗∗ = q, contrary to the situation for densely defined operators,

which is a relief. The sum of two sesquilinear forms q and q′ is defined to have form domain

Q(q + q′) = Q(q) ∩Q(q′) and on that domain is given by:

(q + q′)(ψ, φ) = q(ψ, φ) + q′(ψ, φ) .

The sesquilinear form I is defined by Q(I) = H and

I(ψ, φ) = 〈ψ, φ〉 .

One problem with sesquilinear forms is that there is no good general notion of a product
of two forms, just as there is no general way to multiply distrubutions; in certain circumstances,
however, a useful product exists. See John Baez, ‘Wick Products of the Free Bose Field’, to
appear in Jour. Funct. Anal. For an detailed introduction to sesquilinear forms (also sometimes
called quadratic forms) see Barry Simon, Quantum Mechanics for Hamiltonians Defined as
Quadratic Forms.

A very important fact is that if A is an unbounded self-adjoint operator and q is the

sesquilinear form with Q(q) = D(A) and q(ψ, φ) = 〈ψ,Aφ〉, the form q can be extended to

a larger domain.
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Theorem. Let A be a self-adjoint operator on a Hilbert space H. There is a unique

sesquilinear form qA such that

Q(qA) = {ψ ∈ H :

∫
σ(A)

|λ|dµA,ψ(λ) <∞}

and

qA(ψ,ψ) =

∫
σ(A)

λ dµA,ψ(λ)

for all ψ ∈ Q(qA). D(A) ⊆ Q(qA) and qA(ψ, φ) = 〈ψ,Aφ〉 if ψ, φ ∈ D(A). qA is called the

sesquilinear form associated to A, and Q(qA) is called the form domain of A.

Proof - It’s not so clear that Q(qA) is a vector space; we show this as follows. Suppose

f ∈ B(IR). If ψ, φ ∈ Q(qA),

‖f(A)(ψ + φ)‖ ≤ ‖f(A)ψ‖+ ‖f(A)φ‖

so using (a+ b)2 ≤ 2(a2 + b2),

〈(ψ + φ), f(A)2(ψ + φ)〉 ≤ 2〈ψ, f(A)2ψ〉+ 2〈φ, f(A)2φ〉 .

By the spectral theorem this implies∫
f2dµA,ψ+φ ≤ 2

∫
f2dµA,ψ + 2

∫
f2dµA,φ .

Since f2 can be any positive function in B(IR), this implies that

dµA,ψ+φ ≤ 2dµA,ψ + 2dµA,φ .

In particular ∫
|λ|dµA,ψ+φ ≤ 2

∫
|λ|dµA,ψ + 2

∫
|λ|dµA,φ <∞

so ψ + φ ∈ Q(qA).

Given ψ ∈ Q(qA), we define qA(ψ,ψ) as above:

qA(ψ,ψ) =

∫
σ(A)

λdµA,ψ(λ) .

Given ψ, φ ∈ Q(qA), we define qA(ψ, φ) by the polarization identity; it’s straightforward

to verify that this makes qA really a sesqilinear form. Similarly the polarization identity

implies that qA is the unique form satisfying the conditions of the theorem.
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Suppose ψ ∈ D(A). Then ψ = (A+ i)−1φ for some φ ∈ H. For all f ∈ B(IR),∫
f dµA,ψ = 〈ψ, f(A)ψ〉

= 〈φ, (A− i)−1f(A)(A+ i)−1φ〉

=

∫
f(λ)

λ2 + 1
dµA,φ(λ)

so

dµA,ψ(λ) = (λ2 + 1)−1dµA,φ(λ) .

In particular, ∫
(λ2 + 1)dµA,ψ =

∫
1 dµA,φ <∞ ,

so

D(A) ⊆ {ψ ∈ H :

∫
σ(A)

λ2 dµA,ψ(λ)} ⊆ Q(q) .

