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1.1 Introduction

Category theory is a very general formalism, but there is a certain special way that physicists
use categories which turns out to have close analogues in topology, logic and computation. A
category has objects and morphisms, which represent things and ways to go between things.
In physics, the objects are often physical systems, and the morphisms are processes turning
a state of one physical system into a state of another system — perhaps the same one.
In quantum physics we often formalize this by taking Hilbert spaces as objects, and linear
operators as morphisms.

Sometime around 1949, Feynman [53] realized that in quantum field theory it is useful
to draw linear operators as diagrams:

This lets us reason with them pictorially. We can warp a picture without changing the
operator it stands for: all that matters is the topology, not the geometry. By the 1980s,
people realized that this idea sets up a powerful analogy between quantum physics and
topology! This analogy is now being intensively exploited in string theory, loop quantum
gravity, and especially topological quantum field theory.

Meanwhile, quite separately, logicians had begun using categories where the objects
represent propositions and the morphisms represent proofs. The idea is that a proof is a



process going us go from one proposition (the hypothesis) to another (the conclusion). Later,
computer scientists started using categories where the objects represent data types and the
morphisms represent programs. They also started using ‘flow charts’ to describe programs.
Abstractly, these are very much like Feynman diagrams!

The logicians and computer scientists were never very far from each other. Indeed, the
‘Curry–Howard correspondence’ relating proofs to programs has been well-known at least
since the early 1970s, with roots stretching back earlier [33, 50]. But, it is only rather
recently that the logicians and computer scientists bumped into the physicists and topol-
ogists. One reason is the current interest in quantum cryptography, quantum computation
and other forms of quantum information processing. For example, the ‘topological quantum
computers’ currently envisaged by researchers at Microsoft [41] use the analogies between
physics, topology, and computation so thoroughly that it is impossible to say where one
subject ends and the other starts.

Regardless of whether useful quantum computers are ever built, it is worth laying out
these analogies in one place. They suggest that seemingly disparate fields of research are
really just branches of a science yet to be built: a general science of systems and processes.
Building this science will be difficult. There are good reasons for this, but also bad ones.
One bad reason is that different fields use different terminology and notation.

The original Rosetta Stone, created in 196 BC, contains versions of the same text in
three languages: demotic Egyptian, hieroglyphic script and classical Greek. Its rediscovery
by Napoleon’s soldiers let modern Egyptologists decipher the hieroglyphs. Eventually this
led to a vast increase in our understanding of Egyptian culture.

At present, the deductive systems in mathematical logic look like hieroglyphs to most
physicists. Similarly, quantum field theory is Greek to most computer scientists, and so
on. So, there is a need for a new Rosetta Stone to aid researchers attempting to translate
between fields. Table 1.1 gives our guess as to what this Rosetta Stone might look like.

object morphism

Physics system process

Topology manifold cobordism

Logic proposition proof

Computation data type program

Table 1.1. The Rosetta Stone (pocket version)

The rest of this paper expands on this tables by comparing how how categories are used
in physics, topology, logic, and computation. Unfortunately, these different fields focus on
slightly different kinds of categories. Though most physicists don’t know it, quantum physics
has long made use of ‘compact symmetric monoidal categories’. Topology — especially
knot theory — uses ‘compact braided monoidal categories’, which are slightly more general.
However, it became clear by the 1990s that these more general gadgets are useful in physics
too. Logic and computer science used to focus on ‘cartesian closed categories’ — where



‘cartesian’ can be seen, roughly, as an antonym of ‘quantum’. However, thanks to work on
linear logic and quantum computation, some logicians and computer scientists have dropped
their insistence on cartesianness: now they study more general sorts of ‘closed symmetric
monoidal categories’.

In Section 1.2 we explain all these concepts, how they illuminate the analogy between
physics and topology, and how to work with them using string diagrams. We assume no prior
knowledge of category theory, only a willingness to learn some. We give precise definitions,
but leave most of the calculations as exercises for the reader.

In Section 1.3 we explain how closed symmetric monoidal categories correspond to a
small fragment of ordinary propositional logic, which also happens to be a fragment of Gi-
rard’s ‘linear logic’ [45]. In Section 1.4 we explain how closed symmetric monoidal categories
correspond to a simple model of computation: a version of the lambda calculus that allows
for quantum effects. In Section 1.5, we summarize by presenting a larger version of the
Rosetta Stone.

Our treatment of all four subjects — physics, topology, logic and computation — is
bound to seem sketchy and idiosyncratic to practitioners of these subjects. Our excuse is
that we wish to emphasize certain analogies while saying no more than absolutely necessary.
To make up for this, we include many references for those who wish to dig deeper.

1.2 The Analogy Between Physics and Topology

1.2.1 Overview

Currently our best theories of physics are general relativity and the Standard Model of
particle physics. The first describes gravity without taking quantum theory into account;
the second describes all the other forces taking quantum theory into account, but ignores
gravity. So, our world-view is deeply schizophrenic. The field where physicists struggle to
solve this problem is called quantum gravity, since it is widely believed that the solution
requires treating gravity in a way that takes quantum theory into account.

Nobody is sure how to do this, but there is a striking similarity between two of the main
approaches: string theory and loop quantum gravity. Both rely on the analogy between
physics and topology shown in Table 1.2.

On the left we have a basic ingredient of quantum theory: the category Hilb whose
objects are Hilbert spaces, used to describe physical systems, and whose morphisms are
linear operators, used to describe physical processes. On the right we have a basic structure
in differential topology: the category nCob, whose objects are (n−1)-dimensional manifolds,
used to describe , and whose morphisms are n-dimensional cobordisms, used to describe
spacetime. We give precise definitions below; for now, just to dispel any possible terror
caused by the term ‘cobordism’, here is a picture of one when n = 2:



Physics Topology

Hilbert space (n− 1)-dimensional manifold
(system) (space)

operator between cobordism between
Hilbert spaces (n− 1)-dimensional manifolds

(process) (spacetime)

composition of operators composition of cobordisms

identity operator identity cobordism

Table 1.2. Analogy between physics and topology

We can think of this as a 2-dimensional ‘spacetime’ going between 1-dimensional manifolds
describing ‘space’.

As we shall see, Hilb and nCob share many structural features. Moreover, both are very
different from the more familiar category Set, whose objects are sets and whose morphisms
are functions. Elsewhere we have argued at great length that this is important for better
understanding quantum mechanics [8] and even quantum gravity [7]. The idea is that if
Hilb is more like nCob than Set, maybe we should stop thinking of a quantum process
as a function from one set of states to another. Instead, maybe we should think of it as
resembling a ‘spacetime’ going between spaces of dimension one less.

This idea sounds strange, but the simplest example is something very practical, used by
physicists every day: a Feynman diagram. This is a 1-dimensional graph going between 0-
dimensional collections of points, with edges and vertices labelled in certain ways. Feynman
diagrams are topological entities, but they describe linear operators. String theory and loop
quantum gravity use higher-dimensional versions of Feynman diagrams to do a similar job.

Here we will not focus on the puzzles of quantum mechanics or quantum gravity. Instead
we take a different tack, simply explaining some basic concepts from category theory and
showing how Set, Hilb, nCob and categories of tangles give examples. A recurring theme,
however, is that Set is very different from the other examples.

To help the reader safely navigate the sea of jargon, here is a chart of the concepts we
shall explain in this section:



categories

monoidal categories
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braided
monoidal categories
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closed
monoidal categories
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symmetric
monoidal categories
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closed braided
monoidal categories
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compact
monoidal categories

cartesian categories
closed symmetric

monoidal categories
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QQQQQQQQQQQQQ

compact braided
monoidal categories

cartesian
closed categories

compact symmetric
monoidal categories

The category Set is cartesian closed, while Hilb and nCob are compact symmetric monoidal.

1.2.2 Categories

Category theory was born around 1945, with Eilenberg and Mac Lane [38] giving the defi-
nitions of ‘categories’, ‘functors’ between categories, and ‘natural transformations’ between
functors. By now there are many introductions to the subject [32, 65, 69], including some
available for free online [16, 47]. However, we begin at the beginning:

Definition 1. A category C consists of:

• a collection of objects, where if X is an object of C we write X ∈ C, and

• for every pair of objects (X,Y ), a set hom(X,Y ) of morphisms from X to Y . We call
this set hom(X,Y ) a homset. If f ∈ hom(X,Y ), then we write f :X → Y.

such that:

• for every object X there is an identity morphism 1X :X → X ;

• morphisms are composable: given f :X → Y and g:Y → Z, there is a composite
morphism gf :X → Z; sometimes also written g ◦ f .

