### **SCHUR FUNCTORS**



John Baez, Joe Moller and Todd Trimble Ohio State University 2020 November 5th

#### The basic idea

The **symmetric group**  $S_n$  is the group of permutations of  $\{1, \ldots, n\}$ .

#### The basic idea

The **symmetric group**  $S_n$  is the group of permutations of  $\{1, \ldots, n\}$ .

Representations of  $S_n$  on complex vector spaces are classified by pictures like this:



#### The basic idea

The **symmetric group**  $S_n$  is the group of permutations of  $\{1, \ldots, n\}$ .

Representations of  $S_n$  on complex vector spaces are classified by pictures like this:



The category **Schur** contains representations of *all* the symmetric groups. A typical object of **Schur**:



I want to explain this sentence:

The category Schur is the free symmetric 2-rig on one generator.

I want to explain this sentence:

# The category Schur is the free symmetric 2-rig on one generator.

This is a theorem proved by Joe Moeller, Todd Trimble and me.

First try this:

 $\mathbb{Z}[x]$  is the free ring on one generator.

First try this:

#### $\mathbb{Z}[x]$ is the free ring on one generator.

This means that given any ring *R* and element  $r \in R$ , there exists a unique homomorphism

$$f\colon \mathbb{Z}[x]\to R$$

with

$$f(x) = r$$

First try this:

#### $\mathbb{Z}[x]$ is the free ring on one generator.

This means that given any ring *R* and element  $r \in R$ , there exists a unique homomorphism

$$f\colon \mathbb{Z}[x]\to R$$

with

$$f(x) = r$$

The reason: for polynomial  $P \in \mathbb{Z}[x]$ , we must have

f(P) = P(r)

We will 'categorify' this simple result: that is, replace rings by certain *categories* that resemble rings!

We will 'categorify' this simple result: that is, replace rings by certain *categories* that resemble rings!

For example **Vect**, the category of complex vector spaces and linear maps, resembles a ring.

We will 'categorify' this simple result: that is, replace rings by certain *categories* that resemble rings!

For example **Vect**, the category of complex vector spaces and linear maps, resembles a ring. Given  $V, W \in$  **Vect** we can 'add' them and get  $V \oplus W$ , and 'multiply' them and get  $V \otimes W$ .

Most of the usual ring axioms hold up to isomorphism:

$$U \oplus V \cong V \oplus U \qquad (U \oplus V) \oplus W \cong U \oplus (V \oplus W)$$
$$(U \otimes V) \otimes W \cong U \otimes (V \otimes W)$$
$$U \otimes (V \oplus W) \cong U \otimes V \oplus U \otimes W$$
$$0 \oplus V \cong V \qquad \mathbb{C} \otimes V \cong V$$

We could try to define a '2-ring' to be a category that resembles a ring. But there's no such thing as the *negative* of vector space!

 $V \oplus W \cong \{0\} \Rightarrow V, W \cong \{0\}$ 

We could try to define a '2-ring' to be a category that resembles a ring. But there's no such thing as the *negative* of vector space!

$$V \oplus W \cong \{0\} \Rightarrow V, W \cong \{0\}$$

So, **Vect** is more like a 'rig' than a ring.

A rig is a 'ring without negatives':  $(R, +, 0, \cdot, 1)$  such that

- + is commutative and associative with unit 0.
- is associative with unit 1.
- $r \cdot (s+t) = r \cdot s + r \cdot t, \quad (s+t) \cdot r = s \cdot r + t \cdot r.$
- $\bullet \ r \cdot 0 = 0 = 0 \cdot r.$

The rig of natural numbers  $\mathbb{N} = \{0, 1, 2, ...\}$  plays a role in rig theory that  $\mathbb{Z}$  plays in ring theory.

The rig of natural numbers  $\mathbb{N} = \{0, 1, 2, ...\}$  plays a role in rig theory that  $\mathbb{Z}$  plays in ring theory.

► The initial ring is  $\mathbb{Z}$ : given any ring there exists a unique ring homomorphism  $f: \mathbb{Z} \to R$ .

The rig of natural numbers  $\mathbb{N} = \{0, 1, 2, ...\}$  plays a role in rig theory that  $\mathbb{Z}$  plays in ring theory.

- ► The initial ring is  $\mathbb{Z}$ : given any ring there exists a unique ring homomorphism  $f: \mathbb{Z} \to R$ .
- The initial rig is N: given any rig there exists a unique rig homomorphism f: N → R.

Indeed:

#### $\mathbb{N}[x]$ is the free rig on one generator.

Given any rig R and element  $r \in R$ , there exists a unique homomorphism

$$f: \mathbb{N}[x] \to R$$

with

$$f(x) = r$$

The reason: for any polynomial  $P \in \mathbb{N}[x]$ , we have

f(P)=P(r)

• Vect with the usual  $\oplus$  and  $\otimes$ .

