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Mathematicians are slowly categorifying all basic concepts from
algebra.

Grothendieck’s student Hoàng Xuân Sính categorified groups
in the late 1960s and got Gr-categories. These are now called
‘2-groups’. Later people went further and studied n-groups and
∞-groups.

The theory of categorified rings is growing more slowly,
because there are many different directions to generalize. I’ll
talk about one approach especially suited to topology and
representation theory.



How to categorify rings — or rigs

Often it’s best to categorify rigs — rings without negatives. The
initial ring is Z. The initial rig is N. N is the set of isomorphism
classes of FinSet, which is some sort of categorified rig with
coproduct as + and product as ×.

Sometimes it’s good to focus on commutative rigs. I’ll go down
that road and use ‘rig’ and ‘ring’ to mean one where the
multiplication is commutative. Similarly, I’ll only talk about
categorified rigs where both the addition and multiplication
define symmetric monoidal structures.



A symmetric rig category R is a category with symmetric
monoidal structures (⊕,0) and (⊗, I), with natural isomorphisms

r ⊗ (s ⊕ t) (r ⊗ s) ⊕ (r ⊗ t)

(s ⊕ t) ⊗ r (s ⊗ r) ⊕ (t ⊗ r)

∼

∼

r ⊗ 0 0 0 ⊗ r 0∼ ∼

obeying approximately 19 coherence laws discovered by
Laplaza.

https://people.math.rochester.edu/faculty/doug/otherpapers/laplaza.pdf


Theorem. The initial symmetric rig category is the groupoid of
finite sets, with disjoint union as + and cartesian product as ×.

Conjectured in 2010, this was proved by Elgueta in 2020. See
also Comfort, Delpeuch and Hedges, who gave a string
diagram argument for this result, and Yau, who proved a similar
result.

Problem. Find a more conceptual definition of rig category and
prove it is equivalent to Laplaza’s definition. Use this to find a
shorter proof of the above theorem.

https://ncatlab.org/nlab/revision/rig+category/1
https://arxiv.org/abs/2004.08684
https://arxiv.org/abs/2010.13361
https://nilesjohnson.net/drafts/Johnson_Yau_ring_categories.pdf


We want a more streamlined approach to categorified rigs,
adapted to these examples:
▶ The category of (finite-dimensional) representations of a

group with its usual ⊕ and ⊗.
▶ The category of (finite-dimensional) vector bundles over a

space with its usual ⊕ and ⊗.
These categories are enriched over Vectk for some field k —
either R or C in the second example.

In these categories ⊕ is coproduct, but ⊗ is not product.

These categories do not have all colimits — and the first doesn’t
even have coequalizers. It does however have coequalizers of

x x
p

1
where p is idempotent: p2 = p.



2-rigs

A 2-rig is a symmetric monoidal Vectk -enriched category that
is Cauchy complete.

Or, more slowly:

A linear category is a Vectk -enriched category for some
chosen field k . In other words: its hom-sets are vector spaces
over k , and composition (f ,g) 7→ f ◦ g is linear in each
argument.

A linear functor between linear categories is a functor that is
linear on hom-sets.

A symmetric monoidal linear category is a linear category
that is symmetric monoidal, such that the tensor product of
morphisms (f ,g) 7→ f ⊗ g is linear in each argument.



A linear category C is Cauchy complete if has all absolute
colimits: those automatically preserved by linear functors. In
other words:
▶ C has binary coproducts: ⊕
▶ C has an initial object: 0
▶ C has coequalizers of diagrams

x x
p

1

where p is idempotent: p2 = p.
In a linear category:
▶ binary coproducts automatically become products too:

they are ‘biproducts’, and I’ll call them direct sums.
▶ In a linear category, an initial object automatically becomes

terminal: it’s a zero object.



A 2-rig is a symmetric monoidal linear category that is Cauchy
complete. A map of symmetric 2-rigs F : R→ R′ is a
symmetric monoidal linear functor.

Note that a map of 2-rigs automatically preserves absolute
colimits. Also the tensor product ⊗ : R × R→ R automatically
preserves absolute colimits in each argument. So we get these
natural isomorphisms for free:

r ⊗ (s ⊕ t) (r ⊗ s) ⊕ (r ⊗ t)

(s ⊕ t) ⊗ r (s ⊗ r) ⊕ (t ⊗ r)

∼

∼

r ⊗ 0 0 0 ⊗ r 0∼ ∼

and their coherence laws too. Thus, every 2-rig is a rig
category.



Examples of 2-rigs include:
▶ The category Repk (G) of representations of a group G on

finite-dimensional vector spaces over k , with the usual ⊗.
▶ If k = R or C, the category Vectk (X ) of real or complex

vector bundles on a compact Hausdorff space X , with the
usual ⊗.

And many more!



A different kind of example: the free 2-rig on one generator,
commonly known as the category of Schur functors.

Theorem (BMT). Over a field k of characteristic zero, the free
2-rig on one generator is

∞⊕
n=0

Repk (Sn)

with the tensor product

Repk (Sm) ⊗ Repk (Sn) Repk (Sm × Sn) Repk (Sm+n)
∼

induction

⊥

restriction

https://arxiv.org/abs/2106.00190


Idea of proof.

Prove we have 2-adjunctions between 2-categories:

Cat SMCat SMLin 2Rig

S

⊥

k(−)

⊥

(−)

⊥

Start with the free category on one object — the terminal
category — and feed it into this machine! We get the free 2-rig
on one object.