• an identity morphism is both a left and a right unit for composition: if f :X → Y,
then f1X = f = 1Y f ; and



• composition is associative: (hg)f = h(gf) whenever either side is well-defined.

A category is the simplest framework where we can talk about systems (objects) and
processes (morphisms). To visualize these, we can use ‘Feynman diagrams’ of a very prim-
itive sort, which mathematicians call ‘string diagrams’. The term ‘string’ here has little to
do with string theory: instead, the idea is that objects of our category label ‘strings’, or
‘wires’:

X

and morphisms f :X → Y are ‘black boxes’ with an input wire of type X and an output
wire of type Y :

f

X

Y

We compose two morphisms by connecting the output wire of one black box to the input
wire of the next. So, the composite of f :X → Y and g:Y → Z looks like this:

f

g

X

Y

Z

Associativity of composition is then implicit:



f

g

h

X

Y

Z

W

is our notation for both h(gf) and (hg)f . Similarly, if we draw the identity morphism
1X :X → X as a piece of wire of type X :

X

then the left and right unit laws are also implicit.

There are countless examples of categories, but we will focus on four:

• Set: the category where objects are sets.

• Hilb: the category where objects are finite-dimensional Hilbert spaces.

• nCob: the category where morphisms are n-dimensional cobordisms.

• Tangk: the category where morphisms are k-codimensional tangles.

As we shall see, all four are closed symmetric monoidal categories, at least when k is
big enough. However, the most familiar of the lot, namely Set, is the odd man out: it is
‘cartesian’.

Traditionally, mathematics has been founded on the category Set, where the objects are
sets and the morphisms are functions. So, when we study systems and processes in physics,
it is tempting to specify a system by giving its set of states, and a process by giving a
function from states of one system to states of another.

However, in quantum physics we do something subtly different: we use categories where
objects are Hilbert spaces and morphisms are bounded linear operators. We specify a system
by giving a Hilbert space, but this Hilbert space is not really the set of states of the system:
a state is actually a ray in Hilbert space. Similarly, a bounded linear operator is not precisely
a function from states of one system to states of another.

In the day-to-day practice of quantum physics, what really matters is not sets of states
and functions between them, but Hilbert space and operators. One of the virtues of category



theory is that it frees us from the ‘Set-centric’ view of traditional mathematics and lets
us view quantum physics on its own terms. As we shall see, this sheds new light on the
quandaries that have always plagued our understanding of the quantum realm [8].

To avoid technical issues that would take us far afield, let us define Hilb to be the cate-
gory where objects are finite-dimensional Hilbert spaces and morphisms are linear operators
(automatically bounded in this case). This should be fine for those interested in quantum
information theory and some aspects of quantum computation, but it should upset experts
on quantum field theory. See Section 1.6.1 for some remarks on the infinite-dimensional
case.

In physics we also use categories where the objects represent choices of space, and the
morphisms represent choices of spacetime. The simplest is nCob, where the objects are
(n−1)-dimensional manifolds, and the morphisms are n-dimensional cobordisms. We explain
nCob in more detail in Section 1.6.2, but roughly speaking, a cobordism f :X → Y is an
n-dimensional manifold whose boundary is the disjoint union of the (n − 1)-dimensional
manifolds X and Y . Here are a couple of cobordisms in the case n = 2:

X

Y

f

��

Y

Z

g

��

We compose them by gluing the ‘output’ of one to the ‘input’ of the other. So, in the above
example gf :X → Z looks like this:

X

Z

gf

��

Another kind of category important in physics has objects representing collections of
particles, and morphisms representing their worldlines and interactions. Feynman diagrams
are the classic example, but in these diagrams the ‘edges’ are not taken literally as particle
trajectories. An example with closer ties to topology is Tangk. We defer the details to
Section 1.6.3, but very roughly speaking, objects in Tangk are collections of points in a
k-dimensional cube, while morphisms are ‘framed oriented tangles’ in a (k+ 1)-dimensional
cube. Since a picture is worth a thousand words, here is a picture of a morphism in Tang1:
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and here is a picture of a morphism in Tang2:
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In these pictures we have drawn the ‘orientation’ as a little arrow on each curve in the
tangle. In applications to physics, the curves are worldlines of particles, and the arrows say
whether each particle is going forwards or backwards in time, following Feynman’s idea that
antiparticles are particles going backwards in time. We have not drawn the ‘framing’. If we
did, each curve would be replaced by a ‘ribbon’. In applications to physics, this keeps track
of how each particle twists. This is especially important for fermions, where a 2π twist acts
nontrivially.

It is difficult to do much with categories without discussing the maps between them. A
map between categories is called a ‘functor’:

Definition 2. A functor F :C → D from a category C to a category D is map sending:

• any object X ∈ C to an object F (X) ∈ D,

• any morphism f :X → Y in C to a morphism F (f):F (X)→ F (Y ) in D,

in such a way that:

• F preserves identities: for any object X ∈ C, F (1X) = 1F (X);



• F preserves composition: for any pair of morphisms f :X → Y , g:Y → Z in C,
F (gf) = F (g)F (f).

Functors are good for many things, but here is one: we can think of a functor F :C → D
as a ‘representation’ of C in D. The idea here is that objects and morphisms of some
‘abstract’ category C are sent to objects and morphisms in some more ‘concrete’ category
D. For example, consider an abstract group G, which we can think of as a category with
one object and all morphisms invertible. Then a representation G on a finite-dimensional
Hilbert space is just a functor F :G → Hilb. Similarly, an action of G on a set is a functor
F :G→ Set.

Ever since Lawvere’s 1963 thesis on functorial semantics [62], the idea of functors as
representations has become pervasive in modern logic. However, the terminology is different!
In logic, the category C is called a ‘theory’, and the functor F :C → D is called a ‘model’
of this theory.

Though Lawvere was interested in theories in physics as well as in logic, his way of
thinking caught on in physics only much later, around 1988, with Segal’s work on conformal
field theories [74] and Atiyah’s work on topological field theories [5]. Again, the terminology
is a bit different: physicists prefer to call the functor F :C → D a ‘theory’, rather than a
model of a theory.

If functors are models, natural transformations are maps between models:

Definition 3. Given two functors F,G:C → D, a natural transformation α:F ⇒ G
assigns to every object X in C a morphism αX :F (X)→ G(X) such that for any morphism
f :X → Y in C, the equation αY F (f) = G(f)αX holds in D. In other words, this square
commutes:

F (X) F (Y )

G(X) G(Y )

-F (f)

?

αX

?

αY

-
G(f)

(Going across and then down equals going down and then across.)

Definition 4. A natural isomorphism between functors F,G:C → D is a natural trans-
formation α:F ⇒ G such that αX is an isomorphism for every X ∈ D.

1.2.3 Monoidal Categories

In physics, it is often useful to think of two systems sitting side by side as forming a single
system. In topology, the disjoint union of two manifolds is again a manifold in its own right.
In logic, the conjunction of two statement is again a statement. In programming we can



combine two data types into a single ‘product type’. The concept of ‘monoidal category’
unifies all these examples in a single framework.

A monoidal category C has a functor ⊗:C × C → C that takes two objects X and Y
and puts them together to give a new object X ⊗ Y . To make this precise, we need the
cartesian product of categories:

Definition 5. The cartesian product C×C ′ of categories C and C ′ is the category where:

• an object is a pair (X,X ′) consisting of an object X ∈ C and an object X ′ ∈ C ′;
• a morphism from (X,X ′) to (Y, Y ′) is a pair (f, f ′) consisting of a morphism f :X → Y

and a morphism f ′:X ′ → Y ′;

• composition is done componentwise: (g, g′)(f, f ′) = (gf, g′f ′);

• identity morphisms are defined componentwise: 1(X,X′) = (1X , 1X′).