Also, for ψ ∈ D(A)

〈ψ,Aψ〉 =

∫
σ(A)

λ dµA,ψ = qA(ψ,ψ)

so polarization implies that qA(ψ, φ) = 〈ψ,Aφ〉 if ψ, φ ∈ D(A). ut

To get a feeling for what’s going on in the the theorem, try the following:

Exercise - Show that

D(∆) = {ψ ∈ H:

∫
|∆ψ|2 <∞}

while

Q(q∆) = {ψ ∈ H:

∫
|∇ψ|2 <∞} .

Given a sesquilinear forms q and q′ we write q ≥ q′ if

q(ψ,ψ) ≥ q′(ψ,ψ)

for all ψ ∈ Q(q) ∩ Q(q′). We define bounded below, nonnegative, and positive

sesquilinear forms by copying the definitions for operators; in particular, q is bounded

below if q satisfies q ≥ −cI for some c. Sesquilinear forms that are bounded below have

many nice properties, and for the rest of this section we will discuss forms that are bounded

below.
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Suppose the sesquilinear form q satisfies q ≥ −cI. Then there is an inner product on

Q(q) given by:

〈ψ, φ〉1 = q(ψ, φ) + (c+ 1)〈ψ, φ〉 .

Note that for topological purposes it doesn’t matter which c we pick here:

Exercise - Show that if q ≥ −cI and q ≥ −c′I, the two norms on Q(q):

‖ψ‖21 = q(ψ,ψ) + (c+ 1)〈ψ,ψ〉

and

‖ψ‖21′ = q(ψ,ψ) + (c′ + 1)〈ψ,ψ〉

are equivalent, i.e. for some constant a > 0,

‖ψ‖1 ≤ a‖ψ‖1′ , ‖ψ‖1′ ≤ a‖ψ‖1 .

Of course Q(q) may not be a Hilbert space under the inner product 〈·, ·〉1 because

it may not be complete in the norm ‖ · ‖1. Given a sesquilinear form q that is bounded

below, we define it to be closed if Q(q) is complete in the norm ‖ · ‖1. We say that a

bounded-below form q is closable if there is closed bounded-below form q such that Q(q)

is dense in Q(q), the latter given the topology coming from its ‖ · ‖1 norm. In this case we

say q is the closure of q:

Exercise - Show that the closure of a closable bounded-below sesquilinear form is

unique.

There is a one-to-one correspondence between closed bounded-below sesquilinear forms

and bounded below self-adjoint operators:

Theorem. If A is a self-adjoint operator, bounded below, the associated sesquilinear form

qA is closed and bounded below. If q is a sesquilinear form that is closed and bounded

below, there is a unique bounded-below self-adjoint operator such that q = qA.

Proof - We omit this proof; it can found, for example, in Reed and Simon, Methods

of Modern Mathematical Physics, vol. I, Theorem VIII.15. ut

This theorem is rather remarkable because while not all closed operators that are

bounded below are self-adjoint, it says that all closed forms that are bounded below cor-

respond to self-adjoint operators. As a consequence, there is a distinguished self-adjoint

extension of any operator that is bounded below:
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Friedrichs Extension Theorem. Let A be an operator that is bounded below and

let q(ψ, φ) = 〈ψ,Aφ〉 for ψ, φ ∈ D(A). Then q is closable, and the closure q equals qÂ
for a unique bounded-below self-adjoint operator Â. Â is an extension of A, called the

Friedrichs extension of A.

Proof - If A ≥ cI, let 〈·, ·〉1 be the inner product on Q(q) = D(A) given by:

〈ψ, φ〉1 = q(ψ, φ) + (c+ 1)〈ψ, φ〉 .

Let H1 be the Hilbert space completion of Q(q) in the norm ‖ · ‖1. It is easy to see that

q1 extends by continuity to a unique form q1 on H1.