1. First form the free symmetric monoidal category on one
object x . This is the groupoid of finite sets, S, with disjoint
union as symmetric monoidal structure. In S, the
endomorphisms of {1, . . . ,n} form the symmetric group Sn.

2. Then form the free linear symmetric monoidal category on
S. This is called kS. In kS, the endomorphisms of
{1, . . . ,n} form the group algebra of Sn, often called k [Sn].

3. Then Cauchy complete kS: that is, take direct sums of
objects and split idempotents. The result is a 2-rig called
kS. As a linear category,

kS ≃
∞⊕

n=0

Rep(Sn)

Alternatively it’s the category of functors f : S→ Vectk
such that

∑
n dim f ({1, . . . ,n}) < ∞, with Day convolution as

the tensor product.



Now suppose k has characteristic zero. For any object x in a
2-rig R and any n ≥ 0, we define the nth exterior power Λnx to
be the coequalizer of

1 : x⊗n → x⊗n

and the antisymmetrizer

p =
1
n!

∑
σ∈Sn

(−1)sign(σ)σ : x⊗n → x⊗n

which is an idempotent.

We say x ∈ R has subdimension n if Λn+1x � 0. We say x is a
subline object if it has subdimension 1.

▶ A vector space has subdimension n iff it has dimension
≤ n.

▶ A vector bundle is a subline object iff it is a sub-bundle of a
line bundle.



Theorem (BMT). The free 2-rig on a subline object L is the
category A of N-graded vector spaces of finite total dimension,
with its usual tensor product, and the symmetry with

SL,L = 1L⊗L.

Conjecture (BMT). The free 2-rig on an object of subdimension
n is Rep(M(n, k)): the category of algebraic representations of
the monoid of n × n matrices with entries in k .

https://arxiv.org/abs/2410.05598
https://arxiv.org/abs/2410.05598


There are two real line bundles over the circle: the trivial line
bundle I and the Möbius strip bundle M:

Every real vector bundle over the circle is a direct sum of I and
M. Their direct sums obey one relation: M ⊕M � I ⊕ I.



The tangent bundle of the sphere is not the direct sum of line
bundles.



A Splitting Theorem for Vector Bundles. If k = R or C and X
is a compact Hausdorff space, then for any E ∈ Vectk (X ) there
exists a compact Hausdorff space Y and a map ϕ : Y → X such
that the 2-rig map

ϕ∗ : Vectk (X )→ Vectk (Y )

has these properties:
▶ ϕ∗(E) = L1 ⊕ · · · ⊕ Ln for some subline objects Li .

▶ ϕ∗ is faithful.
▶ ϕ∗ reflects isomorphisms.
▶ ϕ∗ is essentially injective.



Under the same hypotheses it’s also true that

K (ϕ∗) : K (Vectk (X ))→ K (Vectk (Y ))

is injective, where K is the Grothendieck ring of a 2-rig:

2Rig CommRig CommRing
decategorification

K

F

⊥

U

This is is the traditional statement of the splitting principle!



Conjecture (BMT). If R is a 2-rig, for any E ∈ R of finite
subdimension there is a 2-rig map

f : R→ R′

with these properties:
▶ f (E) = L1 ⊕ · · · ⊕ Ln for some subline objects Li ∈ R′.

▶ f is faithful.
▶ f reflects isomorphisms.
▶ f is essentially injective.
▶ K (f ) is injective.

https://www.arxiv.org/abs/2410.05598


The generating object x ∈ kS doesn’t have finite subdimension,
so the conjecture does not apply to it.

But the 2-rig Rep(M(n, k)) contains an object x of
subdimension n: the obvious representation of n × n matrices
on the vector space kn.

And we have proved the conjecture in this case!

(We hope Rep(M(n, k)) is the free 2-rig on an object of
subdimension n, but we don’t use this in our proof.)



The category of rings has coproducts, denoted ⊗. Similarly the
2-category of 2-rigs has coproducts, denoted ⊠.

Let A⊠n be the coproduct of n copies of the free 2-rig on a
subline object. A⊠n is the free 2-rig on n subline objects, say
L1, . . . ,Ln.

Theorem (BMT). There is a 2-rig map

f : Rep(M(n, k))→ A⊠n,

unique up to isomorphism, with these properties:
▶ f (x) = L1 ⊕ · · · ⊕ Ln.
▶ f is faithful.
▶ f reflects isomorphisms.
▶ f is essentially injective.
▶ K (f ) is injective.

https://www.arxiv.org/abs/2410.05598


K (A⊠n) � Z[x1, . . . , xn]

where xi is the class of the subline object Li . The image of

K (f ) : K (Rep(M(n, k))) ↪→ K (A⊠n)

consists of symmetric polynomials in the variables x1, . . . , xn,
that is, polynomials that are invariant under all permutations of
variables.

Thus, we have categorified the theory of symmetric
polynomials, which connect topology and representation theory.
The categorified theory emerges naturally from thinking about
2-rigs!

▶ JB, Joe Moeller and Todd Trimble, Schur functors and
categorified plethysm, Higher Structures, 8 (2024), 1–53.

▶ JB, Joe Moeller and Todd Trimble, 2-rig extensions and the
splitting principle.

https://arxiv.org/abs/2106.00190
https://arxiv.org/abs/2106.00190
https://www.arxiv.org/abs/2410.05598
https://www.arxiv.org/abs/2410.05598