Mac Lane [64] defined monoidal categories in 1963. The subtlety of the definition lies
in the fact that (X ⊗ Y ) ⊗ Z and X ⊗ (Y ⊗ Z) are not usually equal. Instead, we should
specify an isomorphism between them, called the ‘associator’. Similarly, while a monoidal
category has a ‘unit object’ I , it is not usually true that I⊗X and X⊗ I equal X . Instead,
we should specify isomorphisms I ⊗X ∼= X and X ⊗ I ∼= X . To be manageable, all these
isomorphisms must then satisfy certain equations:

Definition 6. A monoidal category consists of:

• a category C,

• a tensor product functor ⊗:C × C → C,

• a unit object I ∈ C,

• a natural isomorphism called the associator, assigning to each triple of objects X,Y, Z ∈
C an isomorphism

aX,Y,Z : (X ⊗ Y )⊗ Z ∼→ X ⊗ (Y ⊗ Z),

• natural isomorphisms called the left and right unitors, assigning to each object X ∈ C
isomorphisms

lX : I ⊗X ∼→ X

rX : X ⊗ I ∼→ X,

such that:

• for all X,Y ∈ C the triangle equation holds:

(X ⊗ I)⊗ Y X ⊗ (I ⊗ Y )

X ⊗ Y

-aX,I,Y

HHHjrX⊗1Y

���� 1X⊗lY



• for all W,X, Y, Z ∈ C, the pentagon equation holds:

((W ⊗X)⊗ Y )⊗ Z

(W ⊗ (X ⊗ Y )) ⊗ Z

(W ⊗X)⊗ (Y ⊗ Z)

W ⊗ ((X ⊗ Y )⊗ Z)

W ⊗ (X ⊗ (Y ⊗ Z))

�
�
�
�
�
�

�
�
��	

aW⊗X,Y,Z

HHHHHHHHj

aW,X,Y ⊗1Z

?

aW,X⊗Y,Z

@
@
@
@
@
@
@
@
@@R

aW,X,Y⊗Z
���������

1W⊗aX,Y,Z

When we have a tensor product of four objects, there are five ways to parenthesize it,
and at first glance the associator lets us build two isomorphisms from W ⊗ (X⊗ (Y ⊗Z)) to
((W⊗X)⊗Y )⊗Z. But, the pentagon equation says these isomorphisms are equal. When we
have tensor products of even more objects there are even more ways to parenthesize them,
and even more isomorphisms between them built from the associator. However, Mac Lane
showed that the pentagon identity implies these isomorphisms are all the same. Similarly,
if we also assume the triangle equation, all isomorphisms with the same source and target
built from the associator, left and right unit laws are equal.

In a monoidal category we can do processes in ‘parallel’ as well as in ‘series’. Doing
processes in series is just composition of morphisms, which works in any category. But in a
monoidal category we can also tensor morphisms f :X → Y and f ′:X ′ → Y ′ and obtain a
‘parallel process’ f ⊗ f ′:X ⊗X ′ → Y ⊗ Y ′. We can draw this in various ways:

f

X

Y

f ′

X ′

Y ′

= f ⊗ f ′

X

Y

X ′

Y ′

= f ⊗ f ′

X ⊗X ′

Y ⊗ Y ′

More generally, we can draw any morphism



f :X1 ⊗ · · · ⊗Xn → Y1 ⊗ · · · ⊗ Ym

as a black box with n input wires and m output wires:

f

X1 X2 X3

Y1 Y2

By composing and tensoring these morphisms, we can build up elaborate pictures resembling
Feynman diagrams:

f

g

h

j

X1 X2 X3 X4

Y1 Y2 Y3 Y4

Z

The laws governing a monoidal category allow us to neglect associators and unitors when
drawing such pictures, without getting in trouble. We can also deform the picture in a
wide variety of ways without changing the morphism it describes. For example, the above
morphism equals this one:

f

g

h

j

X1 X2 X3 X4

Y1 Y2 Y3 Y4

Z

Everyone who uses string diagrams for calculations in monoidal categories starts by worrying
about the rules of the game: precisely how can we deform these pictures without changing the
morphisms they describe? Instead of stating the rules precisely — which gets a bit technical
— we urge you to explore for yourself what is allowed and what is not. For example, show
that we can slide black boxes up and down like this:



f

g

X1

Y1

X2

Y2

= f g

X1

Y1

X2

Y2

=
f

g

X1

Y1

X2

Y2

For a formal treatment of the rules governing string diagrams, try the original papers by
Joyal and Street [51] and the book by Yetter [87].

Now let us turn to examples. Here it is crucial to realize that the same category can
often be equipped with different tensor products, resulting in different monoidal categories:

• There is a way to make Set into a monoidal category where X ⊗ Y is the cartesian
product X×Y and the unit object is any one-element set. Note that this tensor product
is not strictly associative, since (x, (y, z)) 6= ((x, y), z), but there’s a natural isomorphism
(X × Y )×Z ∼= X × (Y ×Z), and this is our associator. Similar considerations give the
left and right unitors. In this monoidal category, the tensor product of f :X → Y and
f ′:X ′ → Y ′ is the function

f × f ′ :X ×X ′ → Y × Y ′
(x, x′) 7→ (f(x), f ′(x′)).

There is also a way to make Set into a monoidal category where X ⊗ Y is the disjoint
union of X and Y , which we shall denote by X + Y . Here the unit object is the empty
set. Again, as indeed with all these examples, the associative law and left/right unit laws
hold only up to natural isomorphism. In this monoidal category, the tensor product of
f :X → Y and f ′:X ′ → Y ′ is the function

f + f ′: X +X ′ → Y + Y ′

x 7→
{
f(x) if x ∈ X ,
f ′(x) if x ∈ X ′.

However, in what follows, when we speak of Set as a monoidal category, we always use
the cartesian product!

• There is a way to make Hilb into a monoidal category with the usual tensor product of
Hilbert spaces: Cn ⊗ Cm ∼= Cnm. In this case the unit object I can be taken to be an
1-dimensional Hilbert space, for example C.

There is also way to make Hilb into a monoidal category where the tensor product is
the direct sum: Cn ⊕ Cm ∼= Cn+m. In this case the unit object is the zero-dimensional
Hilbert space, {0}.
However, in what follows, when we speak of Hilb as a monoidal category, we always use
the usual tensor product!

• The tensor product of objects and morphisms in nCob is given by disjoint union. For
example, the tensor product of these two morphisms:



X

Y

f

��

X ′

Y ′

f ′

��

is this:
X ⊗X ′

Y ⊗ Y ′

f⊗f ′

��

• The category Tangk is monoidal when k ≥ 1, where the the tensor product is given by
disjoint union. For example, given these two tangles:

two tangles, side by side, f :X → Y and f ′:X ′ → Y ′.

their tensor product is this:

picture of their tensor product

The example of Set with its cartesian product is different from our other three main
examples, because the cartesian product of sets X × X ′ comes equipped with functions
called ‘projections’ to the sets X and X ′:

X X ×X ′ X ′-p�p′

Our other main examples lack this feature — though Hilb made into a monoidal category
using ⊕ has projections. Also, every set has a unique function to the the one-element set:

!X :X → I.

Again, our other main examples lack this feature, though Hilb made into a monoidal cate-
gory using ⊕ has it. A fascinating feature of quantum mechanics is that we make Hilb into
a monoidal category using ⊗ instead of ⊕, even though the latter approach would lead to
a category more like Set.

We can isolate the special features of the cartesian product of sets and its projections,
obtaining a definition that applies to any category:

Definition 7. Given objects X and X ′ in some category, we say an object X×X ′ equipped
with morphisms

X X ×X ′ X ′�p -p
′



is a cartesian product (or simply product) of X and X ′ if for any object Q and mor-
phisms

Q

X X ′
�
�	
f

@@R
f ′

there exists a unique morphism g:Q→ X ×X ′ making the following diagram commute:

Q

X X ×X ′ X ′

�
�
�
��	

f
@
@
@
@@R

f ′

?

g

�
p

-
p′

(That is, f = pg and f ′ = p′g.) We say a category has binary products if every pair of
objects has a product.

The product may not exist, and it may not be unique, but when it exists it is unique up
to a canonical isomorphism. This justifies our speaking of ‘the’ product of objects X and
Y when it exists, and denoting it as X × Y .

The definition of cartesian product, while absolutely fundamental, is a bit scary at first
sight. To illustrate its power, let us do something with it: combine two morphisms f :X → Y
and f ′:X ′ → Y ′ into a single morphism

f × f ′:X ×X ′ → Y × Y ′.

The definition of cartesian product says how to build a morphism of this sort out of a pair
of morphisms: namely, morphisms from X ×X ′ to Y and Y ′. If we take these to be fp and
f ′p′, we obtain f × f ′:

X ×X ′

Y Y × Y ′ Y ′

�
�
�
�	

fp
@
@
@
@R

f ′p′

?

f×f ′

�p -p
′

Next, let us isolate the special features of the one-element set:

Definition 8. An object 1 in a category C is terminal if for any object Q ∈ C there exists
a unique morphism from Q to 1, which we denote as !Q:Q→ 1.

Again, a terminal object may not exist and may not be unique, but it is unique up to a
canonical isomorphism. This is why we can speak of ‘the’ terminal object of a category, and
denote it by a specific symbol, 1.



We have introduced the concept of binary products. One can also talk about n-ary
products for other values of n, but a category with binary products has n-ary products for
all n ≥ 1, since we can construct these as iterated binary products. The case n = 1 is trivial,
since the product of one object is just that object itself (up to canonical isomorphism). The
remaining case is n = 0. The zero-ary product of objects, if it exists, is just the terminal
object. So, we make the following definition:

Definition 9. A category has finite products if it has binary products and a terminal
object.

