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The basic idea

The symmetric group Sn is the group of permutations of
{1, . . . ,n}.

Representations of Sn on complex vector spaces are classified
by pictures like this:

⊕ ⊕ ⊕ ⊕ (n = 5)

The category Schur contains representations of all the
symmetric groups. A typical object of Schur:

⊕ ⊕ ⊕ ⊕ ⊕ ⊕
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I want to explain this sentence:

The category Schur is
the free symmetric 2-rig on one generator.

This is a theorem proved by Joe Moeller, Todd Trimble and me.
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First try this:

Z[x ] is the free ring on one generator.

This means that given any ring R and element r ∈ R, there
exists a unique homomorphism

f : Z[x ]→ R

with
f (x) = r

The reason: for polynomial P ∈ Z[x ], we must have

f (P) = P(r)
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We will ‘categorify’ this simple result: that is, replace rings by
certain categories that resemble rings!

For example Vect, the category of complex vector spaces and
linear maps, resembles a ring. Given V ,W ∈ Vect we can ‘add’
them and get V ⊕W , and ‘multiply’ them and get V ⊗W .

Most of the usual ring axioms hold up to isomorphism:

U ⊕ V � V ⊕ U (U ⊕ V ) ⊕W � U ⊕ (V ⊕W )

(U ⊗ V ) ⊗W � U ⊗ (V ⊗W )

U ⊗ (V ⊕W ) � U ⊗ V ⊕ U ⊗W

0 ⊕ V � V C ⊗ V � V
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We could try to define a ‘2-ring’ to be a category that resembles
a ring. But there’s no such thing as the negative of vector
space!

V ⊕W � {0} ⇒ V ,W � {0}

So, Vect is more like a ‘rig’ than a ring.

A rig is a ‘ring without negatives’: (R,+,0, ·,1) such that
I + is commutative and associative with unit 0.
I · is associative with unit 1.
I r · (s + t) = r · s + r · t , (s + t) · r = s · r + t · r .
I r · 0 = 0 = 0 · r .
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The rig of natural numbers N = {0,1,2, . . . } plays a role in rig
theory that Z plays in ring theory.

I The initial ring is Z: given any ring there exists a unique
ring homomorphism f : Z→ R.

I The initial rig is N: given any rig there exists a unique rig
homomorphism f : N→ R.
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Indeed:

N[x ] is the free rig on one generator.

Given any rig R and element r ∈ R, there exists a unique
homomorphism

f : N[x ]→ R

with
f (x) = r

The reason: for any polynomial P ∈ N[x ], we have

f (P) = P(r)



There are different concepts of ‘2-rig’, or categorified rig. Today
we want one that handles examples like these:

I Vect with the usual ⊕ and ⊗.

I The category of vector bundles on a manifold with the
usual ⊕ and ⊗.

I The category of chain complexes of vector spaces with the
usual ⊕ and ⊗.

I The category Rep(G) of representations of a group G with
the usual ⊕ and ⊗.

I The category Schur of Schur functors.

All these are ‘symmetric’ 2-rigs: we have isomorphisms
V ⊗W �W ⊗ V obeying some obvious rules.
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Rep(G)

A representation ρ of a group G is a (finite-dimensional) vector
space V with a linear map ρ(g) : V → V for each g ∈ G, obeying

ρ(gh) = ρ(g) ◦ ρ(h) ρ(1) = 1V

A morphism of representations from (V , ρ) to (W , ψ) is a linear
map f : V →W with

f ◦ ρ(g) = ψ(g) ◦ f ∀g ∈ G

These are the objects and morphisms of the category Rep(G).

Rep(G) is a 2-rig with

(ρ ⊕ ψ)(g) = ρ(g) ⊕ ψ(g)

(ρ ⊗ ψ)(g) = ρ(g) ⊗ ψ(g)



The category Schur combines the categories Rep(Sn) for all
n ∈ N in one big category!

