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The symmetric group S, is the group of permutations of
{1,...,n}.

Representations of S, on complex vector spaces are classified
by pictures like this:
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The category Schur contains representations of all the
symmetric groups. A typical object of Schur:
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| want to explain this sentence:

The category Schur is
the free symmetric 2-rig on one generator.

This is a theorem proved by Joe Moeller, Todd Trimble and me.
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Z[x] is the free ring on one generator.

This means that given any ring R and element r € R, there
exists a unique homomorphism

f:Z[x] - R

with
f(x)=r

The reason: for polynomial P € Z[x], we must have
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We will ‘categorify’ this simple result: that is, replace rings by
certain categories that resemble rings!

For example Vect, the category of complex vector spaces and
linear maps, resembles a ring. Given V, W € Vect we can ‘add’
them and get V & W, and ‘multiply’ them and get Vo W.

Most of the usual ring axioms hold up to isomorphism:
UsV=VelU (UsV)eW=Us(VeW)
(UsV)eW=Ug (Ve W)
Ug(VeW)=Us VoUW
OpV=V CoV=V
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a ring. But there’s no such thing as the negative of vector
space!

VeW={0} > V,W={0}



We could try to define a ‘2-ring’ to be a category that resembles
a ring. But there’s no such thing as the negative of vector
space!

VeW={0} > V,W={0}

So, Vect is more like a ‘rig’ than a ring.

Arrig is a ‘ring without negatives’: (R, +,0,-, 1) such that
» + is commutative and associative with unit 0.
» - is associative with unit 1.
»r-(s+t)y=r-s+r-t, (s+t)-r=s-r+t-r.
»r-0=0=0-r.
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The rig of natural numbers N = {0,1,2,...} plays a role in rig
theory that Z plays in ring theory.

» The initial ring is Z: given any ring there exists a unique
ring homomorphism f: Z — R.

» The initial rig is N: given any rig there exists a unique rig
homomorphism f: N — R.



Indeed:
N[x] is the free rig on one generator.

Given any rig R and element r € R, there exists a unique

homomorphism
f:N[x] - R

with
f(x)=r

The reason: for any polynomial P € N[x], we have
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There are different concepts of ‘2-rig’, or categorified rig. Today
we want one that handles examples like these:
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Vect with the usual @ and ®.

The category of vector bundles on a manifold with the
usual @ and ®.

The category of chain complexes of vector spaces with the
usual ® and ®.

The category Rep(G) of representations of a group G with
the usual ® and ®.

The category Schur of Schur functors.

All these are ‘symmetric’ 2-rigs: we have isomorphisms
Vo W= We® V obeying some obvious rules.



Rep(G)

A representation p of a group G is a (finite-dimensional) vector
space V with a linear map p(g): V — V for each g € G, obeying

p(gh) =p(g)op(h)  p(1)=1y

A morphism of representations from (V,p) to (W, y) is a linear
map f: V —» W with

fop(g)=u(g)of VYgeG
These are the objects and morphisms of the category Rep(G).
Rep(G) is a 2-rig with
(e@v)(9) =p(9)®¥(9)
(e®y)(9) =p(g) ®¥(9)



The category Schur combines the categories Rep(Sy) for all
n € N in one big category!



The category Schur combines the categories Rep(Sy) for all
n € N in one big category!

In the category Schur:

» an object p is a list of representations p,, of all the groups
Sn, where all but finitely many are zero-dimensional;

» a morphism is a list of morphisms of representations.
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In Schur, & is defined componentwise:

(0®Y)n=pn®Yn

A representation of S, can be thought of as an object p of
Schur that's zero-dimensional except at k = n. We get

Rep(Sk) — Schur

Every object of Schur is a finite direct sum of representations
of Sk’s.
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In Schur, the tensor product ® is not defined componentwise!

It's enough to define it on representations of symmetric groups.
o € Rep(Sk) and ¢ € Rep(Sy) give p &y € Rep(Sk x S¢) by

(pmy)(g.h) =p(g)®y(h) geSk.heS

From this we then induce a representation px ® p, of Sk.i¢,
using the inclusion
Sk X S¢ = Skie

which gives adjoint functors

induction
Rep(Sk x S¢) Rep(Sk.i¢)

restriction




What is a symmetric 2-rig, exactly, and in what sense is Schur
the free 2-rig on one generator?
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What is a symmetric 2-rig, exactly, and in what sense is Schur
the free 2-rig on one generator?

A symmetric monoidal category C is a category with a
functor ®: Cx C — C, an object / € C, and natural
isomorphisms

a: (UsV)eW > U (Ve W)
21V >V p:Vel->V
c:VoeW->WeV

obeying some well-known equations.
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spaces and composition (f,g) +— f o g s linear in each
argument.

A linear category C is Cauchy complete if
» C has biproducts: &
» C has a zero object: 0
» every idempotent morphism has a kernel and cokernel.

A symmetric monoidal linear category is a linear category
that is symmetric monoidal such that the tensor product of
morphisms (f, g) — f® g is linear in each argument.

A symmetric 2-rig is a symmetric monoidal linear category
that is Cauchy complete.
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To say that Schur is the free symmetric 2-rig on one object we
also need maps between symmetric 2-rigs.

A symmetric monoidal functor F: C — D is a functor
between symmetric monoidal categories that preserves tensor
products and the unit object up to natural isomorphisms

¢: F(c)®F(c') - F(ca ')
wo: F(I) =1
obeying some well-known equations.

A linear functor is a functor between linear categories that is
linear on hom-sets: F(cf + ¢'f’) = cF(f) + ¢’ F(F).

Given symmetric 2-rigsCand D,amap F: C - Dis a
symmetric monoidal functor that is also linear.


https://math.ucr.edu/home/baez/qg-winter2001/definitions.pdf

Theorem (Baez—Moeller—Trimble)

Suppose R is a symmetric 2-rig and r € R. Then there is a map
of 2-rigs
F: Schur - R
with
F(x)=r

where x € Schur is the 1-dimensional representation of Sy.

Moreover F is unique up to a symmetric monoidal natural
isomorphism.
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We know that F(x) = r for our chosen object r € R, but what is
F(p) for any object p € Schur?

Suppose p € Schur corresponds to the list p,, of
representations of the groups S, on vector spaces V.. Then

F(e) = D Vo &cysy 1"
n=0

This is just like: if F: Z[x] — R is a homomorphism with
F(x) = r,thenforany P(x) = X, anx" € Z[x] we have

F(P) = Z anr”
n=0



This is just the beginning of a wonderful analogy between
rings and 2-rigs, polynomials and Schur functors, etc.

It's “categorified commutative algebra”.