A category with finite products can always be made into a monoidal category by choosing a
specific product X ×Y to be to the tensor product X⊗Y , and choosing a specific terminal
object to be the unit object. It takes a bit of work to show this! A monoidal category of
this form is called cartesian.

In a cartesian category, we can ‘duplicate and delete information’. In general, the defi-
nition of cartesian products gives a way to take two morphisms f1:Q→ X and f2:Q→ Y
and combine them into a single morphism from Q to X × Y . If we take Q = X = Y and
take f1 and f2 to be the identity, we obtain the diagonal or duplication morphism:

∆X :X → X ×X.

In the category Set one can check that this maps any element x ∈ X to the pair (x, x). In
general, we can draw the diagonal as follows:

∆

X

X
X

Similarly, we call the unique map to the terminal object

!X :X → 1

the deletion morphism, and draw it as follows:

!

X

Note that we draw the unit object as an empty space.



A fundamental fact about cartesian categories is that duplicating something and then
deleting either copy is the same as doing nothing at all! In string diagrams, this says:

!

∆

X

X

X

=

X

=

!

∆

X

X X

We leave the proof as an exercise for the reader.

1.2.4 Braided Monoidal Categories

In physics, there is often a process that lets us ‘switch’ two systems by moving them around
each other. In topology, there is a tangle that describes the process of switching two points:

basic braid in a box

In logic, we can switch the order of two statements in a conjunction: the statement ‘X and
Y ’ is isomorphic to ‘Y and X ’. In computation, there is a simple program that switches the
order of two pieces of data. A monoidal category in which we can do this sort of thing is
called ‘braided’:

Definition 10. A braided monoidal category consists of:

• a monoidal category C,

• a natural isomorphism called the braiding that assigns to every pair of objects X,Y ∈ C
an isomorphism

bX,Y :X ⊗ Y → Y ⊗X,

such that the hexagon equations hold:



X ⊗ (Y ⊗ Z) (X ⊗ Y )⊗ Z (Y ⊗X)⊗ Z

(Y ⊗ Z)⊗X Y ⊗ (Z ⊗X) Y ⊗ (X ⊗ Z)

(X ⊗ Y )⊗ Z X ⊗ (Y ⊗ Z) X ⊗ (Z ⊗ Y )

Z ⊗ (X ⊗ Y ) (Z ⊗X)⊗ Y (X ⊗ Z)⊗ Y

-
a−1
X,Y,Z

?
bX,Y⊗Z

-bX,Y ⊗1Z

?
aY,X,Z

�
a−1
Y,Z,X

�
1Y ⊗bX,Z

-aX,Y,Z

?
bX⊗Y,Z

-1X⊗bY,Z

?
a−1
X,Z,Y

�
aZ,X,Y

�
bZ,X⊗1Y

The first hexagon equation says that switching the object X past Y ⊗ Z all at once is the
same as switching it past Y and then past Z (with some associators thrown in to move the
parentheses). The second one is similar: it says switching X ⊗ Y past Z all at once is the
same as doing it in two steps.

In string diagrams, we draw the braiding bX,Y :X ⊗ Y → Y ⊗X like this:

X Y

We draw its inverse b−1
X,Y like this:

YX

This is a nice notation, because it makes the equations saying that bX,Y and b−1
X,Y are

inverses ‘topologically true’:

X

X

Y

Y

= X Y =

Y

Y

X

X



We urge you to prove the following equations:

f g

X

X ′

Y

Y ′

=

g f

X

X ′

Y

Y ′

X

X

Y

Y

Z

Z

=

X Y Z

Y XZ

Y

Y

X

X

Z

Z

=

Y ZX

YXZ

ZX Y

XYZ

=

Y ZX

XYZ

If you get stuck, here are some hints. The first equation follows from the naturality of the
braiding. The next two follow from the hexagon equations. The last is called the Yang–
Baxter equation and follows from a combination of naturality and the hexagon equations
[52].



Next, here are some examples. There can be many different ways to give a monoidal
category a braiding, or none. However, most of our favorite examples come with well-known
‘standard’ braidings:

• Any cartesian category automatically becomes braided, and in Set with its cartesian
product, this standard braiding is given by:

bX,Y :X × Y → Y ×X
(x, y) 7→ (y, x).

• In Hilb with its usual tensor product, the standard braiding is given by:

bX,Y :X ⊗ Y → Y ⊗X
x⊗ y 7→ y ⊗ x.

• The monoidal category nCob has a standard braiding where bX,Y is diffeomorphic to
the disjoint union of cylinders X × [0, 1] and Y × [0, 1]. For 2Cob this braiding looks as
follows when X and Y are circles:

X ⊗ Y

Y ⊗X

bX,Y

��

• The monoidal category Tangk has a standard braiding when k ≥ 2. For k = 2 this looks
as follows when X and Y are each a single point:

basic braid in a box (again)

The example of Tangk illustrates an important pattern. Tang0 is just a category, because
in 0-dimensional space we can only do processes in ‘series’: that is, compose morphisms.
Tang1 is a monoidal category, because in 1-dimensional space we can also do processes in
‘parallel’: that is, tensor morphisms. Tang2 is a braided monoidal category, because in 2-
dimensional space there is room to move one object around another. Next we shall see what
happens when space has 3 or more dimensions!

1.2.5 Symmetric Monoidal Categories

Sometimes switching two objects and switching them again is the same as doing nothing
at all. Indeed, this situation is very familiar. So, the first braided monoidal categories to be
discovered were ‘symmetric’ ones [64]:



Definition 11. A symmetric monoidal category is a braided monoidal category where
the braiding satisfies bX,Y = b−1

Y,X .

So, in a symmetric monoidal category,

X Y

YX

= X Y

or equivalently,
X Y

=

YX

Any cartesian category automatically becomes a symmetric monoidal category, so Set
is symmetric. It is also easy to check that Hilb, nCob are symmetric monoidal categories.
So is Tangk for k ≥ 3.

Interestingly, Tangk ‘stabilizes’ at k = 3: increasing the value of k beyond this value
merely gives a category equivalent to Tang3. The reason is that we can already untie all
knots in 4-dimensional space; adding extra dimensions has no real effect. This is part of a
conjectured larger pattern called the ‘Periodic Table’ of n-categories [10], shown in Table
1.3.

An n-category has not only morphisms going between objects, but 2-morphisms going
between morphisms, 3-morphisms going between 2-morphisms and so on up to n-morphisms.
In topology we can use n-categories to describe tangled higher-dimensional surfaces [11],
and in physics we can use them to describe not just particles but also strings and higher-
dimensional membranes [10, 12]. The Rosetta Stone we are describing concerns only the
n = 1 column of the Periodic Table — thus, particles with 1-dimensional worldlines, or
tangles in the traditional sense. So, it is probably just a fragment of a larger, still buried
n-categorical Rosetta Stone.

1.2.6 Closed Categories

In quantum mechanics, one can encode a linear operator f :X → Y into a quantum state
using a technique called ‘gate teleportation’ [48]. In topology, there is a way to take any
tangle f :X → Y and bend the input back around to make it part of the output. In logic, we
can take a proof that goes from some assumption X to some conclusion Y and turn it into a
proof that goes from no assumptions to the conclusion ‘X implies Y ’. In computer science,



n = 0 n = 1 n = 2

k = 0 sets categories 2-categories

k = 1 monoids monoidal monoidal
categories 2-categories

k = 2 commutative braided braided
monoids monoidal monoidal

categories 2-categories

k = 3 ‘’ symmetric sylleptic
monoidal monoidal
categories 2-categories

k = 4 ‘’ ‘’ symmetric
monoidal

2-categories

k = 5 ‘’ ‘’ ‘’

k = 6 ‘’ ‘’ ‘’

Table 1.3. The Periodic Table: conjectured descriptions of (n + k)-categories with only one j-
morphism for j < k.

we can take any program that takes input of type X and produces output of type Y , and
think of it as a piece of data of a new type: a ‘function type’. The underlying concept that
unifies all these examples is the concept of a ‘closed category’.

Given objects X and Y in any category C, there is a set of morphisms from X to Y ,
denoted hom(X,Y ). In a closed category there is also an object of morphisms from X to
Y , which we denote by X ( Y . (Many other notations are also used.) In this situation we
speak of an ‘internal hom’, since the object X ( Y lives inside C, instead of ‘outside’, in
the category of sets.

