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Gauge Theory

Ordinary gauge theory describes how 0-dimensional par-
ticles transform as we move them along 1-dimensional
paths. It is natural to assign a Lie group element to

each path:
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since composition of paths then corresponds to multipli-
cation:

while reversing the direction of a path corresponds to
taking inverses:

and the associative law makes the holonomy along a
triple composite unambiguous:

[ J [ J [ J [ J

In short: the topology dictates the algebra!

The electromagnetic field is described using the group is
U(1). Other forces are described using other groups.



Higher (Gauge Theory

Higher gauge theory describes the parallel transport not
only of point particles, but also 1-dimensional strings.
For this we must categorify the notion of a group! A
‘2-group’ has objects:

and also morphisms:

multiply morphisms:

g1 g2

/
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and also compose morphisms:

e —— 0

N
g/I
Various laws should hold....

In fact, we can make this precise and categorify the whole
theory of Lie groups, Lie algebras, bundles, connections
and curvature!



2-Groups

A group is a monoid where every element has an inverse.
Let’s categorify this!

A 2-group is a monoidal category where every object x
has a ‘weak inverse’:

TRy =1, yRKr =1
and every morphism f has an inverse:
fg=1,  gf=1

A homomorphism between 2-groups is a monoidal func-
tor. A 2-homomorphism is a monoidal natural trans-
formation. So, the 2-groups X and X' are equivalent if
there are homomorphisms

f:6—-6¢ [ =g
that are inverses up to 2-isomorphism:

fre1 freEL

Theorem. 2-groups are classified up to equivalence by
quadruples consisting of:

e a group G,
e an abelian group H,
e an action a of G as automorphisms of H,

e an element [a] € H3(G, H).



Lie 2-Algebras

To categorify the concept of ‘Lie algebra’ we must first
treat the concept of ‘vector space’:

A 2-vector space L is a category for which the set of
objects and the set of morphisms are vector spaces, and
all the category operations are linear.

We can also define linear functors between 2-vector
spaces, and linear natural transformations between
these, in the obvious way.

Theorem. The 2-category of 2-vector spaces, linear
functors and linear natural transformations is equivalent
to the 2-category of:

e 2-term chain complexes C} 4, Co,
e chain maps between these,

e chain homotopies between these.

The objects of the 2-vector space form the space Cy. The
morphisms f: 0 — z form the space C;, with df = .



A Lie 2-algebra consists of:
e a 2-vector space L
equipped with:
e a functor called the bracket:
[,]]: LxL— L,

bilinear and skew-symmetric as a function of objects
and morphisms,

e a natural isomorphism called the Jacobiator:

‘]33,%2: [[x,y], Z] - [.CU, [Z/, Z“ + [[x,z],y],

trilinear and antisymmetric as a function of the ob-
jects x,y, 2,

such that:

e the Jacobiator identity holds: the following dia-
gram comimutes:

[[[w,z],y],2]
(o z,52 Jw,2),,2
[[[w,y],2],2]+[[w,[z,y]],2] ([[w,z],2],y]+[[w,z],[y,z]]
J[wy Z+J BERTE ‘/ [Jwrzy]+1
[[[w,y],2],2]+[[w,y],[2,z]] ([w,[z,2]],y]
[w,[[z,y],2]]+[[w,2],[2,y]] +H[w,zl [y, 2] +[[[w,z],2],y]
[y, x]+1\ Ju 2,21y w2 eyt w,a, 2]
[[[w,2]y], 2]+ [[w,[y,2]] 2] [[[w,2]y], 2]+ [[w, 2], [2,y]]+[[w,y], [2,2]]
+H[w,yl,[2,2]]+[w,[[2,y],2]]+[[w,2] [x[y]] —— +[w,[[z,2],y]]+[[w, [y,2]], 2]+ [w, [2,]y,2]]]



We can also define homomorphisms between Lie 2-algebras,
and 2-homomorphisms between these. So, the Lie 2-
algebras L and L’ are equivalent if there are homomor-
phisms

f:L— 1L f: L' - L

that are inverses up to 2-isomorphism.

Theorem. Lie 2-algebras are classified up to equivalence
by quadruples consisting of:

e a Lie algebra g,

e an abelian Lie algebra (= vector space) b,
e a representation p of g on b,

e an element [j] € H(g, b).

Just like the classification of 2-groups, but with Lie
algebra cohomology replacing group cohomology!

Let’s use this to find some interesting Lie 2-algebras.
Then let’s try to find the corresponding Lie 2-groups. A
Lie 2-group is a 2-group where everything in sight is
smooth.



The Lie 2-Algebra g;

Suppose g is a finite-dimensional simple Lie algebra over
R. To get a Lie 2-algebra with g as objects we need:

e a vector space b,
e a representation p of g on b,
e an element [j] € H(g, b).

Assume without loss of generality that p is irreducible.
To get Lie 2-algebras with nontrivial Jacobiator, we need
H3(g,b) # 0. This only happens when h = R is the
trivial representation. Then we have

H’(g,R) =R
with a nontrivial 3-cocycle given by:

v(2,y,2) = (2,9, 2).
Using k times this to define the Jacobiator, we get a Lie
2-algebra we call gj.