Let ι:Q(q) → H be the inclusion map. Since Q(q) is dense in H1 and ‖ιψ‖ ≤ ‖ψ‖1
for ψ ∈ Q(q), the B.L.T. theorem implies that ι extends to a unique continuous linear map

ι1: H1 → H. We show that ι1 is one-to-one as follows: if i1(ψ) = 0 for some ψ ∈ H1, then

since Q(q) is dense in H1, we can choose ψi ∈ Q(q) such that

‖ψi − ψ‖1 → 0 ,

hence

‖ψi‖ = ‖ι1ψi‖ → ‖ι1ψ‖ = 0 .

It follows that
‖ψ‖21 = lim

j→∞
lim
i→∞
〈ψi, ψj〉1

= lim
j→∞

lim
i→∞
〈ψi, Aψj〉+ (c+ 1)〈ψi, ψj〉

= 0 ,

so ψ = 0.

Since ι1 is one-to-one, it is an isomorphism between H1 and Ran ι1 ⊆ H, allowing

us to identify H1 with Ran ι1 and q̂ with a form on Ran ι1, which is clearly the closure q

since Q(q) is dense in H1 and H1 is complete. Since q is closed and bounded below, by

the theorem above it is of the form qÂ for a unique bounded-below self-adjoint operator

Â. Since for all ψ, φ ∈ D(A),

〈ψ,Aφ〉 = q(ψ, φ) = q(ψ, φ) = 〈ψ, Âφ〉 ,

and D(A) is dense in H, we must have Aφ = Âφ. Thus Â is an extension of A. ut

An important good feature of the Friedrichs extension is simply its naturality, that

is, it takes no extra information to specify which self-adjoint extension of a bounded-

below symmetric operator to pick. Thus in the cases where one is trying to get the

73



correct Hamiltonian out of an operator that is bounded below but not essentially self-

adjoint, mathematical physicists take its Friedrichs extension. The following are other

nice properties of the Friedrichs extension:

Exercise - Show that if A is a symmetric operator with A ≥ cI, then Â ≥ cI.

Exercise - Show that if A is a symmetric and bounded-below operator then Â is the

only self-adjoint extension of A whose domain is contained in Q(q), where q is as in the

theorem.

Exercise - Show that if A is self-adjoint and bounded below then Â = A.

As an example of how the Friedrichs extension can be used on very singular pertur-

bations, we have:

Corollary. If V : IR3 → IR is continuous except at finitely many points and satisfies V ≥ c
for some c ∈ IR, then the operator ∆ + V is densely defined and bounded below, hence

admits a Friedrichs extension.

Proof - Let S be the set of points on which V is not continuous. Then for ψ ∈
C∞0 (IR3 − S), V ψ ∈ L2(IR3) and ∆ψ ∈ L2(IR3). Thus C∞0 (IR3 − S) ⊆ D(∆) ∩D(V ), so

∆ + V is densely defined. It’s clear also that ∆ + V is bounded below, so the Friedrichs

extension exists. ut

The above theorem applies to operators of the form ∆ + cr−p with c ≥ 0.

Here, then, is a summary of results on the Hamiltonian Hp,c. We haven’t proved all

these results, but we’ve proved most of them:

Positive potential - c > 0 : H0
p,c is positive hence Friedrichs extension exists.

0 ≤ p < 3/2 : Hp,c essentially self-adjoint on C∞0 (IR3) by Kato-Rellich.

p = 2, 0 < c ≤ 3/4 : H0
p,c is not essentially self-adjoint.

p = 2, c > 3/4 : H0
p,c is essentially self-adjoint.

p > 2 : H0
p,c is essentially self-adjoint.

Negative potential - c < 0 : H0
p,c is not essentially self-adjoint, but admits self-adjoint

extensions.

0 ≤ p < 3/2 : Hp,c essentially self-adjoint on C∞0 (IR3) by Kato-Rellich.
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0 ≤ p < 2 : H0
p,c is bounded below hence Friedrichs extension exists.

p = 2, c ≥ −1/4 : H0
p,c is bounded below hence Friedrichs extension exists.

p = 2, c < −1/4 : H0
p,c is not bounded below.

p > 2 : H0
p,c is not bounded below.
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