- Vect with the usual  $\oplus$  and  $\otimes$ .
- The category of vector bundles on a manifold with the usual ⊕ and ⊗.

- Vect with the usual  $\oplus$  and  $\otimes$ .
- ► The category of vector bundles on a manifold with the usual ⊕ and ⊗.
- ► The category of chain complexes of vector spaces with the usual ⊕ and ⊗.

- Vect with the usual  $\oplus$  and  $\otimes$ .
- ► The category of vector bundles on a manifold with the usual ⊕ and ⊗.
- ► The category of chain complexes of vector spaces with the usual ⊕ and ⊗.
- ► The category **Rep**(*G*) of representations of a group *G* with the usual  $\oplus$  and  $\otimes$ .

- Vect with the usual  $\oplus$  and  $\otimes$ .
- ► The category of vector bundles on a manifold with the usual ⊕ and ⊗.
- ► The category of chain complexes of vector spaces with the usual ⊕ and ⊗.
- ► The category **Rep**(*G*) of representations of a group *G* with the usual  $\oplus$  and  $\otimes$ .
- The category Schur of Schur functors.

All these are 'symmetric' 2-rigs: we have isomorphisms  $V \otimes W \cong W \otimes V$  obeying some obvious rules.

### $\operatorname{Rep}(G)$

A **representation**  $\rho$  of a group *G* is a (finite-dimensional) vector space *V* with a linear map  $\rho(g) \colon V \to V$  for each  $g \in G$ , obeying

$$\rho(gh) = \rho(g) \circ \rho(h) \qquad \rho(1) = 1_V$$

A morphism of representations from  $(V, \rho)$  to  $(W, \psi)$  is a linear map  $f: V \to W$  with

$$f \circ 
ho(g) = \psi(g) \circ f \qquad \forall g \in G$$

These are the objects and morphisms of the category  $\mathbf{Rep}(G)$ .

 $\mathbf{Rep}(G)$  is a 2-rig with

$$(
ho\oplus\psi)(g)=
ho(g)\oplus\psi(g)$$
  
 $(
ho\otimes\psi)(g)=
ho(g)\otimes\psi(g)$ 

The category **Schur** combines the categories  $\text{Rep}(S_n)$  for all  $n \in \mathbb{N}$  in one big category!

The category **Schur** combines the categories  $\text{Rep}(S_n)$  for all  $n \in \mathbb{N}$  in one big category!

In the category Schur:

- an object ρ is a list of representations ρ<sub>n</sub> of all the groups S<sub>n</sub>, where all but finitely many are zero-dimensional;
- a morphism is a list of morphisms of representations.

In **Schur**,  $\oplus$  is defined componentwise:

 $(\rho \oplus \psi)_n = \rho_n \oplus \psi_n$ 

In **Schur**,  $\oplus$  is defined componentwise:

 $(\rho \oplus \psi)_n = \rho_n \oplus \psi_n$ 

A representation of  $S_k$  can be thought of as an object  $\rho$  of **Schur** that's zero-dimensional except at k = n. We get

 $\operatorname{Rep}(S_k) \hookrightarrow \operatorname{Schur}$ 

Every object of **Schur** is a finite direct sum of representations of  $S_k$ 's.

In **Schur**, the tensor product  $\otimes$  is *not* defined componentwise!

In **Schur**, the tensor product  $\otimes$  is *not* defined componentwise!

It's enough to define it on representations of symmetric groups.  $\rho \in \operatorname{Rep}(S_k)$  and  $\psi \in \operatorname{Rep}(S_\ell)$  give  $\rho \boxtimes \psi \in \operatorname{Rep}(S_k \times S_\ell)$  by

$$(
ho oxtimes \psi)(g,h) = 
ho(g) \otimes \psi(h) \qquad g \in S_k, h \in S_\ell$$

From this we then **induce** a representation  $\rho_k \otimes \rho_\ell$  of  $S_{k+\ell}$ , using the inclusion

$$S_k imes S_\ell \hookrightarrow S_{k+\ell}$$

which gives adjoint functors

$$\begin{array}{c} \mathsf{Rep}(S_k \times S_\ell) \xrightarrow[restriction]{induction}} \mathsf{Rep}(S_{k+\ell}) \end{array}$$

What is a symmetric 2-rig, *exactly*, and in what sense is **Schur** the free 2-rig on one generator?

What is a symmetric 2-rig, *exactly*, and in what sense is **Schur** the free 2-rig on one generator?

A symmetric monoidal category C is a category with a functor  $\otimes$ :  $\mathbf{C} \times \mathbf{C} \rightarrow \mathbf{C}$ , an object  $I \in \mathbf{C}$ , and natural isomorphisms

$$\alpha : (U \otimes V) \otimes W \xrightarrow{\sim} U \otimes (V \otimes W)$$
$$\lambda : I \otimes V \xrightarrow{\sim} V \qquad \rho : V \otimes I \xrightarrow{\sim} V$$
$$\sigma : V \otimes W \xrightarrow{\sim} W \otimes V$$

obeying some well-known equations.