In short: every simple Lie algebra g admits a canon-
ical one-parameter deformation gy in the world of Lie
2-algebras!



Does g, Come From a Lie
2-Group?

The bad news: while there is a 2-group that is ‘trying’
to have g; as its Lie algebra, it cannot be made into a
Lie 2-group. It has G as its set of objects and U(1) as
the endomorphisms of any object, but unless £ = 0 we
cannot make its associator everywhere smooth — only
in a neighborhood of the identity!

But all is not lost. g is equivalent to a Lie 2-algebra
that does come from a Lie 2-group! However, this Lie
2-algebra is infinite-dimensional!

Theorem. For any k£ € Z, there is an infinite-dimensional
Lie 2-group P;G whose Lie 2-algebra is equivalent to gy.

An object of PG is a smooth path in GG starting at the
identity. A morphism from f; to fy is an equivalence

class of pairs (D, a) consisting of a smooth homotopy D
from fi to fo together with o € U(1):

<

There’s an easy way to compose morphisms in PG, and
the resulting category inherits a Lie 2-group structure
from the Lie group structure of G.



The Role of Loop Groups

We can also describe PG using central extensions of the
loop group of G:

Theorem. An object of PyG is a smooth path in G
starting at the identity. Given objects f1, fo € PiG, a
morphism

Zﬁ Ji— [

is an element £ € ﬁk\G with

~

p(l) = fo/ f1 € QG

where ﬁk\G is the level-k central extension of the loop
group QG:

1—U(1) — G 506 — 1
Since central extensions of loop groups play a basic role in
string theory, and higher gauge theory is all about parallel

transport of strings, this suggests PiG 1s an interesting
Lie 2-group!
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An Application to Topology

Any simply-connected compact simple Lie group G has
7T3(G) = 7.

There is a topological group G obtained by killing /‘\che
third homotopy group of G. When G = Spin(n), G is
called String(n).

Theorem. For any k € 7Z, the geometric realization of
the nerve of PrG is a topological group |PyG|. When
k=+1,

PG| ~ G.

The group String(n) shows up in string theory, especially
elliptic cohomology — so this again suggests we’re on the
right track!
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Gauge Theory Revisited

Any manifold M gives a smooth groupoid P;(M), its
path groupoid, for which:

e objects are points x € M: e

e morphisms are thin homotopy classes of smooth paths
v:10,1] — M that are constant near ¢t = 0, 1:

~
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For any Lie group (G, a principal G-bundle P — M gives
a smooth groupoid Trans(P), the transport groupoid,
for which:

e objects are the fibers P, (which are G-torsors),

e morphisms are G-torsor morphisms f: P, — P,.

Via parallel transport, any connection on P gives a smooth
functor called its holonomy:

hol: P(M) — Trans(P)

A trivialization of the bundle P makes Trans(P) equiv-
alent to G, so we get:

hol: Pi(M) — G.
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Higher Gauge Theory Revisited

We can categorify all the above and get a theory of 2-
connections on principal 2-bundles. See the papers by
Toby Bartels and Urs Schreiber for details... or come
with me to Canberra! With suitable definitions, it turns
out that:

Any manifold M gives a smooth 2-groupoid Po(M), its
path 2-groupoid, for which:

e objects are points of M: e

e morphisms are smooth paths v: [0, 1] — M that are

gl
T
constant near t = 0,1: ze ®y

e 2-morphisms are thin homotopy classes of smooth
maps f: [0,1]?> — M such that f(s,t) is independent
of s in a neighborhood of s = 0 and s = 1, and
constant in a neighborhood of t =0 and t = 1:

!
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For any strict Lie 2-group G, a principal G-2-bundle P —
M gives a smooth 2-groupoid Trans(P), the transport
2-groupoid, for which:

e objects are the fibers P, (which are G-2-torsors),
e morphisms are 2-torsor morphisms f: P, — P,

e 2-morphisms are 2-torsor 2-morphisms 6: f = g¢.
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Theorem. Via parallel transport, a 2-connection on P
gives a smooth 2-functor called its holonomy:

hol: Py(M) — Trans(P)

if and only if its ‘fake curvature’ vanishes.

So, in this case we can define the holonomy of our 2-
connection along paths:

Y hol(~)
Qj./\.y }IEJ Px/\Py

and paths-of-paths:

Te “f oy 19 P, o) By
\/ v
12 hol(y2)

in a manner compatible with all 2-groupoid operations!

A trivialization of P makes Trans(P) equivalent to G, so
we get:

hol: PQ(M) — Q
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What Next?

. Classify the representations of Lie 2-algebras and Lie
2-groups, especially g and PrG.

. Develop more categorified differential geometry: 2-
bundles over smooth categories, the tangent 2-bundle
of a smooth category, classifying 2-spaces of Lie 2-
groups, and so on....

. Develop physical theories based on 2-connections on
2-bundles — higher gauge theories.

. Relate higher gauge theories to string theory and
elliptic cohomology.

. Go even higher: M-theory wants 3-connections on
3-bundles, describing parallel transport of 2-branes.
Read Urs Schreiber’s thesis!

15



