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Once upon a time, mathematics was all about sets:

In 1945, Eilenberg and Mac Lane introduced categories:



Category theory takes processes (morphisms):

• −→ •

just as seriously as things (objects):

•

So, it’s obviously good for physics!



In 1967 Bénabou introduced bicategories:

These include processes between processes, or ‘2-morphisms’:

• %%
99��
•

This goes on forever... leading to the
periodic table of n-categories.
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Let’s see what we can do with just bicategories. There’s a
category Hilb where:

objects are (finite-dimensional) Hilbert spaces;
morphisms are linear operators.

Similarly, there’s a bicategory 2Hilb where:

objects are (finite-dimensional) 2-Hilbert spaces;
morphisms are linear functors;
2-morphisms are natural transformations.



The idea:
2Hilb is to Hilb as Hilb is to C

Just as Cn is a Hilbert space, Hilbn is a 2-Hilbert space.

In a 2-Hilbert space, ⊕ acts like addition. For example, every
object in Hilbn is a direct sum of ‘basis vectors’

ei = (0,0, . . . ,0,C,0, . . .0,0)

In a 2-Hilbert space, hom : Hop × H → Hilb acts like an inner
product. Adjoint functors between 2-Hilbert spaces are like
adjoint operators between Hilbert spaces!



More precisely, a 2-Hilbert space H is a Hilb-enriched abelian
†-category such that

〈fg,h〉 = 〈g, f †h〉 = 〈f ,hg†〉

for any triangle of morphisms

y
f

��
x

g
??

h
// z

A good example is the category of continuous unitary
representations of a compact Lie group.

http://arxiv.org/abs/q-alg/9609018


There’s a symmetric monoidal category nCob where:

objects are (n − 1)-dimensional compact oriented smooth
manifolds;
morphisms are cobordisms between these.

Example of a morphism when n = 2:



There’s a symmetric monoidal bicategory nCob2 where:

objects are (n − 2)-dimensional compact oriented smooth
manifolds;
morphisms are cobordisms between these.
2-morphisms are cobordisms between those.

Example of a 2-morphism when n = 3:



A TQFT is a symmetric monoidal functor

Z : nCob→ Hilb

These can be nicely classified when n = 2.

A once extended TQFT is a symmetric monoidal functor

Z : nCob2 → 2Hilb

These can be nicely classified when n = 3.



A once extended TQFT in dimension 3 assigns a 2-Hilbert
space to the circle

Z (S1) = H

This is the 2-Hilbert space of a particle.

H is not just a 2-Hilbert space: it’s an ‘anomaly-free modular
tensor category’. This is enough structure for us to completely
reconstruct the whole once extended TQFT.

See the forthcoming work of Bartlett, Douglas, Schommer-Pries
and Vicary — and previous work by many others.



A simple object i ∈ H is a type of particle.

An oriented surface Σ whose boundary consists of n circles:

is a morphism
Σ: S1 ∪ · · · ∪ S1 → ∅

so it gives a linear functor

Z (Σ): H⊗n → Hilb

For objects i1, . . . in ∈ H, this functor sends i1 ⊗ · · · ⊗ in to the
Hilbert space of states for a collection of particles of these
types in the space Σ.



A once extended TQFT for n = 4 will, among other things,
assign a 2-Hilbert space to the sphere:

Z (S2) = H

This is again the 2-Hilbert space of a particle.

We also get Z (T 2) and other 2-Hilbert spaces for higher genus,
which describe 1-dimensional defects (‘string networks’), but let
us focus on particles.

How do we describe collections of particles? We should
categorify Fock space, and the annihilation and creation
operators.



Given any Hilbert space H, the Fock space is the free
commutative algebra on H:

SH =
∞⊕

n=0

H⊗n/Sn

completed to form a Hilbert space. Here we mod out H⊗n by
the action of the permutation group Sn.

For any basis vector ei ∈ H there is creation operator

a†i : SH → SH
v1 · · · vn 7→ eiv1 · · · vn

and its adjoint, the annihilation operator ai . These obey the
relations of the Heisenberg algebra:

[ai ,aj ] = [a†i ,a
†
j ] = 0 [ai ,a

†
j ] = δij



Given any 2-Hilbert space H, we can define a 2-Fock space

SH =
∞⊕

n=0

H⊗n//Sn

Here we ‘weakly mod out’ H⊗n by the action of the permutation
group Sn, putting in an isomorphism

fσ : v1 ⊗ · · · ⊗ vn −→ vσ−1(1) ⊗ · · · ⊗ vσ−1(n)

for each permutation σ ∈ Sn, such that

fσfσ′ = fσσ′

The 2-Fock space is an infinite-dimensional 2-Hilbert space.



We can define creation operators on the 2-Fock space: for
each simple object i ∈ H there is a linear functor

a†i : SH → SH
v1 · · · vn 7→ ei ⊗ v1 ⊗ · · · ⊗ vn

The adjoints of these functors are the annihilation operators

ai : SH → SH

These obey the relations of the Heisenberg algebra up to
natural isomorphism, e.g.

aia
†
j
∼= a†j ai ⊕ δij

But what equations do these isomorphisms obey?



In 2010, Mikhail Khovanov answered this question. The
equations look strange at first sight:

But in 2012, Jeffrey Morton and Jamie Vicary showed they arise
from simple ideas about creating and annihilating particles!

http://arxiv.org/abs/1009.3295
http://arxiv.org/abs/1207.2054


The key idea is that a†i creates a new particle of type i ... while
ai is a sum over all ways of choosing a particle of type i and
annihilating it.

