
Physics, Topology, Logic and Computation:
a Rosetta Stone

John Baez and Mike Stay

April 9, 2010
California State University, Fresno

Categories Physics Topology Logic Computation
object system manifold proposition data type

morphism process cobordism proof program

zzzzzzz
||

 `
 `

 `
 `

��
X&Y ` Z λxλy . x(y)

The Big Idea

Once upon a time, mathematics was all about sets:

�����

�����

�����

In 1945, Eilenberg and Mac Lane introduced
categories:

�����

		�

�����
These put processes on an equal footing with things.

In physics, we often use categories where:

• objects represent physical systems;

•morphisms represent physical processes.

In classical physics we often use the category Set, where:

• an object is a set

• a morphism is a function

In quantum physics we often use Hilb, where:

• an object is a Hilbert space

• a morphism is a linear operator

A category C consists of:

•A collection of objects. If X is an object of C we
write X ∈ C.

• For any X, Y ∈ C, a set of morphisms f : X → Y.

We require that:

• Every X ∈ C has an identity morphism
1X : X → X.

•Given f : X → Y and g : Y → Z, there is a
composite morphism g f : X → Z.

• The unit laws hold: if f : X → Y, then
f1X = f = 1Y f .

•Composition is associative: (hg) f = h(g f).

Feynman used diagrams to describe processes in
quantum physics:

��

��
�H
�H
�H
�H
�H
�H
�H
�H
�H

��

��

�V
�V
�V
�V
�V
�V
�V

�L
�L
�L
�L
�L
�L

%e%e

Now we know that these are pictures of morphisms —
so we can use these diagrams in other contexts!

We can draw a morphism

f : X → Y

like this:

f

X

Y

We draw the composite of f : X → Y and g : Y → Z
like this:

f

g

X

Y

Z

Then the associative law is implicit:

f

g

h

X

Y

Z

W

If we draw the identity morphism 1X : X → X like
this:

X

the unit laws are implicit too!

For theories with at least 1 dimension of space, we
need monoidal categories.

Here any pair of morphisms f : X → Y, f ′ : X′ → Y′
has a tensor product

f ⊗ f ′ : X ⊗ X′ → Y ⊗ Y′

We use this to describe parallel processes:

f
X

Y
f ′

X′

Y′
= f ⊗ f ′

X ⊗ X′

Y ⊗ Y′
Examples:
• The category Hilb, with its usual tensor product⊗.

• The category Set, with the cartesian product ×.

More generally, we can draw any morphism

f : X1 ⊗ · · · ⊗ Xn → Y1 ⊗ · · · ⊗ Ym

like this:

f

X1 X2 X3

Y1 Y2

In physics we use this to depict an interaction
between particles.

By composing and tensoring, we can build up bigger
diagrams:

f

g
h

j

X1 X2 X3 X4

Y1 Y2 Y3 Y4

Z

The monoidal category axioms let us deform the
picture without changing the morphism:

f

g
h

j

X1 X2 X3 X4

Y1 Y2 Y3 Y4

Z

In theories with least 2 dimensions of space, we use
braided monoidal categories. We can draw the
braiding

BX,Y : X ⊗ Y → Y ⊗ X

like this:

X Y

It has an inverse, drawn like this:

XY

Then we have:

X

X

Y

Y

= X Y =

Y

Y

X

X

In theories with at least 3 dimensions of space, we use
symmetric monoidal categories, where:

X Y
=

YX

The most familiar braided monoidal categories are
symmetric:

• In Set with its cartesian product, the standard
braiding is:

BX,Y : X × Y → Y × X
(x, y) 7→ (y, x)

• In Hilb with its usual tensor product, the standard
braiding is:

BX,Y : X ⊗ Y → Y ⊗ X
x ⊗ y 7→ y ⊗ x

However, in thin films there can be ‘anyons’. These
are particle-like excitations described by braided monoidal
categories that are not symmetric!

• Superconducting films: the quantum Hall effect.

•Graphene (single-layer graphite): fractional-charge
anyons are possible, not yet seen.

But there’s a lot more to this story...