Closed categories were introduced in 1966, by Eilenberg and Kelly [37]. While these
authors were able to define a closed structure for any category, it turns out that the internal
hom is most easily understood for monoidal categories. The reason is that when our category
has a tensor product, it is closed precisely when morphisms from X⊗Y to Z are in natural
one-to-one correspondence with morphisms from X to Y ( Z. In other words, it is closed
when we have a natural isomorphism

hom(X ⊗ Y, Z) ∼= hom(X,Y ( Z)

f 7→ f̃

For example, in the category Set, if we take X⊗Y to be the cartesian product X×Y , then
Y ( Z is just the set of functions from Y to Z, and we have a one-to-one correspondence
between

• functions f that eat elements of X × Y and spit out elements of Z



and

• functions f̃ that eat elements of X and spit out functions from Y to Z.

This correspondence goes as follows:

f̃(x)(y) = f(x, y).

Before considering other examples, we should make the definition of ‘closed monoidal
category’ completely precise. For this we must note that for any category C, there is a
functor

hom:Cop × C → Set.

Definition 12. The opposite category Cop of a category C has the same objects as C,
but a morphism f :x → y in Cop is a morphism f : y → x in C, and the composite gf in
Cop is the composite fg in C.

Definition 13. For any category C, the hom functor

hom:Cop × C → Set

sends any object (X,Y ) ∈ Cop ×C to the set hom(X,Y ), and sends any morphism (f, g) ∈
Cop × C to the function

hom(f, g): hom(X,Y ) → hom(X ′, Y ′)
h 7→ ghf

when f :X ′ → X and g:Y → Y ′ as morphisms in C.

Definition 14. A monoidal category C is closed if there is an internal hom functor

(:Cop × C → C

together with a natural isomorphism c called currying that assigns to any objects X,Y, Z ∈
C a bijection

cX,Y,Z : hom(X ⊗ Y, Z)
∼→ hom(Y,X ( Z)

f 7→ f̃ .

The term ‘currying’ is mainly used in computer science, after the work of Curry [33]. We
are working with left closed monoidal categories: there are also right closed ones, where
currying goes like this:

cX,Y,Z : hom(X ⊗ Y, Z)
∼→ hom(X,Y ( Z)

We shall ignore this subtlety, since the difference between left and right closed evaporates
for a braided monoidal category: the braiding gives an isomorphism X ⊗ Y ∼= Y ⊗X .

All our examples of monoidal categories are closed, but we shall see that, yet again, Set
is different from the rest:



• The cartesian category Set is closed, where X ( Y is just the set of functions from X
to Y . In Set or any other cartesian closed category, the internal hom X ( Y is usually
denoted Y X . To minimize the number of different notations and emphasize analogies
between different contexts, we shall not do this: we shall always use X ( Y .

• The symmetric monoidal category Hilb with its usual tensor product is closed, where
X ( Y is the set of linear operators from X to Y , made into a Hilbert space in a
standard way. In this case we have

X ( Y ∼= X∗ ⊗ Y

where X∗ is the dual of the Hilbert space X , that is, the set of linear operators f :X → C,
made into a Hilbert space in the usual way.

• The monoidal category Tangk (k ≥ 1) is closed... need information on orientations here!!!

• The symmetric monoidal category nCob is also closed.

Except for Set, all these examples are actually ‘compact’. This basically means that
X ( Y is isomorphic to X∗ ⊗ Y , where X∗ is some object called the ‘dual’ of X . To be
precise, we should say this isomorphism is natural:

Definition 15. A monoidal closed category C is compact if there is a dualizing functor

∗: Cop → C
X 7→ X∗

such that the internal hom functor is naturally isomorphic to this composite:

Cop × C ∗×1−→ C × C ⊗−→ C
(X,Y ) 7→ (X∗, Y ) 7→ X∗ ⊗ Y

This definition is elegant but quite compressed. To unravel its consequences, note that
in a compact monoidal category we can curry the right unitor

rX :X ⊗ I → X

and obtain a morphism called the unit of X :

iX : I → X∗ ⊗X.

Since currying is invertible, we can also ‘uncurry’ the inverse of the right unitor

rX∗ :X
∗ → X∗ ⊗ I

and obtain a morphism called the counit of X :

eX :X ⊗X∗ → I.



With some strenuous calculations, the reader can show these satisfy two equations called
the zig-zag equations, which say these diagrams commute:

X ⊗ I X ⊗ (X∗ ⊗X) (X ⊗X∗)⊗X

X I ⊗X

I ⊗X∗ (X∗ ⊗X)⊗X∗ X∗ ⊗ (X ⊗X∗)

X∗ X∗ ⊗ I

-1X⊗iX

?

rX

-
a−1
X,X∗,X

?

eX⊗1X

�
lX

-iX⊗1X

?

lX

-aX∗,X,X∗

?

1X∗⊗eX

�
rX∗

With even more work, one can show the converse: any monoidal category in which every
object X has an object X∗ equipped with unit and counit satisfying the zig-zag equations
is compact!

The point of this reformulation, and the reason for the name ‘zig-zag’, become clear if we
borrow some ideas from Feynman. In physics, if X is the Hilbert space of internal states of
some particle, X∗ is the Hilbert space for the corresponding antiparticle. Feynman realized
that it is enlightening to think of antiparticles as particles going backwards in time. So, we
draw a wire labelled by X∗ as a wire labelled by X , but with an arrow pointing ‘backwards
in time’: that is, up instead of down:

X∗ = X

(Here we should admit that most physicists use the opposite convention, where time marches
up the page. Since we read from top to bottom, we prefer to let time run down the page.)

Given this, we should draw the unit as a cap:

X X

and the counit as a cup:

X X



In Feynman diagrams, these describe the creation and annihilation of virtual particle-
antiparticle pairs!

In this notation, the zig-zag equations look like this:

X

X

=
X

X

X

=
X

They really describe two ways of straightening out a zig-zag. This is especially vivid in
examples from topology, such as Tangk and nCob.

In a compact monoidal category, the internal hom X ( Y is naturally isomorphic
X∗⊗ Y . So, it is harmless to redefine the internal hom to equal X∗⊗ Y , and then we have:

X Y = X ( Y

In general, closed monoidal categories don’t allow arrows pointing up, so drawing the inter-
nal hom is more of a challenge. We can use the same style of notation as long as we add a
decoration — a clasp — that binds two strings together:

X Y := X ( Y

Only when our closed monoidal category happens to be compact can we eliminate the clasp.

Then, since we draw a morphism f :X ⊗ Y → Z like this:

f

X
Y

Z



we can draw its curried version f̃ :Y → X ( Z by bending down the input wire labelled X
to make it part of the output:

f

X

Y

Z

Note that where we bent back the wire labelled X , a cap like this appeared

X X

Closed monoidal categories don’t really have a cap unless they are compact. So, we drew
a bubble enclosing f and the cap, to keep us from doing any illegal manipulations. In the
compact case, both the bubble and the clasp are unecessary, so we can draw f̃ like this:

f

X

Y

Z

An important special case of currying gives the name of a morphism f :X → Y ,

pfq: I → X ( Y.

This is obtained by currying the morphism

frx: I ⊗X → Y.

In string diagrams, we draw pfq as follows:

f

X
Y

In the category Set, the unit object I is the one-element set. So, a morphism from I to any
set Q picks out a point of Q. In particular, the name pfq: I → X ( Y picks out the element
of X ( Y corresponding to the function f :X → Y . More generally, in any cartesian closed
category, a morphism from 1 to an object Q is called a point of Q. So, even in this case,
we can say the name of a morphism f :X → Y is a point of X ( Y .



Something similar works for Hilb, though this example is compact rather than cartesian.
In Hilb, the unit object I is just C. So, a nonzero morphism from I to any Hilbert space Q
picks out a nonzero vector in Q, which we can normalize to obtain a state in Q: that is,
a unit vector. In particular, the the name of a nonzero morphism f :X → Y gives a state
of X∗ ⊗ Y . This method of encoding operators as states is the basis of ‘gate teleportation’
[48].

Currying is a bijection, so we can also uncurry:

c−1
X,Y,Z : hom(Y,X ( Z)

∼→ hom(X ⊗ Y, Z)

g 7→ g
˜
.

Since we draw a morphism g:Y → X ( Z like this:

g

X

Y

Z

we draw its ‘uncurried’ version g
˜
:X ⊗ Y → Z by bending the output X up to become an

input:

gX
Y

Z

Again, we must put a bubble around the ‘cup’ formed when we bend down the wire labelled
Y , unless we are in a compact monoidal category.

A good example of uncurrying is the evaluation morphism:

evX,Y :X ⊗ (X ( Y )→ Y.

This is obtained by uncurrying the identity

1X(Y : (X ( Y )→ (X ( Y ).