If we consider just one type of particle, then

aa† = a†a + 1

says there is 1 more way to

create a particle and then annihilate one,

than to

annihilate a particle and then create one.

The reason: if you create one first, there’s 1 more choice of
which particle to annihilate!



How can make this idea precise? We use the groupoid of finite
sets, S:

an object of S is a finite set s
a morphism in S is a bijection α : s → t .

There is a functor

+1 : S → S
s 7→ s + 1

sending each finite set s to its disjoint union with a chosen
one-element set, called 1.

This is the idea behind the creation operator: it adds one
element to a finite set of ‘particles’.



But what about the annihilation operator? There is no functor
f : S→ S that takes a finite set and removes an element.

There are n different ways to remove an element from an
n-element set. There is no best way to choose one. But we
don’t want to choose one. We want to consider all possible
choices.

We can do this using spans of groupoids.



A span is a diagram shaped like this:

S
q

��

p

��
Y X

In a span of groupoids, p : S → X and q : S → Y are functors
between groupoids.



Any functor f : X → Y gives a span from X to Y :

X
f

��

1X

��
Y X

but we can also turn it around and get a span from Y back to X :

X
1X

��

f

��
X Y



So, if S is the groupoid of finite sets, we have spans called the
annihilation operator A:

S
1S

��

+1

��
S S

and the creation operator A†:

S
+1

��

1S

��
S S



We compose spans of groupoids by taking a weak pullback:

TS
πT

~~

πS

  
T

qT

��

pT

  

∼
=⇒ S

qS

~~

pS

��
Z Y X

TS is the groupoid whose objects are triples(
t ∈ T , s ∈ S, α : pT (t) ∼−→ qS(s)

)
The diamond then commutes up to natural isomorphism.



How can we relate AA† and A†A?

In fact we have an equivalence of spans

A†A + 1 ' AA†

But what does this mean, exactly?



First, for any groupoid X there is an identity span given by

X
1X
~~

1X
  

X X

Second, we can add two spans

S
�� ��

T
�� ��

Y X Y X

getting a span
S + T

zz $$
Y X

where S + T is the disjoint union of the groupoids S and T .



Third, a map of spans is a diagram of groupoids and functors
like this:

S

Y

q

X

p

S′
q′ p′

f
∼=⇒ ∼

⇐=

where the triangles commute up to chosen natural
isomorphisms.

An equivalence of spans is a map of spans where f is an
equivalence of groupoids.



Since there’s 1 more way to add an element to a finite set and
then remove one than to remove an element and then add one,
we get an equivalence of spans:

f : A†A + 1 ∼
=⇒ AA†

where the double arrow denotes a map of spans, and 1 is the
identity span from S to S.



In 2000, James Dolan and I noticed this equivalence of spans

f : A†A + 1 ∼
=⇒ AA†

and used it to describe the combinatorics of Feynman diagrams
using spans of groupoids. Jeffrey Morton developed this
further, showing how to include complex numbers.

In 2012, Morton and Vicary showed f obeys certain nontrivial
equations — precisely the relations in Khovanov’s categorified
Heisenberg algebra!

http://arxiv.org/abs/math/0004133
http://arxiv.org/abs/math/0601458
http://arxiv.org/abs/1207.2054


To state these relations, we need to go beyond maps of spans.
We need spans of spans:

S

S′

ZY X

∼
=⇒ ∼
=⇒

Just as any functor gives a span of groupoids, any map of
spans gives a span of spans.

But a span of spans Z : S ⇒ S′ can be ‘flipped’ to give a span
of spans Z † : S′ ⇒ S, just by turning the diagram upside down.



So, the isomorphism of spans

f : A†A + 1 ∼
=⇒ AA†

gives two ‘inclusions’

i : A†A =⇒ AA†

j : 1 =⇒ AA†

and we can flip these to get ‘projections’

i† : AA† =⇒ A†A

j† : AA† =⇒ 1

which are spans of spans. The relations in the categorified
Heisenberg algebra involve i , j , i†, j†.



Here is one of these relations, both as Khovanov drew it and as
a commutative triangle where the double arrows are spans of
spans:

A†A

AA†

i

A†A
i†

1A†A

What does this mean? We begin with a way to remove one
element x from a finite set and then add one element y . i†

relates this to a way to add y and then remove x . i relates this
back to a way where we remove x and add y . This gives the
identity: we come back to the same ‘history’!



So, we have found a new layer of quantum theory, with:

2-Hilbert spaces subsuming Hilbert spaces,
once extended TQFTs subsuming TQFTs, and
the categorified Heisenberg algebra subsuming the
Heisenberg algebra.

This new layer is just the next of many—presumably infinitely
many.



To set this work in a good context, we should prove this:

Conjecture (Morton and Vicary)
There is a symmetric monoidal bicategory with:

groupoids as objects
spans of groupoids as morphisms
spans of spans as 2-morphisms

http://arxiv.org/abs/1207.2054


Here is a big step toward proving the conjecture:

Theorem (Alex Hoffnung and Mike Stay)
There is a symmetric monoidal bicategory with:

groupoids as objects
spans of groupoids as morphisms
maps of spans as 2-morphisms

for references and more, see:
http://tinyurl.com/baez-spans

http://arxiv.org/abs/1112.0560
http://arxiv.org/abs/1301.1053
http://math.ucr.edu/home/baez/spans/