THE ROSETTA STONE

Categories Physics Topology Logic Computation
object system manifold proposition data type

morphism process cobordism proof program

zzzzzzz
||

 `
 `

 `
 `

��
X&Y ` Z λxλy . x(y)

In topology, there is a category nCob where:

• objects are (n − 1)-dimensional manifolds;

•morphisms are cobordisms.

A cobordism f : X → Y is an n-dimensional manifold
whose boundary is the disjoint union of X and Y. For
example, when n = 2:

X

Y

f
��

We compose cobordisms by gluing the ‘output’ of one
to the ‘input’ of the other:

X

Y

f
��

Y

Z

g
��

X

Z

g f

��

nCob is a monoidal category. We tensor cobordisms
by taking their disjoint union:

X

Y

f
��

X′

Y′
g

��

X ⊗ X′

Y ⊗ Y′
f⊗g

��

In fact, nCob is a symmetric monoidal category:
X ⊗ Y

Y ⊗ X

BX,Y

��

In general relativity, objects in nCob describe choices
of space, while morphisms describe choices of space-
time. I believe that:

Quantum theory will eventually make more sense, as
part of a theory of quantum gravity — but this can only
be understood using categories.

Why? The weird features of quantum theory come
from the ways that Hilb is less like Set than nCob.
But nCob is what we use to describe space and space-
time in general relativity!

‘Weird’ properties of quantum theory correspond to
unsurprising properties of spacetime.

object morphism
• • → •

SET set function between
THEORY sets

QUANTUM Hilbert space operator between
THEORY Hilbert spaces

(state) (process)

GENERAL manifold cobordism between
RELATIVITY manifolds

(space) (spacetime)

For example: Set is ‘cartesian’, while nCob and Hilb
are not.

If a symmetric monoidal category is cartesian, you
can do various things including duplication:

∆X : X → X ⊗ X

In Set we can duplicate as follows:

∆X : X → X × X
x 7→ (x, x)

In Hilb we cannot duplicate: the function

X → X ⊗ X
x 7→ x ⊗ x

is not linear! It’s not a morphism in Hilb.
So: we ‘cannot clone a quantum state’.

Similarly, in nCob there is no duplication, despite
this misleading picture for n = 2:

X

X ⊗ X
��

When n = 1 there’s typically no cobordism from a
manifold X to X ⊗ X, and similarly for n = 4.

What about logic and computer science? These too
study categories of things and processes:

In proof theory, we use categories where:

• an object is a proposition

• a morphism is a proof

In computer science, we use categories where:

• an object is a data type

• a morphism is a program

In proof theory X ` Y means assuming X, we can
prove Y. But we can also let it mean the set of proofs
leading from assumption X to conclusion Y.

Since proofs are morphisms, we can compose them:
X ` Y Y ` Z

X ` Z

The identity morphism:

X ` X

Logic uses monoidal categories where the tensor
product is ‘and’. We can tensor propositions, and
tensor proofs:

W ` X Y ` Z
W&Y ` X&Z

In fact, logic uses symmetric monoidal categories:
X ` Y&Z
X ` Z&Y

Classical logic is cartesian, so it permits duplication:
X ` Y

X ` Y&Y

Linear logic does not!

A program that takes data of type X as input and
returns data of type Y can be seen as a morphism
f : X → Y.

Categories of data types and programs are monoidal.
Given data types X and X′ there is a data type X⊗X′.
And given programs f : X → Y, f : X′ → Y′, we can
write a program f ⊗ f ′ that does these two jobs in
parallel:

f
X

Y
f ′

X′

Y′
= f ⊗ f ′

X ⊗ X′

Y ⊗ Y′

These categories are are typically symmetric monoidal:

X Y

They’re also cartesian. For example, we can write
programs that duplicate data:

∆X : X → X ⊗ X

But for quantum computation, we need programming
languages that apply to noncartesian categories —
because you can’t duplicate quantum data!

And in quantum computation using anyons, the
relevant categories are braided!

For more detail, read our paper in Bob Coecke’s forth-
coming book New Structures in Physics. You can find
it now . You can find it now on the arXiv.

Categories Physics Topology Logic Computation
object system manifold proposition data type

morphism process cobordism proof program

zzzzzzz
||

 `
 `

 `
 `

��
X&Y ` Z λxλy . x(y)

http://arxructures in Physics
http://arxiv.org/abs/0903.0340