In Set, evX,Y takes any function from X to Y and evaluates it at any element of X to give
an element of Y . In terms of string diagrams, the evaluation morphism looks like this:



ev

XX
Y

Y

=

X X
Y

Y

In any closed monoidal category, we can recover a morphism from its name using eval-
uation. More precisely, this diagram commutes:

X ⊗ I X

X ⊗ (X ( Y ) Y

?
1X⊗pfq

� r−1

?
f

-
evX,Y

Or, in terms of string diagrams:

f

X X
Y

Y

= f

X

Y

We leave the proof of this as an exercise. In general, one must use the naturality of currying.
In the special case of a compact monoidal category, there is a nice picture proof! Simply
pop the bubbles and remove the clasps:



f

X X
Y

Y

= f

X

Y

The result then follows from one of the zig-zag identities. (However, we never proved the
zig-zag identities! In fact, the exercise left for the reader here yields one of the zig-zag
identities as a special case when f = 1X . The other is similar.)

In our rapid introduction to string diagrams, we have not had time to illustrate how
these diagrams are a powerful tool for solving concrete problems. So, here are some starting
points for further study:

• Representations of Lie groups play a fundamental role in quantum physics, especially
gauge field theory. Every Lie group has a compact symmetric monoidal category of
finite-dimensional representations. In his book Group Theory, Cvitanovic [34] develops
detailed string diagram descriptions of these representation categories for the classical
Lie groups SU(n), SO(n), SU(n) and also the more exotic ‘exceptional’ Lie groups. His
book also illustrates how this technology can be used to simplify difficult calculations in
gauge field theory.

• Quantum groups are a generalization of groups which show up in 2d and 3d physics.
The big difference is that a quantum group has compact braided monoidal category of
finite-dimensional representation. Kauffman’s Knots and Physics [55] is an excellent in-
troduction to how quantum groups show up in knot theory and physics; it is packed with
string diagrams. For more details on quantum groups and braided monoidal categories,
see the book by Kassel [54].

• Kauffman and Lins [56] have written a beautiful string diagram treatment of the category
of representations of the simplest quantum group, SUq(2). They also use it to construct
some famous 3-manifold invariants associated to 3d and 4d topological quantum field
theories: the Witten–Reshetikhin–Turaev, Turaev–Viro and Crane–Yetter invariants.
For generalizations of these theories to other quantum groups, see the more advanced
books by Turaev [82] and by Bakalov and Kirillov [13].

• Kock [58] has written a nice introduction to 2d topological quantum field theories which
makes heavy use of string diagram methods for studying 2Cob.



• Abramsky, Coecke and collaborators [1, 2, 3, 28, 30, 31] have developed string diagrams
for a certain crucial class of symmetric monoidal compact categories as a tool for un-
derstanding quantum computation. The easiest introduction is Coecke’s ‘Kindergarten
quantum mechanics’ [29].

1.3 Logic

1.3.1 Overview

Proof theory is the branch of logic that studies proofs as mathematical entities in their
own right. Modern proof theory studies proofs in many different systems of logic, of which
‘classical logic’ is just one [46].

In Hilbert’s approach to proof there are many axioms and just one rule to deduce new
theorems: modus ponens, which says that from X and ‘X implies Y ’ we can deduce Y . Most
of modern proof theory focuses on another approach, due to Gentzen [44]. In this approach
there are few axioms but many inference rules.

A nonexpert might be surprised that proof theorists often focus on systems of logic that
are weaker than classical logic — systems where it is harder or even impossible to prove
things we normally take for granted. These are sometimes called ‘substructural logics’ [71].
One reason these logics are interesting is that that they allow a fine-grained study of precisely
which methods of reasoning are able to prove which results. A deeper reason is that they
shed light on the connection between proof theory and category theory.

1.3.2 Proof Theory

In Section 1.2 we described categories with various amounts of extra structure, start-
ing from categories pure and simple, and working our way up to monoidal categories,
braided monoidal categories, symmetric monoidal categories, and so on. Our treatment
only scratched the surface of an enormously rich taxonomy. Now we shall see that each kind
of category with extra structure corresponds to a system of logic with its own inference
rules!

In a nutshell, the idea is to think of propositions as objects in some category, and proofs
as giving morphisms. Suppose X and Y are propositions. Then, we can think of a proof
starting from the assumption X and leading to the conclusion Y as giving a morphism
f :X → Y . For reasons of convenience, we may want to think of slightly different proofs as
giving the same morphism — soon we shall see why. So, morphisms are really equivalence
classes of proofs.

Proof theorists write X ` Y when, starting from the assumption X , there is a proof
leading to the conclusion Y . An inference rule is a way to get new proofs from old. For
example, in almost every system of logic, if there is a proof leading from X to Y , and a
proof leading from Y to Z, then there is a proof leading from X to Z. Proof theorists write
this inference rule as follows:



X ` Y Y ` Z
X ` Z

This is called the cut rule, since it lets us ‘cut out’ the intermediate step Y . It should
remind us of composition of morphisms in a category: if we have a morphism f :X → Y
and a morphism g:Y → Z, we get a morphism gf :X → Z.

Also, in almost every system of logic there is a proof leading from X to X . We can write
this as an inference rule that starts with nothing and concludes the existence of a proof of
X from X :

X ` X

This rule should remind us of how every object in category has an identity morphism: for
any object X , we automatically get a morphism 1X :X → X . Indeed, this rule is sometimes
called the identity rule.

If we pursue this line of thought, we can take the definition of a closed symmetric
monoidal category and extract a collection of inference rules. Each rule is a way to get new
morphisms from old in a closed symmetric monoidal category. There are various superficially
different but ultimately equivalent ways to list these rules. Here is one:

X ` X (i)
X ` Y Y ` Z

X ` Z (◦)

W ` X Y ` Z
W ⊗ Y ` X ⊗ Z (⊗)

W ` (X ⊗ Y )⊗ Z
W ` X ⊗ (Y ⊗ Z)

(a)

X ` I ⊗ Y
X ` Y (l)

X ` Y ⊗ I
X ` Y (r)

W ` X ⊗ Y
W ` Y ⊗X (b)

X ⊗ Y ` Z
Y ` X ( Z

(c)

Double lines mean that the inverse rule also holds. We have given each rule a name, written
to the right in parentheses. As already explained, rules (i) and (◦) come from the presence of
identity morphisms and composition in any category. Rules (⊗), (a), (l), and (r) come from
tensoring, the associator, and the left and right unitors in a monoidal category. Rule (b)
comes from the braiding in a braided monoidal category, and rule (c) comes from currying
in a closed monoidal category.

Now for the big question: what does all this mean in terms of logic? These rules describe
a small fragment of classical logic. To see this, we should read the connective ⊗ as ‘and’,
the connective ( as ‘implies’, and the proposition I as ‘true’.

In this interpretation, rule (c) says we can turn a proof leading from the assumption ‘Y
and X ’ to the conclusion Z into a proof leading from X to ‘Y implies Z’. It also says we
can do the reverse. This is true in classical logic, and so are all the other rules. Rules (a)
and (b) say that ‘and’ is associative and commutative. Rule (l) says that any proof leading



from the assumption X to the conclusion ‘true and Y ’ can be converted to a proof leading
from X to Y , and vice versa. Rule (r) is similar.

What do we do with these rules? We use them to build ‘deductions’. Here is an easy
example:

(i)
X ( Y ` X ( Y

(c−1)
X ⊗ (X ( Y ) ` Y

First we use the identity rule, and then the inverse of the currying rule. At the end, we
obtain

X ⊗ (X ( Y ) ` Y.
This should remind us of the evaluation morphisms we have in a closed monoidal category:

evX,Y :X ⊗ (X ( Y )→ Y.

In terms of logic, the point is that we can prove Y from X and ‘X implies Y ’. This fact
comes in handy so often that we may wish to abbreviate the above deduction as an extra
inference rule — a rule derived from our basic list:

(ev)
X ⊗ (X ( Y ) ` Y

This rule is none other than modus ponens.

In general, a deduction is a tree built from inference rules. Branches arise when we use
the (◦) or (⊗) rules. Here is an example:

(i)
(A⊗B)⊗ C ` ((A⊗B)⊗ C

(a)
(A⊗B)⊗ C ` A⊗ (B ⊗ C) A⊗ (B ⊗ C) ` D

(◦)
(A⊗B)⊗ C ` D

Again we can abbreviate this deduction as a derived rule. In fact, this rule is reversible:

A⊗ (B ⊗ C) ` D
(α)

(A⊗B)⊗ C ` D

For a more substantial example, suppose we want to show

(X ( Y )⊗ (Y ( Z) ` X ( Z.

