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Definition. A Littlewood polynomial is a polynomial whose
coefficients are all 1 and -1.

Let’s draw all roots of all Littlewood polynomials!





Certain regions seem particularly interesting:



The hole at 1:

Note the line along the real axis: more Littlewood polynomials
have real roots than nearly real roots.



The holes at i and eiπ/4:



This plot is centered at the point 4
5 :



This is centered at the point 4
5 i :



This is centered at 1
2e i/5:



Can we understand these pictures? Let

D = {z ∈ C : z is the root of some Littlewood polynomial}

Theorem 1. D ⊆ {1/2 < |z| < 2}

Proof. Suppose z is a root of a Littlewood polynomial. Then

1 = ±z ± z2 ± · · · ± zn

If |z| < 1 then

1 ≤ |z|+ |z|2 + · · ·+ |z|n <
|z|

1− |z|

so |z| > 1/2. Since z is the root of a Littlewood polynomial if
and only if z−1 is, D is contained in the annulus 1

2 < |z| < 2.
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Theorem 2. {2−1/4 ≤ |z| ≤ 21/4} ⊆ D.

Proof. This was proved by Thierry Bousch in 1988. We won’t
prove it here.

http://topo.math.u-psud.fr/~bousch/preprints/paires_sim.pdf
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The closure D is easier to study than D. For example:

Theorem 3. D is connected.

Proof. This was proved by Bousch in 1993. Let’s sketch how
the proof works. It’s enough to show D ∩ {|z| < r} is connected
where r is slightly less than 1.

http://topo.math.u-psud.fr/~bousch/preprints/clh_ifs.pdf
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Definition. A Littlewood series is a power series all of whose
coefficients are 1 or −1.

Littlewood series converge for |z| < 1.

Lemma 1. A point z ∈ C with |z| < 1 lies in D if and only if
some Littlewood series vanishes at this point.
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A Littlewood polynomial is not a Littlewood series! But any
Littlewood polynomial, say

P(z) = a0 + · · ·+ adzd

gives a Littlewood series having the same roots with |z| < 1:

P(z)

1− zd+1 = a0+· · ·+adzd +a0zd+1+· · ·+adz2d+1+a0z2d+2+· · ·

Thus D ⊆ R, where R is the set of roots of Littlewood series.

Our job is to show D = R.

To do this, let’s show that R is closed and D is dense in R.
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Let L be the set of Littlewood series. L ∼= {−1, 1}N, so with the
product topology it’s homeomorphic to the Cantor set.

Choose 0 < r < 1. Let M be the space of finite multisets of
points with |z| ≤ r , modulo the equivalence relation generated
by S ∼ S ∪ {p} when |p| = r .

Lemma 2. Any Littlewood series has finitely many roots in the
disc {|z| ≤ r}. The map ρ : L → M sending a Littlewood series
to its multiset of roots in this disc is continuous.

Since L is compact, the image of ρ is closed. From this we can
show that R, the set of roots of Littlewood series, is closed.

Since Littlewood polynomials are densely included in L and ρ is
continuous, we can show that D, the set of roots of Littlewood
polynomials, is dense in R.

It follows that D = R.
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Lemma 3. The set R is connected.

Proof. It’s enough to show R ∩ {|z| < r} is connected, where
2−1/4 < r < 1.

Suppose U ⊆ R ∩ {|z| < r} is closed and open in the relative
topology. We want to show U is empty.

Let LU be the set of Littlewood series with a root in U. LU is a
closed and open subset of L. Thus, we can determine whether
f ∈ L lies in LU by looking at its first d terms:

f (z) = a0 + a1z + · · ·+ ad−1zd−1 + adzd + · · ·

for some d . Choose the smallest d with this property.

We will get a contradiction if U, and thus LU , is nonempty! We’ll
show d − 1 has the same property.
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Suppose f ∈ LU :

f (z) = a0 + a1z + · · ·+ ad−1zd−1 + adzd + · · ·

Suppose g has the same first d − 1 terms:

g(z) = a0 + a1z + · · ·+ ad−1zd−1 + bdzd + · · ·

We’ll show g ∈ LU too. Multiplying by −1 if necessary, we can
assume a0 = 1:

f (z) = 1 + a1z + · · ·+ ad−1zd−1 + adzd + · · ·

There are two cases, ad = 1 and ad = −1. We’ll just do the
first, since the second is similar. So:

f (z) = 1 + a1z + · · ·+ ad−1zd−1 + zd + · · ·
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f (z) = 1 + a1z + · · ·+ ad−1zd−1 + zd + ad+1zd+1 + · · ·

has a root in U, and we want to show the same for any g ∈ L
with the same first d − 1 terms, say

g(z) = 1 + a1z + · · ·+ ad−1zd−1 + bdzd + bd+1zd+1 + · · ·

We may assume g differs from f in its d th term:

g(z) = 1 + a1z + · · ·+ ad−1zd−1 − zd + bd+1zd + · · ·

It suffices to show that g̃ has a root in U:

g̃(z) =
(

1 + a1z + · · ·+ ad−1zd−1
)

/
(

1 + zd
)

since this has the same first d terms as g. Since f has a root in
U, so does

f̃ (z) =
(

1 + a1z + · · ·+ ad−1zd−1
)

/
(

1− zd
)

since this has the same first d terms as f .
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g̃(z) =
(

1 + a1z + · · ·+ ad−1zd−1
)

/
(
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)

and
f̃ (z) =

(
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)
/
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)
so
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)
f̃ (z)

Since f̃ has a root in U, so does g̃. QED!



Here is the key to understanding the beautiful patterns in the
set D. Define two functions from the complex plane to itself,
depending on a complex parameter q:

f+q(z) = 1 + qz
f−q(z) = 1− qz

When |q| < 1 these are both contraction mappings, so by
Hutchinson’s theorem on iterated function systems there’s a
unique nonempty compact set Dq ⊆ C with

Dq = f+q(Dq) ∪ f−q(Dq)

We call this set a dragon.

Here’s the marvelous fact: the portion of D in a small
neighborhood of q ∈ C tends to look like Dq.
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For example, here’s the set D near q = 0.375453 + 0.544825i :



And here’s the dragon Dq for q = 0.375453 + 0.544825i :



Let’s zoom in on the set of roots of Littlewood polynomials of
degree 20. When we zoom in enough, we’ll see it’s a discrete
set!

Then we’ll increase the degree and see how the set ‘fills in’.

Then we’ll switch to a zoomed-in view of the corresponding
dragon, and then zoom out.
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center 0.42065 + 0.48354i , height .62508, degree 20
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dragon for 0.42065 + 0.48354i , height .62508



The set D is the set of roots of all Littlewood series. The set Dq
is the set of values of all Littlewood series at the point q:

Theorem 4. For |q| < 1, Dq = {f (q) : f ∈ L}.

This is easy to show.

But why does D near q tend to resemble Dq?
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Each Littlewood series f maps q to a point f (q) ∈ Dq. For p
near q,

f (p) ≈ f (q) + f ′(q) (p − q)

Thus, we expect f (p) = 0 when

p − q ≈ − f (q)

f ′(q)

If this reasoning is good, this formula approximately gives
points p ∈ D near q from points f (q) ∈ Dq.

So, we should expect that near q, the set D will approximately
look like a somewhat distorted copy of the dragon Dq, or
sometimes a union of such copies.

We’re working on stating this precisely and proving it.
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D near q = 4
5 i :



union of distorted dragons for q = 4
5 i :