In the category Schur:
I an object ρ is a list of representations ρn of all the groups

Sn, where all but finitely many are zero-dimensional;
I a morphism is a list of morphisms of representations.
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In Schur, ⊕ is defined componentwise:

(ρ ⊕ ψ)n = ρn ⊕ ψn

A representation of Sk can be thought of as an object ρ of
Schur that’s zero-dimensional except at k = n. We get

Rep(Sk ) ↪→ Schur

Every object of Schur is a finite direct sum of representations
of Sk ’s.
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In Schur, the tensor product ⊗ is not defined componentwise!

It’s enough to define it on representations of symmetric groups.
ρ ∈ Rep(Sk ) and ψ ∈ Rep(S`) give ρ � ψ ∈ Rep(Sk × S`) by

(ρ � ψ)(g,h) = ρ(g) ⊗ ψ(h) g ∈ Sk ,h ∈ S`

From this we then induce a representation ρk ⊗ ρ` of Sk+`,
using the inclusion

Sk × S` ↪→ Sk+`

which gives adjoint functors

Rep(Sk × S`) Rep(Sk+`)
induction

restriction
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What is a symmetric 2-rig, exactly, and in what sense is Schur
the free 2-rig on one generator?

A symmetric monoidal category C is a category with a
functor ⊗ : C × C→ C, an object I ∈ C, and natural
isomorphisms

α : (U ⊗ V ) ⊗W ∼

−→ U ⊗ (V ⊗W )

λ : I ⊗ V ∼

−→ V ρ : V ⊗ I ∼

−→ V

σ : V ⊗W ∼

−→W ⊗ V

obeying some well-known equations.

https://math.ucr.edu/home/baez/qg-winter2001/definitions.pdf
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A linear category is a category where the hom-sets are vector
spaces and composition (f ,g) 7→ f ◦ g is linear in each
argument.

A linear category C is Cauchy complete if
I C has biproducts: ⊕
I C has a zero object: 0
I every idempotent morphism has a kernel and cokernel.

A symmetric monoidal linear category is a linear category
that is symmetric monoidal such that the tensor product of
morphisms (f ,g) 7→ f ⊗ g is linear in each argument.

A symmetric 2-rig is a symmetric monoidal linear category
that is Cauchy complete.
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To say that Schur is the free symmetric 2-rig on one object we
also need maps between symmetric 2-rigs.

A symmetric monoidal functor F : C→ D is a functor
between symmetric monoidal categories that preserves tensor
products and the unit object up to natural isomorphisms

ϕ : F (c) ⊗ F (c′) ∼

−→ F (c ⊗ c′)

ϕ0 : F (I) ∼

−→ I

obeying some well-known equations.

A linear functor is a functor between linear categories that is
linear on hom-sets: F (cf + c′f ′) = cF (f ) + c′F (f ′).

Given symmetric 2-rigs C and D, a map F : C→ D is a
symmetric monoidal functor that is also linear.
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Theorem (Baez–Moeller–Trimble)
Suppose R is a symmetric 2-rig and r ∈ R. Then there is a map
of 2-rigs

F : Schur→ R

with
F (x) = r

where x ∈ Schur is the 1-dimensional representation of S1.
Moreover F is unique up to a symmetric monoidal natural
isomorphism.

https://math.ucr.edu/home/baez/qg-winter2001/definitions.pdf
https://math.ucr.edu/home/baez/qg-winter2001/definitions.pdf


We know that F (x) = r for our chosen object r ∈ R, but what is
F (ρ) for any object ρ ∈ Schur?

Suppose ρ ∈ Schur corresponds to the list ρn of
representations of the groups Sn on vector spaces Vn. Then

F (ρ) =
∞⊕

n=0

Vn ⊗C[Sn] r⊗n

This is just like: if F : Z[x ]→ R is a homomorphism with
F (x) = r , then for any P(x) =

∑∞
n=0 anxn ∈ Z[x ] we have

F (P) =
∞∑

n=0

anrn
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This is just the beginning of a wonderful analogy between
rings and 2-rigs, polynomials and Schur functors, etc.

It’s “categorified commutative algebra”.