The deduction leading to this will not even fit on the page unless we use our abbreviations:

(ev)
X ⊗ (X ( Y ) ` Y (id)

Y ( Z ` Y ( Z
(⊗)

(X ⊗ (X ( Y )) ⊗ (Y ( Z) ` Y ⊗ (Y ( Z)
(ev)

Y ⊗ (Y ( Z) ` Z
(X ⊗ (X ( Y ))⊗ (Y ( Z) ` Z

(α−1)
X ⊗ ((X ( Y )⊗ (Y ( Z)) ` Z

(c)
(X ( Y )⊗ (Y ( Z) ` X ( Z



Since each of the rules used in this deduction came from a way to get new morphisms from
old in a closed monoidal category (we never used the braiding), it follows that in every such
category we have internal composition morphisms:

•X,Y,Z : (X ( Y )⊗ (Y ( Z)→ X ( Z.

These play the same role for the internal hom that ordinary composition

◦: hom(X,Y )× hom(Y, Z)→ hom(X,Z)

plays for the ordinary hom.

We can go ahead making further deductions in this fragment of classical logic, but the
really interesting thing is what it omits. For starters, it omits the connective ‘or’ and the
proposition ‘false’. It also omits two inference rules we normally take for granted — namely,
contraction:

X ` Y
(∆)

X ` Y ⊗ Y

and weakening:

X ` Y
(!)

X ` I

These are closely related to duplication and deletion in a cartesian category. Omitting these
rules is a distinctive feature of ‘linear logic’ [35, 45]. The word ‘linear’ should remind us of
the category Hilb. As noted in Section 1.2.3, this category with its usual tensor product is
noncartesian, so it does not permit duplication and deletion. But, what does omitting these
rules mean in terms of logic?

Ordinary logic deals with propositions, so we have been thinking of the above system of
logic in the same way. Linear logic deals not just with propositions, but also other resources
— for example, physical things! Unlike propositions in ordinary logic, we typically can’t
duplicate or delete these other resources. In classical logic, if we know that a proposition
X is true, we can use X as many or as few times as we like when trying to prove some
proposition Y . But if we have a cup of milk, we can’t use it to make cake and then use it
again to make butter. Nor can we make it disappear without a trace: even if we pour it
down the drain, it must go somewhere.

In fact, these ideas are familiar in chemistry. Consider the following resources:

H2 = one molecule of hydrogen
O2 = one molecule of oxygen
H2O = one molecule of water

We can burn hydrogen, combining one molecule of oxygen with two of hydrogen to obtain
two molecules of water. A category theorist might describe this reaction as a morphism:

f :O2 ⊗ (H2 ⊗H2)→ H2O ⊗H2O.



A linear logician might write:

O2 ⊗ (H2 ⊗H2) ` H2O ⊗H2O

to indicate the existence of such a morphism. But, we cannot duplicate or delete molecules,
so for example

H2 6 `H2 ⊗H2

and
H2 6 `I

where I is the unit for the tensor product: not iodine, but ‘no molecules at all’.

In short, ordinary chemical reactions are morphisms in a symmetric monoidal category
where objects are collections of molecules. As chemists normally conceive of it, this category
is not closed. So, it obeys an even more limited system of logic than the one we have been
discussing, a system lacking the connective(. To get a closed category — in fact a compact
one — we need to remember one of the great discoveries of 20th-century physics: antimatter.
This lets us define Y ( Z to by ‘anti-Y and Z’:

Y ( Z = Y ∗ ⊗ Z

Then the currying rule holds:

Y ⊗X ` Z
X ` Y ∗ ⊗ Z

Most chemists don’t think about antimatter very often — but particle physicists do. They
don’t use the notation of linear logic or category theory, but they know perfectly well that
since a neutrino and a neutron can collide and turn into a proton and an electron:

ν ⊗ n ` p⊗ e,

then a neutron can turn into a neutrino together with a proton and an electron:

n ` ν∗ ⊗ (p⊗ e).

This is an instance of the currying rule, rule (c).

1.3.3 Logical Theories from Categories

We have sketched how different systems of logic naturally arise from different types of
categories. To illustrate this idea, we introduced a system of logic with inference rules
coming from ways to get new morphisms from old in a closed symmetric monoidal category.
One could substitute many other types of categories here, and get other systems of logic.

To make the connection between proof theory and category tighter, we shall now describe
a recipe to get a logical theory from any closed symmetric monoidal category. For this, we



shall now use X ` Y to denote the set of proofs — or actually, equivalence classes of proofs
— leading from the assumption X to the conclusion Y . This is a change of viewpoint.
Previously we would write X ` Y when this set of proofs was nonempty; otherwise we
would write X 6 `Y . The advantage of treating X ` Y as a set is that this set is precisely
what a category theorist would call hom(X,Y ): a homset in a category.

If we let X ` Y stand for a homset, an inference rule becomes a function from a product
of homsets to a single homset. For example, the cut rule

X ` Y Y ` Z
(◦)

X ` Z

becomes another way of talking about the composition function

◦X,Y,Z : hom(X,Y )× hom(Y, Z)→ hom(X,Z),

while the identity rule

(i)
X ` X

becomes another way of talking about the function

iX : 1→ hom(X,X)

that sends the single element of the set 1 to the identity morphism of X . (Note: the set 1
is a zero-fold product of homsets.)

Next, if we let inference rules be certain functions from products of homsets to homsets,
deductions become more complicated functions of the same sort built from these basic ones.
For example, this deduction:

(i)
X ⊗ I ` X ⊗ I

(r)
X ⊗ I ` X (i)

Y ` Y
(⊗)

(X ⊗ I)⊗ Y ` X ⊗ Y

specifies a function from 1 to hom((X ⊗ I) ⊗ Y,X ⊗ Y ), built from the basic functions
indicated by the labels at each step. This deduction:

(i)
(X ⊗ I)⊗ Y ` (X ⊗ I)⊗ Y

(a)
(X ⊗ I)⊗ Y ` X ⊗ (I ⊗ Y )

(i)
I ⊗ Y ` I ⊗ Y

(r)
I ⊗ Y ` Y (i)

X ` X
(⊗)

X ⊗ (I ⊗ Y ) ` X ⊗ Y
(◦)

(X ⊗ I)⊗ Y ` X ⊗ Y

gives another function from 1 to hom((X ⊗ I)⊗ Y,X ⊗ Y ).

If we think of deductions as giving functions this way, the question arises when two such
functions are equal. In the example just mentioned, the triangle equation in the definition
of monoidal category (Definition 6):



(X ⊗ I)⊗ Y X ⊗ (I ⊗ Y )

X ⊗ Y

-aX,I,Y

HHHjrX⊗1Y

���� 1X⊗lY

says these two functions are equal. Indeed, the triangle equation is precisely the statement
that these two functions agree! (We leave this as an exercise for the reader.)

So: even though two deductions may look quite different, they may give the same function
from a product of homsets to a homset if we demand that these are homsets in a closed
symmetric monoidal category. This is why we think of X ( Y as a set of equivalence classes
of proofs, rather than proofs: it is forced on us by our desire to use category theory. We
could get around this by using a 2-category with proofs as morphisms and ‘equivalences
between proofs’ as 2-morphisms [73]. This would lead us further to the right in the Periodic
Table (Table 1.3). But let us restrain ourselves and make some definitions formalizing what
we have done so far.

From now on we shall call the objects X,Y, . . . ‘propositions’, even though we have seen
they may represent more general resources. Also, purely for the sake of brevity, we use the
term ‘proof’ to mean ‘equivalence class of proofs’.

Definition 16. A closed monoidal theory consists of the following:

• A collection of propositions. The collection must contain a proposition I, and if X
and Y are propositions, then so are X ⊗ Y and X ( Y .

• For every pair of propositions X,Y, a set X ` Y of proofs leading from X to Y . If
f ∈ X ` Y, then we write f :X → Y .

• Certain functions, written as inference rules:

X ` X (i)
X ` Y Y ` Z

X ` Z (◦)

W ` X Y ` Z
W ⊗ Y ` X ⊗ Z (⊗)

W ` (X ⊗ Y )⊗ Z
W ` X ⊗ (Y ⊗ Z)

(a)

X ` I ⊗ Y
X ` Y (l)

X ` Y ⊗ I
X ` Y (r)

X ⊗ Y ` Z
Y ` X ( Z

(c)

A double line means that the function is invertible. So, for example, for each triple
X,Y, Z we have a function

◦X,Y,Z : (X ` Y )× (Y ` Z) → (X ` Z)

and a bijection
cX,Y,Z : (X ⊗ Y ` Z) → (Y ` X ( Z).