- A linear category C is Cauchy complete if
  - ► C has biproducts: ⊕
  - C has a zero object: 0
  - every idempotent morphism has a kernel and cokernel.

- A linear category C is Cauchy complete if
  - ► C has biproducts: ⊕
  - C has a zero object: 0
  - every idempotent morphism has a kernel and cokernel.

A symmetric monoidal linear category is a linear category that is symmetric monoidal such that the tensor product of morphisms  $(f, g) \mapsto f \otimes g$  is linear in each argument.

A linear category C is Cauchy complete if

- ► C has biproducts: ⊕
- C has a zero object: 0
- every idempotent morphism has a kernel and cokernel.

A symmetric monoidal linear category is a linear category that is symmetric monoidal such that the tensor product of morphisms  $(f, g) \mapsto f \otimes g$  is linear in each argument.

A **symmetric 2-rig** is a symmetric monoidal linear category that is Cauchy complete.

A symmetric monoidal functor  $F : \mathbf{C} \to \mathbf{D}$  is a functor between symmetric monoidal categories that preserves tensor products and the unit object up to natural isomorphisms

$$\varphi \colon F(c) \otimes F(c') \xrightarrow{\sim} F(c \otimes c')$$

 $\varphi_0\colon F(I)\stackrel{\scriptstyle\sim}{\to} I$ 

obeying some well-known equations.

A symmetric monoidal functor  $F : \mathbf{C} \to \mathbf{D}$  is a functor between symmetric monoidal categories that preserves tensor products and the unit object up to natural isomorphisms

$$\varphi \colon F(c) \otimes F(c') \xrightarrow{\sim} F(c \otimes c')$$

$$\varphi_0 \colon F(I) \xrightarrow{\sim} I$$

obeying some well-known equations.

A **linear functor** is a functor between linear categories that is linear on hom-sets: F(cf + c'f') = cF(f) + c'F(f').

A symmetric monoidal functor  $F : \mathbf{C} \to \mathbf{D}$  is a functor between symmetric monoidal categories that preserves tensor products and the unit object up to natural isomorphisms

$$\varphi \colon F(c) \otimes F(c') \xrightarrow{\sim} F(c \otimes c')$$

 $\varphi_0\colon F(I)\xrightarrow{\sim} I$ 

obeying some well-known equations.

A **linear functor** is a functor between linear categories that is linear on hom-sets: F(cf + c'f') = cF(f) + c'F(f').

Given symmetric 2-rigs **C** and **D**, a map  $F : \mathbf{C} \to \mathbf{D}$  is a symmetric monoidal functor that is also linear.

#### Theorem (Baez-Moeller-Trimble)

## Suppose **R** is a symmetric 2-rig and $r \in \mathbf{R}$ . Then there is a map of 2-rigs

 $F: \mathbf{Schur} \to \mathbf{R}$ 

with

$$F(x) = r$$

where  $x \in$  **Schur** is the 1-dimensional representation of  $S_1$ . Moreover F is unique up to a symmetric monoidal natural isomorphism. We know that F(x) = r for our chosen object  $r \in \mathbf{R}$ , but what is  $F(\rho)$  for *any* object  $\rho \in \mathbf{Schur}$ ?

We know that F(x) = r for our chosen object  $r \in \mathbf{R}$ , but what is  $F(\rho)$  for *any* object  $\rho \in \mathbf{Schur}$ ?

Suppose  $\rho \in$  **Schur** corresponds to the list  $\rho_n$  of representations of the groups  $S_n$  on vector spaces  $V_n$ . Then

$$F(\rho) = \bigoplus_{n=0}^{\infty} V_n \otimes_{\mathbb{C}[S_n]} r^{\otimes n}$$

We know that F(x) = r for our chosen object  $r \in \mathbf{R}$ , but what is  $F(\rho)$  for *any* object  $\rho \in \mathbf{Schur}$ ?

Suppose  $\rho \in$  **Schur** corresponds to the list  $\rho_n$  of representations of the groups  $S_n$  on vector spaces  $V_n$ . Then

$$F(
ho) = igoplus_{n=0}^{\infty} V_n \otimes_{\mathbb{C}[S_n]} r^{\otimes n}$$

This is just like: if  $F : \mathbb{Z}[x] \to R$  is a homomorphism with F(x) = r, then for any  $P(x) = \sum_{n=0}^{\infty} a_n x^n \in \mathbb{Z}[x]$  we have

$$F(P) = \sum_{n=0}^{\infty} a_n r^n$$

This is just the beginning of a wonderful analogy between rings and 2-rigs, polynomials and Schur functors, etc.

It's "categorified commutative algebra".