• Certain equations that must be obeyed by the inference rules. The inference rules (◦)
and (i) must obey equations describing associativity and the left and right unit laws.
Rule (⊗) must obey an equation saying it is a functor. Rules (a), (l), (r), and (c) must
obey equations saying they are natural transformations. Rules (a), (l), (r) and (⊗) must
also obey the triangle and pentagon equations.

Definition 17. A closed braided monoidal theory is a closed monoidal theory with this
additional inference rule:

W ` X ⊗ Y
W ` Y ⊗X (b)

We demand that this rule give a natural transformation satisfying the hexagon equations.

Definition 18. A closed symmetric monoidal theory is a closed braided monoidal
theory where the rule (b) is its own inverse.

It should be clear that these are just the definitions of closed monoidal, closed braided
monoidal and closed symmetric monoidal category written in a different style. The main
advantage is that this style makes it easier to recognize examples coming from various
systems of logic. Most of these systems include extra features beyond what we have discussed
here, though some subtract features. Here are a few examples:

• Monoidal theories [68]

• Algebraic theories. [62]

• Multiplicative intuitionistic linear logic. [19]??? [49].

• Intuitionistic linear logic. [19, 20, 21] [23]

• Linear logic. Practical applications: Wadler [84, 85]. Good general overview: [24].

To conclude, let us say precisely what an inference rule is in this setting. We have said
it gives a function from a product of homsets to a homset. While true, that is not the last
word on the subject. After all, instead of treating the propositions appearing in an inference
rule as fixed, we can treat them as variable. Then an inference rule is really a ‘schema’ for
getting new proofs from old. How do we formalize this idea?

First we must realize that X ` Y is not just a set: it is a set depending in a functorial
way on X and Y . As noted in Definition 13, there is a functor, the ‘hom functor’

hom:Cop × C → Set,

sending (X,Y ) to the homset hom(X,Y ) = X ` Y . To look like logicians, let us write this
functor as `.

Viewed in this light, most of our inference rules are natural transformations. For example,
rule (a) is a natural transformation between two functors from Cop×C3 to Set, namely the
functors



(W,X, Y, Z) 7→W ` (X ⊗ Y )⊗ Z)

and
(W,X, Y, Z) 7→W ` X ⊗ (Y ⊗ Z)).

This natural transformation turns any proof

f :W → (X ⊗ Y )⊗ Z)

into the proof
aX,Y,Zf :W → X ⊗ (Y ⊗ Z).

The fact that this transformation is natural means that it changes in a systematic way as
we vary W,X, Y and Z. The commuting square in the definition of natural transformation,
Definition 3, makes this precise.

Rules (l), (r), (b) and (c) give natural transformations in a very similar way. The (⊗)
rule gives a natural transformation between two functors from Cop × C × Cop × C to Set,
namely

(W,X, Y, Z) 7→ (W ` X) × (Y ` Z)

and
(W,X, Y, Z) 7→W ⊗ Y ` X ⊗ Z

This natural transformation sends any element (f, g) ∈ hom(W,X)× hom(Y, Z) to f ⊗ g.

The identity and cut rules are different: they do not give natural transformations, because
the top line of these rules has a different number of variables than the bottom line! Rule (i)
says that for each X ∈ C there is a function

iX : 1 → X ` X

picking out the identity morphism 1X . What would it mean for this to be natural in X?
Rule (◦) says that for each triple X,Y, Z ∈ C there is a function

◦: (X ` Y ) × (Y ` Z) → X ` Z.

What would it mean for this to be natural in X,Y and Z? The answer to both questions
involves a generalization of natural transformations called ‘dinatural’ transformations [64].

As noted in Definition 3, a natural transformation α:F ⇒ G between two functors
F,G:C → D makes certain squares in D commute. If in fact C = Cop

1 ×C2, then we actually
obtain commuting cubes in D. Namely, the natural transformation α assigns to each object
(X1, X2) a morphism αX1,X2 such that for any morphism (f1:Y1 → X1, f2:X2 → Y2) in C,
the cube shown in Figure 1.1 commutes.

If C1 = C2, we can choose a single object X and a single morphism f :X → Y and use
it in both slots. As shown in Figure 1.2, there are then two paths from one corner of the
cube to the antipodal corner that only involve α for repeated arguments: that is, αX,X and
αY,Y , but not αX,Y or αY,X . These paths give a commuting hexagon.

This motivates the following:



G(Y1, X2) G(Y1, Y2)

F (Y1, X2) F (Y1, Y2)

G(X1, X2) G(X1, Y2)

F (X1, X2) F (X1, Y2)

-
G(1Y1

,f2)

?

G(f1,1Y2
)

?

F (f1,1X2
)

-
F (1Y1

,f2)�
�
�
�
���

αY1,X2
G(f1,1X2

)

?

?

F (f1,1Y2
)

�
�
�
�
���

αY1,Y2

G(1X1
,f2) -

-F (1X1
,f2)

�
�
�
�
���
αX1,X2

�
�
�
�
���
αX1,Y2

Fig. 1.1. A natural transformation between functors F,G:Cop
1 ×C2 → D gives a commuting cube

in D for any morphisms fi:Xi → Yi in Ci.

Definition 19. A dinatural transformation α:F ⇒ G between functors F,G:Cop×C →
D assigns to every object X in C a morphism αX :F (X,X)→ G(X,X) in D such that for
every morphism f :X → Y in C, the hexagon in Figure 1.2 commutes.

In the case of the identity rule, this commuting hexagon says that the identity morphism
is a left and right unit for composition: see Figure 1.3. For the cut rule, this commuting
hexagon says that composition is associative: see Figure 1.4.

So, in general, the sort of logical theory we are discussing involves:

• A category C of propositions and proofs.

• A functor `:Cop×C → Set sending any pair of propositions to the set of proofs leading
from one to the other.

• A set of dinatural transformations describing inference rules.



G(Y,X) G(Y, Y )

F (Y,X) F (Y, Y )

G(X,X) G(X,Y )

F (X,X) F (X,Y )

?

G(f,1Y )

?

F (f,1X )

-F (1Y ,f)
�
�
�
���αY,Y

-G(1X ,f)

�
�
�
���

αX,X

Fig. 1.2. A natural transformation between functors F,G:Cop ×C → D gives a commuting cube
in D for any morphism f :X → Y , and there are two paths around the cube that only involve α
for repeated arguments.

Y ` Y
1Y

1
·

1
·

X ` X
1X

X ` Y
f ◦ 1X = 1Y ◦ f

1
·

?

−◦f

?

11

-11
�
���

iY

-f◦−

�
���

iX

Fig. 1.3. Dinaturality of the (i) rule, where f :X → Y . Here · ∈ 1 denotes the one element of the
one-element set.



X ` Z
h(fg)

(X ` W ) × (Y ` Z)
(g, h)

(X ` Y ) × (Y ` Z)
(fg, h)

X ` Z
(hf)g

X ` Z
(hf)g = h(fg)

(X `W ) × (W ` Z)
(g, hf)

?

1

?

(1,−◦f)

-(f◦−,1)

�
�
�
��3◦

-1

�
�
�
��3
◦

Fig. 1.4. Dinaturality of the cut rule, where f :W → Y, g:X →W, h:Y → Z.

1.4 Computation

NOT YET

1.5 Conclusions

In this paper we began fleshing out the analogies listed in Table 1.1. Table 1.4 summarizes
a bit of what we have seen. However, this is still just the tip of the iceberg. To fully exploit
the links between physics, topology, logic and computation we need to more thoroughly
understand the analogies between them — and also the special distinctive features of each
field.

1.6 Appendix

1.6.1 The Category Hilb

NOT YET.



Category Theory Physics Topology Logic Computation

object X Hilbert space X manifold X proposition X data type X

morphism operator cobordism proof program
f :X → Y f :X → Y f :X → Y f :X → Y f: X -> Y

tensor product Hilbert space disjoint union conjunction product
of objects: of joint system: of manifolds: of propositions: of data types:
X ⊗ Y X ⊗ Y X ⊗ Y X ⊗ Y X ⊗ Y

tensor product of parallel disjoint union of proofs carried out programs executing
morphisms: f ⊗ g processes: f ⊗ g cobordisms: f ⊗ g in parallel: f ⊗ g in parallel: f ⊗ g

internal hom: Hilbert space of disjoint union of conditional function type:
X ( Y ‘anti-X and Y ’: orientation-reversed proposition: X -> Y

X∗ ⊗ Y X and Y : X∗ ⊗ Y X ( Y

Table 1.4. The Rosetta Stone (larger version)

1.6.2 The Category nCob

NOT YET.

1.6.3 The Category Tangk

NOT YET.
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